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Abstract

This article presents an analytical investigation on the performance of interference-limited fixed-gain amplify-and-
forward dual-hop relaying systems over Nakagami-m fading channels. Assuming the fading parameter m of the
two hop channels being integer, we derive a closed-form expression of the cumulative distribution function of a
new type of random variables involving a number of independent gamma random variables, based on which, the
outage performance and symbol error rate of the system are examined, and two important performance metrics at
the high signal-to-noise ratio regime, namely, diversity order and coding gain, are characterized. Moreover,
expressions of the general moments of the end-to-end signal-to-interference-and-noise ratio are derived and then
applied in the analysis of the ergodic capacity of the system. In addition, the impact of interference power
distribution on the ergodic capacity of the system is studied with the aid of a majorization result. Our findings
suggest that the diversity of the system is limited by the hop experiencing severer fading, and co-channel
interferences do not reduce the diversity order of the system, instead, they degrade the outage performance by
affecting the coding gain of the system.

Keywords: amplify-and-forward relaying, co-channel interference, cooperative communications, Nakagami-m fad-
ing, performance analysis

1 Introduction
Dual-hop relaying transmission, as a means to improve
the throughput and extend the coverage of the wireless
communication system, has recently received enormous
interests in the context of cooperative communications
[1,2], where an intermediate mobile device acts as a
relay node and helps forward the signal received from
the source node to the intended destination node.
Among various relaying protocols proposed in [2],
amplify-and-forward (AF) relaying scheme, where the
relay node simply forwards a scaled version of the
received signal, has received a great deal of attention
because of its simplicity and ease of implementation.
Depending on the availability of instantaneous chan-

nel state information (CSI) at the relay node, AF relay-
ing scheme generally falls into two categories, i.e.

variable-gain relaying [3] and fixed-gain AF relaying
[4]. A large number of studies has been conducted to
understand the performance of AF dual-hop systems
in various popular fading channel models [5-12]. In
[5,6], the outage probability and error rate of dual-hop
AF systems were studied in Rayleigh fading channels,
while [7-10] investigated the performance of dual-hop
AF systems in Nakagami-m fading channels. The per-
formance of dual-hop AF system in more general fad-
ing channels was considered in [11,12]. While these
studies have greatly improved our knowledge on the
topic, they all assume that the communication takes
place in an interference-free environment. However,
because of aggressive reuse of frequency, wireless com-
munications are generally affected by co-channel inter-
ference (CCI) [13,14]. Hence, there is a strong need to
understand the impact of CCI on the performance of
dual-hop systems.
In the presence of CCI, there has been very few stu-

dies on the performance of dual-hop systems, most in
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Rayleigh fading channels. In [15,16], the outage prob-
ability of opportunistic decode-and-forward relaying
dual-hop system was studied, and in [17], the outage
probability of a fixed-gain AF relaying system with inter-
ference-limited destination has been investigated. The
study [18] analyzed the outage and error performance of
dual-hop AF relaying with interference at the relay
node, while [19,20] studied the more general model
where both the relay and the destination are corrupted
by CCIs. In [21], the authors investigated fixed-gain AF
relaying system in the presence of CCIs at the relay and
destination assuming Rayleigh faded dual-hop channels
with Rician fading interfering channels.
While Rayleigh fading channel is an important channel

model, understanding the performance of dual-hop sys-
tems in the more general Nakagami-m fading channels
has also received much attention [7-10]. Assuming Naka-
gami-m fading channels, [22] investigated the outage and
average symbol error rate (SER) of variable-gain AF dual-
hop systems with interference-limited relay and noisy
destination. While [22] improved our knowledge on the
topic, the impact of CCIs at the destination and the effect
of fixed-gain relaying scheme in Nakagami-m fading
channels have not been well understood. Motivated by
this, in this article, we present a detailed analytical inves-
tigation on the performance of fixed-gain AF dual-hop
relaying system with noisy relay and interference-limited
destination in Nakagami-m fading channels.
The main contribution of the article is the derivation

of the cumulative distribution function (c.d.f.) of a new
type of random variable involving sum of multiple-inde-
pendent gamma random variables. Based on which, we
present closed-form expressions for the outage probabil-
ity and average SER of the system. A closed-form
expression for the general moments of the end-to-end
signal-to-interference-and-noise ratio (SINR) is derived,
which is then applied to investigate the ergodic capacity
of the system. Moreover, to gain further valuable
insights into the system, we also provide simple expres-
sions for outage probability of the system at high signal-
to-noise ratio (SNR) regime, which enable efficient char-
acterization of the diversity order and coding gain
achieved by the system.
The remainder of this article is organized as follows:

Section 2 introduces the system model. Section 3 pre-
sents closed-form analytical expressions for various
important system performance metrics, i.e., outage prob-
ability, SER and ergodic capacity. In Section 4, numeri-
cal results are provided to verify the accuracy of our
analysis and examine the impact of CCI on the perfor-
mance of dual-hop AF relaying systems. Finally, we con-
clude the article in Section 5.

