
RESEARCH Open Access

On the Lambert-W function for constrained
resource allocation in cooperative networks
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Abstract

In cooperative networks, a variety of resource allocation problems can be formulated as constrained optimization
with system-wide objective, e.g., maximizing the total system throughput, capacity or ergodic capacity, subject to
constraints from individual users, e.g., minimum data rate, transmit power limit, and from the system, e.g., power
budget, total number of subcarriers, availability of the channel state information (CSI). Most constrained resource
allocation schemes for cooperative networks require rigorous optimization processes using numerical methods
since closed-form solutions are rarely found. In this article, we show that the Lambert-W function can be efficiently
used to obtain closed-form solutions for some constrained resource allocation problems. Simulation results are
provided to compare the performance of the proposed schemes with other resource allocation schemes.
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1 Introduction
Cooperative transmissions have attracted much atten-
tion over the last few years. It has been demonstrated
that the benefits of multi-antenna transmission can be
achieved by cooperative transmission without requiring
multiple antennas at individual nodes (for example see
[1-3]). Cooperation is particularly relevant when the size
of mobile devices limits the number of antennas that
can be deployed.
Wireless Mesh networks (WMN) and relay networks

are among the main networks that use cooperative com-
munication. The main distinguished characteristic of
mesh and relay networks is possibility of multi-hop
communication. In Mesh networks, traffic can be routed
through other mobile stations (MSs) and can also take
place through direct links. Nodes are composed of mesh
routers and mesh clients and thus routing process is
controlled not only by base station (BS) but also by
mobile station MS [4]. Each node can forward packets
on behalf of other nodes that may not be within direct
wireless transmission range of their destination. In case
of relay networks, the network infrastructure consists of
relay stations (RSs) that are mostly installed, owned, and

controlled by service provider. A RS is not connected
directly to wire infrastructure and has the minimum
functionality necessary to support multi-hop communi-
cation. The important aspect is that traffic always leads
from or to BS. The realization of the performance
improvement promised by cooperation in wireless mesh
and relay networks depends heavily on resource alloca-
tion (among other things).
Recently, resource allocation for OFDMA WMN with

perfect CSI has been an active research topic. In [5], a
fair subcarrier and power allocation scheme to maximize
the Nash bargaining fairness has been proposed. Instead
of solving a centralized global optimization problem, the
authors proposed a distributed hierarchical approach
where the mesh router allocates groups of subcarriers to
the mesh clients, and each mesh client allocates trans-
mit power among its subcarriers to each of its outgoing
links. In [6], an efficient intra-cluster packet-level
resource allocation approach taking into account power
allocation, subcarrier assignment, packet scheduling, and
QoS support has been studied. The authors employ the
utility maximization framework to find the joint power-
frequency-time resource allocation that maximizes the
sum rate of a WMN while satisfying users minimum
rate requirements. The benefits of optimal resource allo-
cation in cooperative relay networks with perfect CSI* Correspondence: felix.brah@uclouvain.be
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has also been investigated by several authors (see, e.g.,
[7,8], and references therein).
However, when the channel variations are fast, the

transmitter may not be able to adapt to the instanta-
neous channel realization. Hence, CSI-aware resource
allocation is not suitable for environments with high
mobility. When the channel state can be accurately
tracked at the receiver side, the statistical channel model
at the transmitter can be based on channel distribution
information feedback from the receiver. We refer to
knowledge of the channel distribution at the transmitter
as CDIT. In [9], CDIT-based constrained resource allo-
cation problem for non-cooperative OFDMA-based net-
works is studied. The authors derive an optimal power
allocation algorithm in closed-form. In [10], a dynamic
resource allocation algorithm aiming to maximize the
delay-limited capacity of a cooperative communication
with statistical channel information is developed. In
[11], a power allocation problem for ergodic capacity
maximization in relay networks under high SNR regime
is solved using numerical methods.
In this article, we present a new result on how the

Lambert-W function can be used to efficiently find
closed-form solution of constrained resource allocation
problems for cooperative networks.
There are two significant benefits from using the Lam-

bert-W function in the context of resource allocation for
cooperative networks. Most resource allocation schemes
for cooperative networks require rigorous optimization
processes using numerical methods since closed-form
solutions are rarely found. Using the Lambert-W func-
tion, resource allocations can not only be expressed in
closed-form but they can also quickly be determined
without resorting to complex algorithms since a number
of popular mathematical softwares, including Maple and
Matlab, contain the Lambert-W function as an optimi-
zation component.
The Lambert-W function has several uses in physical

and engineering applications [12-15]. In [14], the Lam-
bert-W function is used for the purpose of diode para-
meters determination in diode I-U curve fitting. Recent
work in [15] shows that the Lambert-W function also
finds utilization in Astronomy to calculate the position
of an orbiting body in a central gravity field.
The remainder of this article is organized as follows.

