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Abstract

We propose an extension to existing wireless channel modeling techniques introducing a notion of mobility
behavior of the user. We represent large-scale propagation characteristics of wireless channels as a mobility-
dependent stochastic process that explicitly tracks the movement of the user between areas with different
received local average signal strength (RLASS). Our model consists of two different parts: mobility model and
propagation model. Mobility of the user is modeled by a Markov chain with finite state space. Large-scale
propagation characteristics of wireless channel are represented as a function of mobility model. Small-scale
propagation characteristics are then obtained taking into account shadowing of the line-of-sight propagation path.
Based on the amount of available information regarding a given landscape environment we develop two different
parametrization methods (i) RLASS values are available for limited number of points in a given landscape and (ii)
RLASS information is not available. The model is suitable for simulation studies of applications’ performance in
presence of RLASS changes caused by movement of the user.

1 Introduction
To estimate performance of wireless channels propaga-
tion models are often used. We distinguish between
large-scale and small-scale models. The former models
capture propagation characteristics on a coarse granular-
ity using the notion of the received local average signal
strength (RLASS), see e.g., [1-3]. Models characterizing
rapid changes of the received signal strength are called
small-scale propagation models, see e.g., [4-6]. These
models capture propagation characteristics on a finer
granularity.
Neither large-scale nor small-scale models take into

account the signal strength attenuation caused by move-
ments of a user. To be precise small-scale propagation
models do take into account the so-called small-scale
mobility of the user over short distances [7]. Such mod-
els describe rapid fluctuations around a constant mean
which are called fading. Such processes are implicitly
assumed to be stationary at least in the second-order
sense and mean equals to the received local average sig-
nal strength (RLASS). However, if we would consider
larger travel distances (i.e., more than just few meters)
RLASS starts to vary and the most important factors

affecting it are terrain, speed of a mobile and distance
from between transmitter and the receiver. In this arti-
cle, contrarily to most small-scale propagation models
proposed so far, we explicitly take into account two of
these three factors–terrain and mobility of a user over it.
In a mobile environment a user is allowed to change

its position at any instant of time and these movements
are not restricted to short travel distances. A receiver
during a single session experiences different propagation
characteristics. To predict these changes, an adequate
model must capture both movement of a user between
areas with different propagation characteristics and
small-scale propagation characteristics in each area. Pro-
pagation characteristics must be represented as a prob-
abilistic function of user’s movements. Such model
would be useful to estimate performance provided to
applications while user is in traveling mode.
The rest of the article is organized as follows. In Sec-

tion 2, we describe the structure of the model and intro-
duce our modeling assumptions. Then, in Section 3, we
propose three different parametrization methods for our
model. Extensions and refinements of the model are dis-
cussed in Section 4. Finally, in Section 5 we test some of
our assumptions. Conclusions are provided in the last
section.Correspondence: moltchan@cs.tut.fi

Department of Communication Engineering, Tampere University of
Technology, P.O. Box 553, Tampere, Finland

Moltchanov EURASIP Journal on Wireless Communications and Networking 2012, 2012:130
http://jwcn.eurasipjournals.com/content/2012/1/130

© 2012 Moltchanov; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

mailto:moltchan@cs.tut.fi
http://creativecommons.org/licenses/by/2.0


2 Structure of the model
2.1 Preliminary notes
The received signal strength in wireless networks is
basically affected by three factors: (i) type of the terrain
we consider (ii) speed of mobiles, and (iii) distance
between the transmitter and receiver. Most small-scale
propagation models proposed so far either implicitly or
explicitly assumed that all these factors are fixed, i.e., a
certain type of terrain is considered, speed of mobiles as
well as distance between transmitter and receiver are
fixed. The main reasons is that even with these assump-
tions the resulting received signal strength is a covar-
iance stationary stochastic process with complicated
distributional and correlational properties. The reason
for such reduced complexity of models is that small-
scale propagation models were mainly used to design
transceivers and associated lower layer techniques. For
such tasks these models provide sufficient accuracy and
should not be extended to more complex cases.
When performance of information transmission at

higher layers is concerned we are interesting in adding
those additional factors to the small-scale propagation
models. Indeed, during the active session a mobile user
may move inside and in-between cells experiencing not
only qualitatively different propagation characteristics (e.
g., different distributions but the same mean) but quan-
titatively different too (e.g., different RLASS). Thus, in
addition to the type of small-scale propagation at a cer-
tain separation distance from the transmitter we also
have to take into account movement of a user between
areas with different RLASS. We would like to note that
allowing at least one factor affecting the received signal
strength to be variable may result in complex stochastic
process making the model applicable for simulation stu-
dies only.