2 System Model
Consider a dual-hop relay where a source node S trans-
mits to a destination node D with the assistance of a
relay node R. The entire communication takes place in
two separate phases. In the first phase, S transmits the
signal to R and hence the received signal at the relay
node can be written as

yr = hsrx0 + nsr, (1)

where x0 is the transmitted symbol with

�{| x0|2} = P0 and hsr is the channel coefficient or the

S-R link, nsr ∼ CN (0,N1) denotes the additive white
Gaussian noise, and E{ · } denotes the expectation
operation. In the second phase, the received signal at R

is first scaled with a fixed gain G �
√

Pr
P0�1+N1

and then

forwarded to D. The signal at the destination is cor-
rupted by interfering signals from N co-channel inter-

ferers {xi}Ni=1 , each with an average power of Pi. As in

[17], we consider the interference-limited destination
case, therefore, the signal received at the destination can
be expressed as

yd = Ghrdhsrx0 + Ghrdnsr +
N∑
i=1

hixi, (2)

where hrd denotes the channel coefficient for the R-D

link, {hi}Ni are the channel coefficients from interferers

to D. We assume that the channel gains |hsr|
2 and |hrd|

2

follow the gamma distribution with different fading
parameters 1/Ω1, 1/Ω2 and fading severity parameters
m1, m2, respectively. Similarly, the channel gains |hi|

2, i
= 1, . . . , N, are assumed to follow independent gamma
distribution with parameters mIi and 1/�Ii .
After some algebraic manipulations, the end-to-end

SINR can be expressed as

γd =
G2P0 | hrd|2 | hsr|2

G2 | hrd|2N1 +
∑N

i=1 Pi | hi|2
=

(
P0
N1

)(
X1X2

X2 + 1
G2N1Y

)
, (3)

where X1 � | hsr|2,X2 � | hrd|2 and Y �
∑N

i=1 | gi|2 ,
where |gi|

2 = Pi|hi|
2 is gamma distributed with para-

meters mIi and 1/γ̄Ii , with γ̄Ii = Pi�Ii .

3 End-to-end performance
In this section, we present a detailed performance inves-
tigation of interference-limited dual-hop AF relaying
system in Nakagami-m fading channels by studying sev-
eral important performance measures, i.e., outage prob-
ability, general moments of the end-to-end SINR,
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average SER and ergodic capacity of the system. For

notational conveniencewe define ρ1 = P0
N1
, and ρ2 = Pr

N1
.

Before getting into the details, we find it is convenient
to first present the following theorem.

Theorem 1: Let X = U1U2
U2+uY

, where Ui, i = 1, 2, are

gamma distributed random variables with parameters

m1, 1/Ω1 and m2, 1/Ω2, respectively. Y =
∑N

i=1 Yi with

Yi, i = 1, . . . , N being independent gamma random
variables with parameter mIi and 1

/
γ̄Ii . u is a positive

constant. Then the c.d.f. of X is given bya

FX(x) = 1 −
(
m2γ̄Ik

�2mIk

)m2

exp
(

−m1x
�1

)m1−1∑
i=0

1
i!

(
m1x
�1

)i i∑
j=0

(
i
j

)
uj

N∑
k=1

mIk∑
t=1

β t−1
k �(a1)�(a2)

(t − 1)!�(m2)

(
um1x
�1

)m2−j

U
(
a1, a3,

um1m2xγ̄Ik
�1�2mIk

)
,

where a1 = mIk +m2, a2 = mIk + j ,

a3 = m2 − j + 1,mIk , γ̄Ik and βk
t are defined in Appendix

A, and U(a, b, x) is the confluent hypergeometric func-
tion of the second kind [[23], Eq. 9.210.2].
Proof: See Appendix A.