In Sect. 2, we provide a concise introduction to the
Lambert-W function. In Sect. 3, we show how the Lam-
bert-W function is applied to a subcarrier allocation
problem in WMNs. The use of the Lambert-W function
to a power allocation problem in relay networks with
statistical channel information is discussed in Sect. 4. In
Sect. 5, we show the performance of the proposed
resource allocation methods by simulation. Finally, con-
clusions are drawn in Sect. 6.

2 The Lambert-W Function
The Lambert function W(x) is defined to be the multi-
valued inverse of the function f(x) = xex [12]. That is,
Lambert W(x) can be any function solution of the trans-
cendental equation

W(x)eW(x) = x. (1)

Actually, for some values of x, Equation 1 has more
than one root, in which case the different solutions are
called branches of W. Since the values of interest in our
work are real, we will concentrate on real-value
branches of W. If x is real, then for -1/e ≤ x < 0, there
are two possible real values of W(x) (see Figure 1). The
branch satisfying W(x) ≤ -1 is denoted by W0(x). The
branch satisfying W(x) ≤ -1 is denoted by W(x) and it is
referred to as the principal branch of the Lambert-W
function.
The nth derivative of the Lambert-W function is given

by [12].

dnW(ex)
dxn

=
qn(W(ex))

(1 +W(ex))2n−1 for n ≥ 1 , (2)

in which the polynomials qn, given by

qn(w) =
n−1∑
i=0

〈〈
n − 1

i

〉〉
(−1)iwi+1, (3)

contain coefficients expressed in terms of second-
order Eulerian numbers and q1(w) = w.

In (3), the second-order Eulerian number

〈〈
n
m

〉〉
cor-

responds to the number of permutations of the multiset
{1, 1, 2, 2,..., n, n} with m ascents which have the prop-
erty that for each i, all the numbers appearing between
the two occurrences of i in the permutation are greater
than i [16].
The application of the Lambert-W function to obtain

a closed-form solution for resource allocation problems
in wireless mesh and relay networks constitutes the
principal contribution of this article.

3 The Lambert-W function for subcarrier
allocation in wireless mesh network
3.1 Problem formulation
We consider a single cluster OFDMA WMN that consists
of one mesh router (MR) and K mesh clients (MC) as illu-
strated in Figure 2. The MR serves as a gateway for the
MCs to the external network (e.g., Internet). The MCs can
communicate with the MR and with each other through
multi-hop routes via other MCs. We label the MR as node
0 and the MC nodes as k = 1,..., K. A link (k, j) exists
between node k and node j when they are within transmis-
sion range of each other, i.e., they are neighboring nodes.
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Figure 1 The two real branches of the Lambert-W function.

Figure 2 Illustration of a wireless mesh network.
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There are a total of N subcarriers in the system. Each
subcarrier has a bandwidth B. The channel gain of sub-
carrier n on link (k, j), which connects MC k to MC j, is
denoted by Gn

kj and the transmit power of MC k on sub-
carrier n is denoted by pnk. MC k has a transmit power
limit of p̄k and a minimal rate requirement of Rk. Let nk
be the number of subcarriers to allocate to MC k, using
only information available at the MR, i.e., the average
channel gain of all outgoing links at MC k, Ḡk. Based on
Ḡk and uniform power allocation assumption over all
the nk subcarriers (pnk = p̄k

/
nk,∀k), the MR determines

an approximated rate for MC k as

rk(nk) = nkB log2

(
1 +

Ḡk

�σ 2
n

p̄k
nk

)
, (4)

where σ 2
n is the thermal noise power, and Γ is the

SNR gap related to the required bit-error-rate (BER).
The main reason that the MR determines an approxi-
mated rate instead of the exact rate is that the MR
knows only the average channel gain Ḡk, but not the
complete channel gain Gn

kj. In general, exact and com-
plete information needed to determine the exact rate is
rarely available at the MR. For practical SNR values
(SNR > 5 dB), the gap between the exact rate and its
approximate (4) is very small and (4) can be viewed as
the rate realized at MC k.
There are various constraints associated with