2.2 The mobility model
Assume that a given cell of a circular shape is divided
into a finite number of areas, M, such that these areas
are non-overlapped and the sum of their areas equals to
the area of the cell. Each area is associated with a cer-
tain, not necessarily distinctive value of RLASS. We
assume that a mobile user may probabilistically move
between these areas.
Consider a discrete-time environment, i.e., time axis is

slotted, the slot duration is constant and given by Δt.
Changes of areas are only allowed at the slot boundaries.
To capture movement of a user between areas we use a
homogenous discrete-time Markov chain (DTMC) {SP
(n), n = 0, 1, . . .}, SP (n) Î {1, 2, . . . , M}, whose states
correspond to areas. Let DP be its transition probability

matrix. To parameterize this model M, DP , and Δt shall
be provided.

2.3 The large-scale propagation model
RLASS is mainly a function of the distance between the
transmitter and the receiver and the type of propagation
environment. To represent it, we associate a value of
RLASS with each state of the mobility model. Let {P (n),
n = 0, 1, . . .}, P (n) Î {P1, P2, . . . , PM } be the RLASS
process whose underlying Markov chain is {SP (n), n =
0, 1, . . .}, i.e., the value of RLASS is modulated by the
underlying Markov chain. To parameterize this model
we have to provide the RLASS vector
�P = (P1, P2, ...,PM) .

2.4 The small-scale propagation model
For performance evaluation studies, small-scale propaga-
tion characteristics in a certain area can be modeled by
doubly-stochastic process {Ri(n), n = 0, 1, . . .} modu-
lated by homogenous DTMC {SR, i(n), n = 0, 1, . . .}, SR,
i(n) Î {1, 2, . . ., Hi}, each state of which is associated
with conditional probability distribution function of the
received signal strength FR, i(kΔf|j) (Δf) = Pr{Ri(n) = kΔf|
SR, i(n) = j}, k = 1, 2, . . ., N, j = 1, 2, . . ., Hi, where N is
the number of bins to which the signal strength is parti-
tioned, Δf is the discretization interval. The slot duration
Δt of the model equals to the time to transmit a single
bit at the wireless channel. Slot durations of mobility
and small-scale propagation models are equal and
synchronized.
To capture small-scale propagation characteristics we

distinguish between LOS and NLOS environments. In
the former case the small-scale propagation envelop dis-
tribution is Rician. As the dominant component fades
away the small-scale propagation envelop distribution
degenerates to Rayleigh distribution. Thus, small-scale
propagation characteristics in different areas are, at least,
qualitatively (distribution) or quantitatively (RLASS) dif-
ferent. Therefore, areas must be determined such that
each of them is uniquely characterized by mean/distribu-
tion pair. Then, each area must be associated with unique
small-scale propagation model {Ri(n), n = 0, 1, . . .}, i = 1,
2, . . ., M such that E[Ri] = Pi, i.e., the RLASS in the area
i is the mean of {Ri(n), n = 0, 1, . . .}. We require that the
state space of all small-scale propagation models is the
same and given by {1, 2, . . ., H}.
Since propagation characteristics are a probabilistic

function of the movement between areas, the choice of
the ‘active’ propagation model {Ri(n), n = 0, 1, . . .}, i =
1, 2, . . ., M, in the slot n depends on the area i in the

Moltchanov EURASIP Journal on Wireless Communications and Networking 2012, 2012:130
http://jwcn.eurasipjournals.com/content/2012/1/130

Page 2 of 9



slot n, i.e., {R(n), n = 0, 1, . . .} = {Ri(n), n = 0, 1, . . .}, SP
(n) = i. Recalling that all small-scale propagation models
were assumed to have the same number of states, H, the
state-space of the resulting model is

SR(n) ∈ {(1, 1), ..., (1,H), ..., (M, 1), ..., (M,H)}. (1)

An appropriate small-scale propagation model is only
associated with the state of the mobility model corre-
sponding to the appropriate area. Hence, transition
probabilities of DTMC of mobility-dependent model is
given by

dR,ij = dR,i,kj, k, j ∈ {1, 2, ...,H}, SP(n) = i. (2)

To parameterize mobility-dependent small-scale pro-
pagation model we shall provide H, DR, i, FR, i(kΔf|j)(Δf),
i = 1, 2, . . ., M, k = 1, 2, . . ., N, j = 1, 2, . . ., H.