3.1 Outage probability
The outage probability is an important system perfor-
mance metric, and is defined as the probability that the
instantaneous SINR gd falls below a predefined thresh-
old, gth.b Mathematically, the outage probability of the
end-to-end SINR gd can be presented as

Pout(γth) = Pr (γd < γth) = Pr

(
X1X2

X2 + 1
G2N1Y

<
γth

ρ1

)
.(5)

To this end, utilizing Theorem 1, the outage probabil-
ity of the end to end SINR gd can be obtained as

Pout(γth) = 1 −
(
m2γ Ik

�2mIk

)m2

exp
(

−m1γth

�1ρ1

)m1−1∑
i=0

1
i!

(
m1γth

�1ρ1

)i i∑
j=0

(
i
j

)(
ρ1�1 + 1

ρ2N1

)j

N∑
k=1

mIk∑
t=1

β t−1
k �(a1)�(a2)

(t − 1)!�(m2)

(
m1γth(ρ1�1 + 1)

�1ρ1ρ2N1

)m2−j

U
(
a1, a3,

m1m2γth(ρ1�1 + 1)γ Ik

�1�2mIkρ1ρ2N1

)
.

(6)

For the special case, where the interfering channels
experience the same level of fading and the average
received interfering powers at the destination are the
same, we have the following simple result.
Corollary 1: For the case where mIi = mI and

γ Ii = γ I, i = 1, . . . , N, the outage probability expression
reduces to

Pout(γth) = 1 −
(
m2γ I

�2mI

)m2

exp
(

−m1γth

�1ρ1

)m1−1∑
i=0

1
i!

(
m1γth

�1ρ1

)i i∑
k=0

(
i
k

)(
ρ1�1 + 1

ρ2N1

)k

�(b1)�(b2)
�(NmI)�(m2)

(
m1γth(ρ1�1 + 1)

�1ρ1ρ2N1

)m2−k

U
(
b1, a3,

m1m2γth(ρ1�1 + 1)γ I

�1�2mIρ1ρ2N1

) (7)

where b1 = NmI + m2, and b2 = NmI + j.
Proof: The proof is straightforward, and thus omitted.

Note that, for the case m1 = m2 = mI = 1, i.e., Rayleigh
fading channels, (7) reduces to the results presented in
[17].
While the above expression offers an efficient way to

evaluate the outage probability of the system, the
expression itself is in general too complex to give any
insight. Therefore, it is of great interest to look into the
high SNR regime, where simple expressions can be
obtained.
Theorem 2: At the high SNR regime, the outage prob-

ability of the system can be approximated as
(1) If r1 ® ∞,

Pout(γth) ≈ 1−
(
m1m2γthγ̄I

ρ2�2N1mI

)m2 m1−1∑
i=0

1
i!

�(b1)�(NmI + i)
�(NmI)�(m2)

U
(
b1,m2 − i + 1,

m1m2γthγ̄I

�2mIρ2N1

)
. (8)

(2) If r1 ® ∞,

Pout(γth) ≈ 1 − exp
(

−m1γth

�1ρ1

)m1−1∑
i=0

1
i!

(
m1γth

�1ρ1

)i

. (9)

(3) If r2 = μr1 and r1 ® ∞,

Pout(γth) ≈

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
�(m1 + 1)

(
m1

�1

)m1 ∑m1

i=0

(m1
i

) (
�1

μN1

)i
�(NmI + i)
�(NmI)

(
γI

mI

)i
�(m2 − i)

�(m2)

(
m2

�2

)i(
γth

ρ1

)m1

, m1 < m2,

�(m1 − m2)
�(m2 + 1)�(m1)

(
m1m2

�1�2

)m2
(

�1

μN1

)m2 �(NmI +m2)
�(NmI)

(
γI

mI

)m2
(

γth

ρ1

)m2

, m1 > m2.
(10)

Proof: See Appendix B.
Theorem 2 gives some intuitive results regarding the

outage probability of the interference-limited dual-hop
AF relaying system. For instance, the outage perfor-
mance of the system is affected by both hops, increasing
the power at either the transmit or relay node while
keeping the other power fixed, the outage probability
reaches an error floor. In particular, if the available
power at the relay node is sufficiently large, then the
outage performance is completely determined mined by
the performance of the first hop transmission as shown
in Equation 9. In addition, when both the transmit and
relay powers become large, the diversity order achieved
by the system is limited by the weaker links of the first
and second hop channels. Moreover, the CCIs do not
reduce the diversity order of the system, instead, it
degrades the outage performance of the system by
affecting the coding gain of the system.