resource allocation in OFDMA-based WMNs. At each
node k, the sum of the transmit power on the allocated
subcarriers is bounded by a maximum power level p̄k.
We assume that each subcarrier can only be allocated
to one transmission link in a cluster. Different traffic
types require different packet transmission rates. For
example, voice packets require a constant rate; video
traffic has minimum, mean, and maximum rate
requirements; while data traffic is usually treated as
background traffic whose source rate is dynamic. In
our problem formulation, we only take the minimum
rate requirement of these three traffic types, if any,
into account.
The resources to allocated are defined as a set of

subcarriers, and the total transmit power available at
each node. We consider a distributed hierarchical
resource allocation, where the MR only performs a
rough resource allocation with limited information
(the average channel gain of all outgoing links at MC
or the statistical channel information) and the MCs
perform more refined resource allocation with full
information that is available locally. In this section, we
focus on subcarrier allocation at MR and we assume
that each MC k distributes its transmit power limit p̄k
equally over all its allocated subcarriers. After

subcarrier allocation, the optimal power allocation is
performed at each MC k. The optimal power alloca-
tion is not developed in this article. Mathematically,
the subcarrier allocation problem at MR can be formu-
lated as

max
nk

K∑
k=1

nkB log2

(
1 +

αk

nk

)

subject to:

nkB log2

(
1 +

αk

nk

)
≥ Rk

K∑
k=1

nk ≤ N

(5)

where αk =
Ḡkp̄k
�σ 2

n

.

3.2 Solution method
We propose a solution method based on the Lagrange
dual approach and the Lambert-W function. First, we
express the Lagrangian of the primal problem (5) as

L(nk,λk,μ) =
K∑
k=1

nkB log2

(
1 +

αk

nk

)

+
K∑
k=1

λk

(
nkB log2

(
1 +

αk

nk

)
− Rk

)
− μ

(
K∑
k=1

nk − N

) (6)

where lk and μ are the Lagrangian multipliers asso-
ciated with the minimum rate constraint of MC k and
the total subcarrier constraint.
By KKT first optimality condition [17], we take the

derivative of (6) with respect to nk for fixed (lk, μ) and
set the derivative to zero to obtain

ln
(
1 +

αk

nk

)
−

αk

nk

1 +
αk

nk

− μ

B

ln 2
(1 + λk)

= 0. (7)

By solving Equation 7 for nk, for given (lk, μ), the
optimal value of subcarriers to be allocated to MC k is
given by (see Appendix A)

n∗
k =

−αkW

(
−exp

(
−1 − μ

B
ln2 (1 + λk)

))

1 +W

(
−exp

(
−1 − μ

B
ln2 (1 + λk)

)) . (8)

The optimal values of μ and lk still need to be found.
They correspond to the ones that satisfy the total sub-
carrier constraint with equality and the individual rate
constraints. We substitute nk in Equation 6 by n∗

k to
form the dual problem
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min
λk,μ

L(n∗
k ,λk,μ). (9)

The optimal λ∗
k, for fixed μ, are found using KKT con-

ditions. To derive L(n∗
k ,λk,μ) over lk, we make use of

the formula of the nth derivative of the Lambert-W
function given by (2). Applying (2) for n = 1, we obtain
that the optimal λ∗

k has to satisfy (see Appendix B)

fm(λ∗
k) − Rk

αk
= 0, (10)

where

fm(λ∗
k) =

w∗
k

1 + w∗
k

·
[(

B
ln 2

+
μ

(1 + λ∗
k)(1 + w∗

k)
2

)
ln (−w∗

k)

+
μ

(1 + λ∗
k) (1 + w∗

k)
+

μ2

(1 + λ∗
k)

2(1 + w∗
k)

2

]

with w∗
k = W

⎛
⎜⎝−exp

⎛
⎜⎝−1 − μ

B
ln 2

(1+λ∗
k)

⎞
⎟⎠
⎞
⎟⎠.