3.2 General moments of the end-to-end SINR
The general moments are important performance mea-
sures which can be used to obtain the end-to-end aver-
age SINR, variance and amount of fading (AoF). By
definition, the nth moment of gd is given by

I(n) = n
∫ ∞
0 γ n−1(1 − Fγd(γ ))dγ . With the help of

[[23], Eq. 7.621.6] and the c.d.f. expression given in
Equation 6, we can express the nth moments of the
end-to-end SIR gd as
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I(n) =
(
m2γ̄Ik

�2mIk

)m2 m1−1∑
i=0

n
i!

(
m1

�1ρ1

)i i∑
j=0

(
i
j

)(
ρ1�1 + 1

ρ2N1

)j N∑
k=1

mIk∑
t=1

β t−1
k �(a1)

(t − 1)!�(m2)

×
(
m1(ρ1�1 + 1)

�1ρ1ρ2N1

)m2−j(
�1�2mIkρ1ρ2N1

m1m2(ρ1�1 + 1)γ̄Ik

)β1

ϒ1,

(11)

where ϒ1 is given by

ϒ1 =

⎧⎨
⎩

�(β1)�(n+i)
�(a1+n+i) 2F1(β ,n + i; a1 + n + i; 1 − A), | 1 − A |< 1,

�(β1)�(n+i)
�(a1+n+i)

(
m2(ρ1�1+1)γ̄Ik

�2mIk
ρ2N1

)β

2F1

(
a1,β1; a1 + n + i; 1 − 1

A

)
, A > 1/2,

(12)

with A =
�2mIk

ρ2N1

m2(ρ1�1+1)γ Ik
and b1 = n + m2 + i + j.

For the special case, where mIk = mI and γ̄Ik = γ̄I , for
k = 1, . . . , N, the nth moments of the end-to-end SINR
gd admits a simpler expression

I(n) =
(
m2γ̄I

�2mI

)m2 m1−1∑
i=0

1
i!

(
m1

�1ρ1

)i i∑
j=0

(
i
j

)(
ρ1�1 + 1

ρ2N1

)j n�(b1)�(b2)
�(NmI)�(m2)

(
m1(ρ1�1 + 1)

�1ρ1ρ2N1

)m2−j

×
(

�1�2mIρ1ρ2N1

m1m2(ρ1�1 + 1)γ I

)β1

ϒ2,

(13)

where ϒ2 is given by

ϒ2 =

⎧⎨
⎩

�(β)�(n+i)
�(b1+n+i) 2F1 (β , n + i; b1 + n + i; 1 − A) , | 1 − A |< 1,
�(β1)�(n+i)
�(b1+n+i)

(
m2(ρ 1�1+1)γ I

�2mIρ 2N1

)β1

2F1 (b1, β1; b1 + n + i; 1 − 1
A ), A > 1/2.

(14)

As a direct application, the average end-to-end SINR
can be obtained as I(1), and the AoF, which quantifies
the severity of the fading, can be obtained as,

AoF = I(2)−I2(1)
I2(1) = I(2)

I2(1) − 1. It is also worth mention-

ing that the expression for the general moments of end-
to-end SINR is also very useful in the analysis of ergodic
capacity of the system.

3.3 Symbol error rate
The average SER is another important performance
measure. For a number of modulation schemes, the
average SER admits the following expression,

SER =
∫ ∞
0 amodQ(

√
2bmodγ )f (γ )dγ , where Q(·) is the

Gaussian-Q function, amod and bmod are modulation
specific constants. For instance, binary phase shift key-
ing (BPSK) (amod = 1, bmod = 1), binary frequency shift
keying (BFSK) with orthogonal signalling (amod = 1,
bmod = 0.5) and M-ary pulse amplitude modulation
(PAM) (amod = 2(M - 1)/M, bmod = 3/(M2 - 1)).
To evaluate the average SER, we find it convenient to

use the following alternative expression [24]

SER =
amod

√
bmod

2
√

π

∫ ∞

0

e−bmodγ

γ 1/2
Fγd(γ )dγ . (15)

Upon substituting Equation 6 into Equation (15), with
the help of [[23], Eq. 7.621.6], we obtain the SER of
interference-limited dual-hop AF relaying system in
Nakagami-m fading channels as

SER =
amod

√
bmod

2
√

π

{√
π

bmod
−

(
m2γ̄Ik

�2mIk

)m2 m1−1∑
i=0

1
i!

(
m1

�1ρ1

)i i∑
j=0

(
i
j

)(
ρ1�1 + 1

ρ2N1

)j

×
N∑
k=1

mIk∑
t=1

β t−1
k �(a1)

(t − 1)!�(m2)

(
m1(ρ 1�1 + 1)

�1ρ1ρ2N1

)m2−j (
�1�2mIkρ1ρ2N1

m1m2(ρ1�1 + 1)γ Ik

)ζ


 1

}
,

(16)

where Ξ1 is given by


1 =

⎧⎪⎨
⎪⎩

�(ζ )�(i+1/2)
�(a1+i+1/2) 2

F1(ζ , i + 1/2; a1 + i + 1/2; 1 − B), | 1 − B |< 1,

�(ζ )�(i+1/2)
�(a1+i+1/2)

(
(m1+ρ1�1bmod)�2mIρ2N1

m1m2(ρ1�1+1)γ I

)ζ

2
F1(a1, ζ ; a1 + i + 1

2 ; 1 − 1
B), B > 1/2,

(17)

with B =
m1m2(ρ1�1 + 1)γ̄Ik

(m1 + ρ1�1bmod)�2mIkρ2N1
and

ζ = m2 + i + 1
2 − j . For special case, where mIi = mI and

γ̄Ii = γ̄I , for i = 1,..., N, the SER of the system simplifies
to

SER =
amod

√
bmod

2
√

π

{√
π

bmod
−

(
m2γ̄I

�2mI

)m2 m1−1∑
i=0

1
i!

(
m1

�1ρ1

)i i∑
k=0

(
i
k

)(
ρ1�1 + 1

ρ2N1

)k
�(b1)�(b2)

�(NmI)�(m2)

×
(
m1(ρ1�1 + 1)

�1ρ1ρ2N1

)m2−k(
�1�2mI0ρ1ρ2N1

m1m2(ρ1�1 + 1)γ̄I0

)ζ


2

}
,

(18)

where Ξ2 is given by


2 =

⎧⎨
⎩

�(ζ )�(i+1/2)
�(b1+i+1/2) 2F1(ζ , i + 1

/
2; b1 + i + 1

/
2; 1 − B), | 1 − B |< 1,

�(m2+i−k+1/2)�(i+1/2)
�(b1+i+1/2)

(
m2(ρ1�1+1)γ I

�2mIρ2N1

)ζ

2F1(b1, ζ , b1 + i + 1
/
2; 1 − 1

B
), B > 1/2.

(19)

3.4 Ergodic capacity
Ergodic capacity, which is defined as the maximum
error-free data rate that a channel can deliver, is another
important performance metric. The ergodic capacity in

(bits/seconds/hertz) is given by C = 1
2E{log2(1 + γd)},

where 1
2 accounts for the two phases required for the

entire transmission. Due to the complicated form of the
pdf of gd, the exact expression for the ergodic capacity
is difficult to obtain. However, by noticing that log2(x) is
a concave function, tight capacity upper bound can be
obtained by applying Jensen’s inequality, i.e.,

C ≤ C∪ =
1
2
log2(1 + E{γd}) = 1

2
log2(1 + I(1)). (20)

Alternatively, accurate approximation of the ergodic
capacity can be obtained by using the Taylor expansion-
based method [25,26], i.e.,

C ≈ Capp =
1
2
log2(e)

{
ln(1 + E{γd}) +

(E{γ 2
d } − E{γ 2

d })
2(1 + E{γd})2

}
. (21)

It is worth pointing out that the above approximation
works quite well across the entire SNR range of interest.
We are also interested in how the received interfer-

ence power distribution affects the ergodic capacity of
the system, and we have the following key result.
Theorem 3: Let vector r = [γ̄I1 , . . . , γ̄IN ] denotes the

average received interfering powers, when the interfering
channels experience the same level of fading, i.e.,
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{mIi}Ni=1 = mI , then the ergodic capacity of the system is

a Schur-convex function with respect to r. Thus, for any
r1 ≻ r2,

c

C(r1) ≥ C(r2). (22)

Proof: See Appendix C.
Having established the schur-convexity for the ergodic

capacity C(g), the following example illustrates how this
can be used to address the impact of the received inter-
ference power distribution on the ergodic capacity per-
formance for the relay systems in an interference-
limited environment.
Example 1: Let us consider the case with five co-chan-

nel interferers of a total received interference power of
ten units in three different scenarios: (1) with only one
effective interferer r1 = [10 0 0 0 0], (2) with distinct-
power interferers r2 = [6 2 1 0.75 0.25], and (3) with
equal-power interferers r3 = [2 2 2 2 2]. Apparently, we
have r1 ≻ r2 ≻ r3. Therefore, from Theorem 3, we have

C(r1) ≥ C(r2) ≥ C(r3). (23)

This example indicates that the best scenario occurs
when there is only one interferer power at D, while the
worst case happens when the interferers are of equal
received power.