It can be shown that fm is a strictly increasing function
of λ∗

k and fm(λ∗
k) > 0 for all λ∗

k ≥ 0. Thus, the inverse
function, f−1

m ,of fm, exists. The optimal λ∗
k can then be

deduced as

λ∗
k = f−1

m

(
Rk

αk

)
. (11)

Now we turn to find the optimal μ*. Substituting lk in
(8) by the optimal value obtained in (11) and using the
constraint

∑K
k=1 nk = N, we obtain

K∑
k=1

−αkW

(
−exp

(
−1 − μ

B
ln 2 (1 + λ∗

k)

))

1 +W

(
−exp

(
−1 − μ

B
ln 2 (1 + λ∗

k)

)) = N. (12)

Let

gm(μ) =
K∑
k=1

−αkW

(
−exp

(
−1 − μ

B
ln 2 (1 + λ∗

k)

))

1 +W

(
−exp

(
−1 − μ

B
ln 2 (1 + λ∗

k)

)) . (13)

Proposition 1 An inverse function for gm, g−1
m , exists

(see Appendix C. for proof).
Thus

μ∗ = g−1
m (N). (14)

3.3 Extension to Mesh router with statistical channel
information
In some fading environments, there may not be a feed-
back link sufficiently fast to convey the full CSI to the
MR. The MR may know only the channel distribution
information (CDI) and may use the CDI to allocate
resource. Following the approach in [9], we can formu-
late an ergodic rate maximization problem at the mesh
router with only CDI as

max
nk

Eα

{
K∑
k=1

nkB log2

(
1 +

αk

nk

)}

subject to:

Eαk

{
nkB log2

(
1 +

αk

nk

)}
≥ Rk

K∑
k=1

nk ≤ N

(15)

where a = [a1, a2,..., ak,..., aK], and Ea {.} represents
the statistical expectation with respect to a.
Using the solution method proposed in 3.2, the opti-

mal subcarrier allocation solution of (15) can be
obtained by solving the following equation for ñk

Eαk

{
ln
(
1 +

αk

ñk

)
−

αk
ñk

1 + αk
ñk

− μ
B

ln 2 (1 + λk)

}
= 0. (16)

To express the left hand side of (16), we need to find
the probability density function (pdf) of the random
variable

f̃m (αk) = ln
(
1 +

αk

ñk

)
−

αk
ñk

1 + αk
ñk

− μ
B

ln 2 (1 + λk)
. (17)

It can be observed that f̃m is monotonically nonde-
creasing and non-negative with respect to ak. Thus,
there exists a unique inverse function, f̃−1

m , of f̃m.

Let F̃αk(αk) and T̃αk(αk) denote the cumulative distri-
bution function (cdf) and the pdf of ak. We assume that
F̃αk(αk) and T̃αk(αk) are known at the MR.
First, using the same derivation as in Appendix A

where the right hand side of equation (A.1) is f̃m instead

of 0, we can express the inverse function of f̃m as

α̃k

(
f̃m
)
=

−ñ∗
k

(
1 +W

(
−exp

(
−1 − μ + f̃m

B
ln 2 (1 + λk)

)))

W

(
−exp

(
−1 − μ + f̃m

B
ln 2 (1 + λk)

)) . (18)
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Using expression (18) for the root, we derive the cdf
of f̃m as

F̃f̃m

(
f̃m
)
= Fαk

(
α̃k

(
f̃m
))

. (19)

The pdf of f̃m is then given as the derivative of (19)

with respect to f̃m as

T̃f̃m

(
f̃m
)
= T̃αk

(
α̃k

(
f̃m
)) (1 + α̃k

(
f̃m
))2

B
ln 2 (1 + λk)

ñ∗2
k

. (20)

Finally, using (20), the optimal subcarrier assignment
ñ∗
k is obtained by solving the following equation for ñ∗

k

∞∫
0

f̃mT̃f̃m

(
f̃m
)
df̃m = 0. (21)

For given multipliers lk and μ, Equation 21 can be
solved numerically.
The optimal values of lk, (k Î [1, K]) and μ still need

to be found. They correspond to the ones that satisfy
the individual rate constraints and the total subcarriers
constraint (with equality). If some of the individual rate
constraints are exceeded, the corresponding lk is equal
to zero. Unlike in the instantaneous allocation where
we have derive closed forms for lk and μ, here it is not
easy to obtain a close form. We use an iterative search
algorithm to find the optimal set of lk and μ.

4 The Lambert-W function for CDIT-based power
allocation in relay networks
In this section, we show how the Lambert-W Function
can be used for constrained resource allocation in relay
networks.