4 Numerical results
In this section, we provide numerical results to validate
the analytical expressions derived from the previous sec-
tion. Figure 1 illustrates the outage probability of the

system when Ω1 = Ω2 = 2, in the presence of three i.i.d.
interferers with mI = 3 and gI = 5 dB. The exact agree-
ment between the analytical results and Monte Carlo
simulation results indicates the correctness of the analy-
tical expression. Also, we observe that the high SNR
approximations work well even at moderate high SNR
regime, and the diversity order of the system is deter-
mined by the minimum of m1 and m2.
In Figure 2, we fix the total channel power gain as Ω1

+ Ω2 = 4, and investigate the impact of power imbal-
ance between the two hops and fading effect of the
interference links on the outage probability of the sys-
tem. As we can observe, the outage probability of the
system improves when the channel gain of the second
hop increases, which is intuitive since the improvement
of the second hop channel condition contributes more
to suppressing the interference at the destination. More-
over, we see that the impact of fading level of the inter-
ference links on the outage performance depends on the
SNR. For instance, for sufficiently high SNR, less severe
fading interference links (i.e., large mI) results in better
outage performance, otherwise, more severe fading
interference links (i.e., small mI) becomes preferred in
terms of outage probability.
Figure 3 shows the average SER performance of inter-

ference-limited dual-hop AF relaying systems employing
BPSK modulation scheme with different number of
interferers. For the simulation, we set Ω1 = 2, m1 = 3,
Ω2 = 1.2, m2 = 2, γ̄I = 15 dB and mI = 3. It is easy to
see that a single strong interferer significantly increases
the SER of the system. In addition, when the number of
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Figure 1 Outage probability of interference-limited dual-hop AF systems in Nakagami-m fading channels when r1 = r2: exact versus
high SNR approximation.
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interferers increases, hence the total interference power,
the SER performance deteriorates further. Moreover, we
see that when r2 is fixed, the SER reaches an error
floor, which is intuitive since the SER performance
depends on both the first and second hop channels.
Figure 4 illustrates the ergodic capacity of the system.

In this simulation, we assume four CCIs N = 4 with

average received power γ̄I = 8 dB fading parameter mI

= 2. The values of average channel gains and the fading
parameters of the two hops are set to Ω1 = Ω2 = 2, m1

= 3 and m2 = 2. We observe that the capacity upper
bound performs good at the low SNR regime. However,
it gets loose gradually when the SNR increases. On the
other hand, we see that the capacity approximation
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Figure 2 Outage probability of interference-limited dual-hop AF systems in Nakagami-m fading channels with three i.i.d. interferers
with gI = 5 dB when r1 = r2.
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result is almost in perfect agreement with the exact
result across the whole range of SNR regime of interest,
hence it can be employed as an accurate and efficient
means to evaluate the ergodic capacity of the system.
Figure 5 examines the impact of interference power

distribution on the ergodic capacity of the system. In
the simulation, we have assume that Ω1 = Ω2 = 1, and

mI = 1/2. The curves provide intuitive result that the
ergodic capacity of the system increases when the chan-
nel conditions of both hops improve, i.e., m1 and m2

become larger. Moreover, as predicted by Theorem 3,
we observe that the highest capacity is achieved when
there is only a single strong interferer, while the lowest
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Figure 4 Ergodic capacity of interference-limited dual-hop AF relaying systems in Nakagami-m fading channels when r1 = r2: capacity
upper bound versus capacity approximation.
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capacity is achieved when there are five equal power
interferers.

5 Conclusion
In this article, we have provided a thorough investiga-
tion on the performance of interference-limited fixed-
again AF dual-hop relaying systems in Nakagami-m fad-
ing channels. Exact expressions were derived for the
outage probability and average SER of the system as
well as the general moments of the end-to-end SINR.
Moreover, the diversity order and coding gain achieved
the system were analyzed, and the results suggest that
the diversity order of the system is determined by the
channel experiencing severer fading and is not affected
by the CCIs. In addition, we examined the ergodic capa-
city of the system, and showed that for a given total
average received interference power at the destination,
the scenario with a single strong interferer yields the
best capacity performance.

Appendix A
Proof of theorem 1
In this section, we derive the c.d.f. expression of random

variable X = U1U2
U2+uY

. The p.d.f. and c.d.f. of Gamma ran-

dom variables Ui, i = 1, 2 are given by

fUi(γ ) =
(
mi
�i

)mi γmi−1

�(mi)
exp

(
−mi

�i
γ
)
, and

FUi(γ ) = 1 − exp
(
−mi

�i
γ

)∑mi−1
j=0

1
j!

(
mi
�i

γ
)j
, g > 0,

respectively. Y =
∑N

i=1 Yi , where {Yi}Ni=1 is a et of N

independent but not necessarily identically distributed
(i.n.i.d.) gamma random variables with parameters mIi

and γ̄Ii . The p.d.f. of Y is given in [13] as

fY(y) =
N∑
k=1

mIk∑
i=1

β i−1
k ymIk

−1

(i − 1)!
exp

(
−mIk

γIk
αIk y

)
, (24)

where β i−1
k =

�N
i=1α

mIi
Ii

(mIk
−i)!

di−1

dsi−1

[∏N

n	=k
n=1

(αIn + s)
−mIn

]∣∣∣∣
s=αk

. To

this end, from the definition of c.d.f., we have

FX(x) = Pr
(
U1 <

(
1 + uY

U2

)
x
)
. Conditioned on U2 and

Y, we first make use of the p.d.f expression of random
variable Y presented in (24), we have,

FX(x|U2) = 1 − exp
(

−m1x
�1

)m1−1∑
i=0

1
i!

(
m1x
�1

)i i∑
j=0

(
i
j

)(
u
U2

)j

N∑
k=1

mIk∑
t=1

β t−1
k

(t − 1)!

∫ ∞

0
YmIk

+k−1 exp
(

−
(
m1ux
�1U2

+
mIk

γ̄Ik

)
Y
)
dY,

(25)

where the integral can be solved with the help of [[23],
Eq.3.351.2]. Further averaging over U2, we have the
unconditional c.d.f. of X as

FX(x) = 1 −
(
m2

�2

)m2

exp
(

−m1x
�1

)m1−1∑
i=0

1
i!

(
m1x
�1

)i i∑
k=0

(
i
j

)
uk

N∑
k=1

mIk∑
i=1

β i−1
k �(a2)

mI0
γ̄I0

mIk

(t − 1)!�(m2)

(
m1ux

�1

)−a2
∞∫
0

(
1 +

�1mI0

m1uγ̄I0x
U2

)−a2

U
mIk

+m2−1
2 exp

(
−m2

�2
U2

)
dU2.

(26)

The desired result can be obtained after some simple
algebraic manipulations with the help of formula [[23],
Eq. 3.383.5].

Appendix B
Proof of theorem 2

When r1 ® ∞, it is easy to see that ρ1�1+1
ρ1

= �1 , and

exp
(
−m1γth

�1ρ1

)
= 1, therefore, the outage probability can

be approximated as

Pout(γth) ≈ 1 −
(
m2γ̄I

�2mI

)m2 m1−1∑
i=0

1
i!

(
m1γth

�1ρ1

)i i∑
k=0

(
i
k

)(
ρ1�1 + 1

ρ2N1

)k

�(b1)�(b2)
�(NmI)�(m2)

(
m1γth

ρ2N1

)m2−k

U
(
b1, a3,

m1m2γthγ̄I

�2mIρ2N1

)

≈ 1 −
(
m2γ̄I

�2mI

)m2
(
m1γth

ρ2N1

)m2 m1−1∑
i=0

1
i!

�(b1)�(NmI + i)
�(NmI)�(m2)

U
(
b1, m2 − i + 1,

m1m2γthγ̄I

�2mIρ2N1

)
.

(27)

When r2 ® ∞, we are interested in the asymptotic

behavior of ρ
−m2
2 U

(
b1,m2 − k + 1, A

ρ2

)
. From the

asymptotic expansion of function U(a, b, x) given in
[27], it is easy to observe that

ρ
−m2
2 U

(
b1,m2 − k + 1, A

ρ2

)
approaches zero for k ≥ 1.