4.1 Problem formulation
Consider the relay network operating in receiver coop-
eration mode as illustrated in Figure 3. The transmitter
at the source node sends a signal x. Let x1 and y1 denote
the transmitted and received signals at the relay node,
respectively. We assume that the relay node operates in
the full duplex mode, i.e., the relay can receive and
transmit simultaneously on the same frequency channel
[7]. Thus, the received signals at the relay node and the
destination node are given by

y1 = h2x + z1
y = h1x +

√
gh3x1 + z,

(22)

where z1 and z are independent identically distributed
(i.i.d) zero mean circularly symmetric complex Gaussian
(ZMCSCG) additive noise with unit variance.
The capacity cut set bound of the relay network of

Figure 3 operating in a full duplex mode with perfect
CSI can be expressed as [11]

Cinst = max
0≤ρ,β≤1

min
{
log2(1 + βP(1 − ρ2)(γ1 + γ2)),

log2
(
1 + βPγ1 +

(
(1 − β)g + 2ρ

√
β(1 − β)g

)
Pγ3

) }
,
(23)

where r represents the correlation between the trans-
mit signals of the transmitter and the relay, and gi = |hi|
2.
We assume Rayleigh fading where each channel gain

hi, i = 1, 2, 3, is i.i.d. and normalized to have unit var-
iance; hence, the corresponding channel power gain is i.
i.d. exponential with unit mean. The average channel
power gain between the relay and the receiver is g. We
assume that g characterizes only path-loss attenuation,
hence g = 1/da, where d is the distance between the
relay node and the receiver node and a is the path-loss
power attenuation exponent. As in receiver cooperation
mode the relay is assumed to be close to the receiver,
the scenario of interest is when d is small.

Figure 3 Illustration of a relay network operating in receiver cooperation mode.
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We consider a fast fading environment, where the recei-
ver has CSI to perform coherent detection, but there is no
fast feedback link to convey the CSI to the transmitter.
Hence, the transmitter only has CDI, but no knowledge of
the instantaneous channel realizations. Ergodic capacity is
used to characterize the transmission rate of the channel.
We assume the channel has unit bandwidth. We

further assume an average network power constraint on
the system:

E
[|x|2 + |x1|2

] ≤ P, (24)

where the expectation is taken over repeated channel
uses.
The network power constraint model is applicable

when the node configuration in the network is not fixed
[11]. Note that, when the node configuration is fixed,
the individual power constraint model reflects the prac-
tical scenarios more than the network model. However,
the power allocation problem is, in general, more tract-
able under network power constraint.
The total power P is optimally allocated between the

transmitter and the relay, i.e.,

E
[|x|2] ≤ βP, E

[|x1|2] ≤ (1 − β)P, (25)

where b Î [0,1] is parameter to be optimized based on
CDI and node geometry g.
It has been shown in [7] that the capacity upper

bound in the asynchronous channel model, i.e., the
channel model where the nodes do not have complete
CSI, can be found by setting the correlation r to zero.
Since the CDI channel model falls into this case, the
ergodic capacity upper bound can be found by taking
the expectation of (23) over the channel distribution
and setting r = 0. Making use of the high SNR (P ≫ 1)
approximation log(1 + xP) ≈ log(xP), the ergodic capa-
city upper bound is then given by

Cerg = max
0≤β≤1

min
{
E[log2(βP(γ1 + γ2))],

E[log2(βPγ1 + (1 − β)Pgγ3)]
}
.
(26)

The problem is to find the optimal power allocation, i.
e., the optimal value of b, that gives the capacity upper
bound Cerg(b) of (26). Mathematically the power alloca-
tion problem can be formulated as

max
0≤β≤1

min
{
E[log2(βP(γ1 + γ2))],

E[log2(βPγ1 + (1 − β)Pgγ3)]
}
.

(27)

Problem (27) has been addressed in [11] and a numer-
ical solution has been proposed, but no closed-form
expression has been provided. This contrasts with what
will be done here.

4.2 Solution method
To find the optimal power allocation in closed-form, we
propose an approach that uses the Lambert-W function.
First, we need to evaluate the expected value of the

capacity expression over the channel fading distribution.
For this end, we make use of the following formula for i.i.
d. exponential random variables X1, X2 with unit mean:

E[log(a1X1 + a2X2)]

=

⎧⎨
⎩

a1 loga1 − a2 loga2
a1 − a2

− log eγ if a1 �= a2

log a1 + log e1−γ if a1 = a2,

(28)

where a1 and a2 are positive scalar constants and g is
Euler’s constant.
Applying formula (28), the first term and the second

term inside the min{.} in expression (26) are given,
respectively, by

E [log2(βP(γ1 + γ2))] = log2P + log2β + log2e
1−γ , (29)

and

E[log2(βPγ1 + (1 − β)Pgγ3)] =log2P

+
g(1 − β)log2

(
g(1 − β)

)− βlog2β

g(1 − β) − β
− log2e

γ .
(30)

Expression (29) is an increasing function of b. It is
easy to show that expression (30) is a decreasing func-
tion of b (for g of interest, i.e., g > 1). Thus the optimal
value b* solution of the maximization problem (27) can
be found by equating expressions (29) and (30) as

log2P + log2β
∗ + log2e

1−γ =log2P

+
g (1 − β∗)log2(g (1 − β∗)) − β∗log2β

∗

g (1 − β∗) − β∗ − log2e
γ .
(31)

Equation 31 is equivalent to

ln (β∗) + 1 =
g(1 − β∗) ln (g(1 − β∗)) − β∗ln (β∗)

g (1 − β∗) − β∗ , (32)

where ln(x) is the natural logarithm of x.
After some algebraic manipulations (32) can be rewrit-

ten equivalently as

−β∗

g (1 − β∗)
exp

( −β∗

g (1 − β∗)

)
= −1

e
. (33)

It can be recognized that Equation 33 is in the form of
a transcendental Equation 1. Thus we have

W
(

−1
e

)
=

−β∗

g (1 − β∗)
. (34)

The optimal value b* is deduced from (34) as

β∗ =
Kg

Kg + 1
, (35)
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where K = −W
(

−1
e

)
= 1.

It is interesting is to observe that the optimal power
allocation is obtained in closed-form and depends only
on g, i.e., on the distance d between the relay node and
the destination node and the path-loss power attenua-
tion exponent a.

4.3 Comparison with CSIT-based power allocation
In order to assess the relevance of the CDIT-based
approach, it has to be compared to the allocation
scheme based on perfect CSIT. Perfect CSIT is unrealis-
tic, but for the purpose of comparison, let us assume
perfect CSIT. Then the power allocation can be formu-
lated to maximize the instantaneous capacity instead of
the ergodic capacity. Mathematically, the CSIT-based
power allocation can be formulated as

max
0≤ρ,β≤1

min
{
1
2
log2(1 + βP(1 − ρ2) (γ1 + γ2)),

1
2
log2

(
1 + βPγ1 +

(
(1 − β) g + 2ρ

√
β (1 − β)g

)
Pγ3

)}
.
(36)

The optimal values of r and b solution of (36) have
been found in [11] as

ρ∗ =
1√

g2 + 2g + 2
, (37)

β∗ =
g2 + 2g + 2
g2 + 3g + 2

. (38)

The instantaneous capacity upper bound for high SNR
regime is deduced as

Cinst = log2

(
2
(
g + 1

)
g + 2

P

)
. (39)

Both CDIT-based and CSIT-based optimal power allo-
cation expressions (35) and (38) are in closed-form and
very fast to compute. Thus, the complexity is almost the
same. The main difference between the two allocation
schemes is the amount of feedback required to perform
power allocation. Recall that, for the CSIT-based
scheme, the allocation is performed after each symbol
period. Let Ns be the number of symbol periods after
which the CDIT-based resource allocation is performed.
Then a rough estimation tells us that the feedback
needed to perform CDIT-based power allocation is

reduced by
1
Ns

compared to the perfect CSIT scheme.

5 Simulation results
In order to assess the performance of the proposed
resource allocation methods, we conduct simulations

and compare the simulation results with other baseline
schemes.

5.1 Simulation results for wireless mesh networks
We consider a cluster with four wireless nodes with the
scheduling tree topology shown in Figure 4 and 4a total
number of subcarriers N = 128 over a 1-MHz band.
The relative effective SNR difference between MC 1 (the
closest MC to the MR) and MC 2, 3, and 4 are 3, 6, and
10 dB, respectively. The minimum rate requirements are
chosen to be the same for all MCs, the maximal power
at each MC k is p̄k = 50 mW, the thermal noise power
is σ 2

n = 10−11W.
We assume a Rayleigh fading. Thus, for the CDI-based

allocation, the ak follow a c2 distribution with 2Lk
degree of freedom, where Lk is the number of outgoing
links at MC k. For MC with a single outgoing link, ak is
reduced to an exponential distribution.
We name the proposed scheme with optimal alloca-

tion at MR and MCs as full optimal resource allocation
(FORA). For comparison, we also implement the follow-
ing resource allocation schemes:

1. MR-based optimal resource allocation (MORA)
where the MR performs the proposed optimal
subcarrier assignment, but each MC performs
uniform power allocation among its outgoing
links.
2. Full uniform resource allocation (FURA) where
each MC is assigned the same number of subcarriers
and transmit power at each MC is uniformly distrib-
uted over the assigned subcarriers and the active
links.