Therefore, the most significant term comes from k = 0,
which we compute as

ρ
−m2
2 U

(
b1,m2 + 1,

A
ρ2

)
≈ �(m2)

�(b1)
A−m2 . (28)

To this end, the outage probability can be approxi-
mated as

Pout(γth) ≈ 1 − exp
(

−m1γth

�1ρ1

)m1−1∑
i=0

1
i!

(
m1γth

�1ρ1

)i

.(29)

Now we consider the case when r1 ® ∞ and r2 =
μr1. We first focus on the scenario m1 <m2. Condi-
tioned on X2 and Y, the outage probability can be
expressed as

Pout(γth|X2,Y) =
�

(
m1,

m1γth
ρ1�1

(
1 + Y

G2N1X2

))
�(m1)

≤
(
m1γth
ρ1�1

(
1 + Y

G2N1X2

))m1

�(m1 + 1)
. (30)

A close observation reveals that the expectation of the
right-hand side of Equation 30 converges as long as m1

<m2. Hence, we can exchange the order of limitation
and integration, which gives

lim
ρ1→∞E{Pout(γth|X2,Y)} = E

{
lim

ρ1→∞ Pout(γth|X2,Y)
}

=
1

�(m1 + 1)

(
m1

�1

)m1
(

γth

ρ1

)m1

E
{(

1 +
�1Y

μN1X2

)m1
}
,

(31)
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where we have used the following asymptotic expan-
sion of the incomplete gamma function near zero

�(a, x) ≈ xa

a
, x → 0. (32)

Due to the independence of X2 and Y, we first apply
the binomial expansion and compute the expectation in
Equation 31 as follows,

E
{(

1 +
�1Y

μN1X2

)m1
}
=

m1∑
i=0

(
m1

i

)(
�1

μN1

)i

E{Yi}E{X−i
2 }. (33)

To this end, the desired result can be obtained after
some simple algebraic manipulations. The case for m1

>m2 can be dealt with in a similar fashion.

Appendix C
Proof of theorem 3
In order to prove Theorem 3, we need the following key
lemma presented in [28].

Lemma 1: Let G(p1, . . . , pn) � E [f (
∑n

k=1 pkwk)] ,

where f : ℝ ® ℝ with f(x) > 0 ∀x > 0, and {wi}ni=1 are
independent and identically distributed (i.i.d) positive
random variables. If f(x) is a convex function, then, G(p)
is a Schur-convex function with respect to p ≜ (p1, p2,
..., pn). On the other hand, if f(x) is a concave function,
then, G(p) is Schur-concave with respect to p.
According to the definition, we express the ergodic

capacity of the system as

C(γ ) =
1
2
EX1,X2,wi

{
log2

(
1 +

ρ1X1X2

X2 + 1
G2N1

∑N
i=1 γ̄Iiwi

)}
, (34)

where {wi}Ni=1 are i.i.d. gamma random variables with

parameter mI and 1. To this end, we define function

f (Z) = log2

(
1 +

ρ1X1X2

X2 + μZ

)
. (35)

It is easy to show that the first and second derivatives
of f (Z) with respect to Z can be expressed as

f ′(Z) = − ρ1X1X2μ

(X2 + ρ1X1X2 + μZ)(X2 + μZ)
, (36)

and

f ′′(Z) =
ρ1X1X2μ

2(2X2 + ρ1X1X2 + 2μZ)

(X2 + ρ1X1X2 + μZ)2(X2 + μZ)2
, (37)

respectively. Clearly, f”(Z) ≥ 0. According to Lemma 1,
C(g) is Schur-convex function conditioned on X1 and
X2, i.e., for any two vectors g1 ≻ g2, we have

C(γ1 | X1, X2) ≥ C(γ2 | X1, X2). (38)

Averaging over X1 and X2, we have C(g1 ≥ C(g2). To
this end, from the definition of Schur-convex function
given in [29], we know that the ergodic capacity C(g) is
an Schur-convex function with respect to g.

Endnotes
aHere, we derived closedform expression for the sum of
non-identical gamma random variables for the case
where the fading parameters mIi are distinct integers.
For more generalized case, we can adopt the more gen-
eral series representation, which applies for arbitrary
mIi [30]. For such case, it is worth pointing out that the
series converges quickly, and can be efficiently evaluated
in standard software such as Mathematica. bThe outage
probability is originally defined as the probability that
the system cannot support a given target rate Rth.
Hence, in this respect, the SINR threshold is related to
the target rate by γth= 22Rth − 1. c ≻ denotes the majori-
zation relationship. For details regarding majorization
theory and Schur-convexity, we refer the readers to [29].
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