We evaluate system performance in terms of sum rate,
and satisfaction of minimum rate requirements.
In Figure 5, the performance of the proposed FORA

is compared to that of the optimal resource allocation
at MR under uniform power allocation at MCs
(MORA) and the FURA. The result shows that the
proposed optimal resource allocation brings significant
gain over uniform resource allocation, especially for
low SNRs.
Figure 6 shows the user’s rate for different allocation

schemes when the users minimum data rate demands
are constrained to Rk = 1 Mbps for all MCs. We
observe that under optimal allocation, the need of all
users in terms of data rate is satisfied. This is not the
case under uniform allocation. With uniform alloca-
tion, there is an over-allocation for closer MCs to the
MR (MCs 1 and 2) while the rate demand of farer
users with bad channel conditions (MCs 3 and 4) are
not satisfied.
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5.2 Simulation results for relay networks
In all the simulations, we assume a path-loss power
attenuation exponent of 2, and hence g = 1/d2. The dis-
tance d between the relay node and the receiver node
varies from 0.1 to 1.
In Figure 7, the ergodic capacity achieved using the

proposed power allocation scheme is compared to the
one obtained with uniform power allocation (b = 0.5,
∀d Î [0.1, 1]). We consider system average network
power constraints of P = 10 and P = 100. It can be
observed that the achieved capacity using the proposed

optimal power allocation method outperforms the capa-
city obtained with uniform allocation.
Figure 8 illustrates the achieved capacity using the

proposed CDIT-based optimal power allocation (35)
in comparison with the capacity of the CSIT-based
optimal power allocation (38). The CSIT-based capa-
city is averaged over the same number of channel rea-
lizations Ns over which the distribution is taken to
evaluate the ergodic capacity. The result shows that
the gap between the average capacity and the ergodic
capacity is small. Thus, even with CDIT only, optimal
power allocation improves performance of relay
networks.
The trade-off between reduced feedback and perfor-

mance degradation of the proposed CDIT-based optimal
power allocation in comparison with the perfect CSIT-
based optimal power allocation is shown in Figure 9.
We observe that adapting the transmission strategy to
the short-term channel statistics, increases the perfor-
mance but also increases the amount of feedback. How-
ever, if the transmission is adapted to the long-term
channel statistics, the amount of feedback decreases sig-
nificantly but with a penalty on the performance. For a
CDIT-based allocation with a distribution taken over 16

Figure 6 Per mesh client rate for Rk = 1 Mbps.
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symbol periods, the amount of feedback is reduced by
93.75%, while the performance degradation in terms of
capacity is less than 12%.

6 Conclusion
We have addressed constrained resource allocation pro-
blems for wireless mesh and relay networks. For mesh
networks, we have formulated a distributed subcarrier
allocation problem to maximize the sum rate while
satisfying minimum rate demand. For relay networks,
we have formulated power allocation problem to maxi-
mize the ergodic capacity under total power constraint.
Both cases of perfect and statistical channel knowledge
at the transmitter have been considered. We have
shown how the Lambert-W function can be use to effi-
ciently find the optimal resource allocation in closed-
form. Using the Lambert-W function, resource alloca-
tion can quickly be determined since a number of popu-
lar mathematical softwares, including Maple and
Matlab, contain the Lambert-W function as an optimi-
zation component. The Lambert-W function can be
combined with the Lagrange dual approach to solve
variety of wired and wireless resource allocation

problems without resorting to complex numerical
algorithms.

Appendix
Appendix A: Derivation of (8)
Equation 7 can be rewritten as

ln
(

nk
nk + αk

)
− nk

nk + αk
+ 1 +

μ
B

ln 2 (1 + λk)
= 0. (A:1)

Equation A.1 can be rewritten equivalently as

− nk
nk + αk

e
(
− nk
nk+αk

)
= −exp

(
−1 − μ

B
ln 2 (1 + λk)

)
(A:2)

Expression (A.2) is in the form of the Lambert-W
function W(x), which is the solution to W(x)eW(x) = x.
Thus, from (A.2) we can deduce that

W

(
−exp

(
−1 − μ

B
ln 2 (1 + λk)

))
= − nk

nk + αk
(A:3)

which when then solved for nk gives (8).
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Appendix B: Derivation of (10)

Let wk(λk,μ) = W

(
−exp

(
−1 − μ

B
ln 2 (1 + λk)

))
.

Replacing nk in (6) by its optimal value given by (8),
we get the dual function

L (λk,μ) =
K∑
k=1

−αkwk (λk,μ)

1 + wk (λk,μ)
B log2

(
− 1
wk (λk,μ)

)

+
K∑
k=1

λk

(−αkwk (λk,μ)

1 + wk (λk,μ)
B log2

(
− 1
wk (λk,μ)

)
− Rk

)

− μ

(
K∑
k=1

−αkwk (λk,μ)

1 + wk (λk,μ)
− N

)
.

(B:1)

Equation B.1 can be rewritten as

L (λk,μ) =μN −
K∑
k=1

λkRk − μ

K∑
k=1

−αkwk (λk,μ)

1 + wk (λk,μ)

+
K∑
k=1

(
(λk + 1)

αkwk (λk,μ)

1 + wk (λk,μ)
B log2(−wk(λk,μ))

)(B:2)

Applying (2) for n = 1 and using the property of the
derivative of a composite function, we obtain the deriva-
tive of wk with respect to lk for fixed μ as

dwk (λk,μ)

dλk
=

wk (λk,μ)

1 + wk (λk,μ)
· μln 2

B
· 1

(1 + λk)
2 . (B:3)

Using (B.3), we calculate the derivative of L(lk, μ) with
respect to lk for fixed μ as

dL (λk,μ)

dλk
= − Rk +

B
ln 2

· αkwk (λk,μ)

1 + wk (λk,μ)
· ln (−wk (λk,μ))

+
μ

1 + λk
· αkwk (λk,μ)

1 + wk (λk,μ)
· ln (−wk (λk,μ))

+
μ

1 + λk
· αkwk (λk,μ)

(1 + wk (λk,μ))2

+
μ2 ln 2

B(1 + λk)
2 · αkwk (λk,μ)

(1 + wk (λk,μ))3
.

(B:4)

Applying KKT optimality conditions, we set the deri-
vative (B.4) to zero to obtain

−Rk

αk
+

B
ln 2

· wk
(
λ∗
k ,μ
)

1 + wk
(
λ∗
k ,μ
) · ln (−wk

(
λ∗
k ,μ
))

+
μ

1 + λ∗
k

· wk
(
λ∗
k ,μ
)

1 + wk
(
λ∗
k ,μ
) · ln (−wk

(
λ∗
k ,μ
))

+
μ

1 + λ∗
k

· wk
(
λ∗
k ,μ
)

(
1 + wk

(
λ∗
k ,μ
))2

+
μ2 ln 2

B
(
1 + λ∗

k

)2 · wk
(
λ∗
k ,μ
)

(
1 + wk

(
λ∗
k ,μ
))3 = 0,

(B:5)

where λ∗
k is the optimal value of lk.
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We see that Equation B.5 can be rewritten in the form
of Equation 10.

Appendix C: Proof of Proposition 1
Let

gk,m(μ) =
−αkw̃k(μ)
1 + w̃k(μ)

where

w̃k(μ) = W

(
−exp

(
−1 − μ

B
ln 2 (1 + λ∗

k)

))
.

The derivative of w̃k with respect to μ is given by

dwk(μ)
dμ

=
wk(μ)

1 + wk(μ)
·
(

− 1
B
ln 2 (1 + λ∗

k)

)
. (C:1)

Using (C.1), we can calculate the derivative of gk,m(μ)
with respect to μ as

dgk,m(μ)
dμ

=

αk · wk(μ)
1 + wk(μ)

·
(

− 1
B

ln 2 (1 + λ∗
k)

)
(
1 + wk(μ)

)2 < 0.
(C:2)

Thus

dgm(μ)
dμ

=
K∑
k=1

dgk,m(μ)
dμ

< 0. (C:3)

namely, gm(μ) is a strictly decreasing function of μ.
This completes the proof.
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BS: base station; BER: bit-error-rate; CDI: channel distribution information; CSI:
channel state information; cdf: cumulative distribution function; FORA: full
optimal resource allocation; FURA: full uniform resource allocation; MC: mesh
clients; MR: mesh router; MS: mobile station; MORA: MR-based optimal
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