3 Parametrization of the model
3.1 The mobility model
Assume that the number of areas M and associated
RLASS vector �P are known. It is fair to expect MP that
the mean sojourn time in a certain area depends on its
size. Consider a user that is in the area i in the slot n.
In the next slot this user may stay in the area i or move
to another area. The only areas to which a user can
move in a slot are adjacent areas denoted by Ωi. Con-
sider areas from Ωi as a single area. We compute transi-
tion probability between area i and Ωi as

dL,i�i =

∑
∀i∈�i

Sj
Si + S�i

, dL,ii =
Si

Si + S�i

, (3)

where Si is the area of area i, SΩi is the area of Ωi,
dL,i�i , i = 1, 2, . . ., M, are transition probabilities
between area i and Ωi. Depending on the length of the
border between area i and areas from Ωi transition
probability dL,i�i is distributed among transition prob-
abilities dL, ij, j Î Ωi, as

dL,ij =
di�i Vij wij∑

∀j∈�i
Vij

, j ∈ �i , (4)

where Vij, j Î Ωi are lengths of the border between i and
j. Parameters wij, j Î Ωi are introduced to represent direc-
tional movement of the user in a certain application sce-
nario, e.g., highway, city center. Since this movement is
specific for a given environment, no general expression

can be provided. Note that
∑

j∈�i
wij = 1 , i = 1, 2, . . ., M.

3.2 Large-scale propagation model
3.2.1 Parametrization based on measurements
Measurements of RLASS are often given by the 3D vec-

tor �PXY = (xi, yi, Pi) , i = 1, 2, . . ., M, where M is the

number of measurements, (xi, yi) is the coordinate of ith
measurement and Pi is the RLASS value of respective
measurement.
Practically, it is not feasible to measure RLASS in each

and every point of the landscape. Thus, information
given by �PXY is often insufficient to parameterize our

model. To estimate �P and M we have to determine
areas to which these measurements belong to, such that
the approximation error is minimized. To determine
areas we propose to use a division of the cell into areas
whose vertexes are measurement points (xi, yi), i = 1, 2,
. . ., M. An appropriate division of the cell is given by
Voronoi (Dirichlet) tesselation separating a region E of
the space ℜ2 into polygons Ei, i = 1, 2, . . ., M, using M
points drawn from a certain point process. In our case
the space is ℜ2 and coordinates of measurements are
considered as a realization of the point process. For
each measurement point (xi, yi), Ei is the area consisting
of all locations that are closer to (xi, yi) than to any
other point. There are a number of algorithms to com-
pute Voronoi tesselation [8].
To determine areas with different RLASS it is not

strictly required to distinguish between values of RLASS
in each area. Instead, it is possible to consider ranges of
RLASS. In this case the range (max∀i Pi - min∀i Pi) must
be divided into K non-overlapping ranges of length ΔP
= (max∀i Pi - min∀i Pi)/K. Then, all measurements are
classified to these ranges. Adjacent areas having RLASS
values falling in the same range can be grouped. An
example is shown in Figure 1, where measurements
points, the Voronoi tesselation, and resulting areas are
shown.
3.2.2 Theoretical parametrization
Measurements of RLASS are often unavailable. In this
case, we can parameterize our model based on approxi-
mate estimation of shadowed areas and subsequent
application of large-scale propagation models.
Assume that centers of shadowers are distributed

according to the stationary Poisson point process with
mean l. The parameter l depends on a given landscape.
Note that whenever possible actual placements of sha-
dowers can be used. We also assume that (1) shadowers
are of rectangular form, (2) thickness of shadowers is
zero, (3) their widths and heights are arbitrary distribu-
ted, (4) height of the transmitter antenna ha is known.
Three possible shadow placements caused by sha-

dowers with different relation between initial parameters
are shown in Figure 2, where ds is the shadow length, R
is the radius of a cell, d is minimal distance between the
center of the cell and a shadower, and hs is the height
of shadower. We should distinguish between three
cases: (1) ha > hs, ds ≤ R - d, the shadow is within the
cell, (2) ha > hs, ds > R - d, the shadow is bounded
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outside, (3) ha < hs, the shadow virtually continues up to
infinity. Since we consider a single cell, the latter two
cases can be treated similarly.
The area of an arbitrary shadow is given by

Ss = min
(
4π R2 γ

360
, 4π(d + ds)

2 γ

360

)
− dws

2
, (5)

where

ds = min
(

hs
cot β

, R − d
)

, β = 90◦ − arctan
d

ha − hs
.

To estimate RLASS vector �P we use large-scale pro-
pagation models. It was shown in [9] that the mean
value of propagation loss, L(d), can be approximated by

E
[
L (d)

]
= Ls (d0) + 10n lg

(
d
d0

)
+ Xσ , (6)

where d is the separation distance, n is the path loss
exponent, d0 is the standard distance, Ls(d0) is the pro-
pagation loss at d0, Xs is the factor unique for a given
environment.
For every shadowed area the propagation loss is esti-

mated using (6) with n >2, for unshad- owed areas n ≈
2. Parameters for different frequency bands are given in
[2,10]. Given a certain transmission power of the base
station, propagation loss can be related to RLASS [7].
Observe that there can be shadows whose length is

only slightly less than the radius of the cell. The range
of RLASS corresponding to these shadows is large

leading to modeling errors. To avoid it, in addition to
division of the cell into shadowed and non-shadowed
areas, we propose to divide the cell into circles with dif-
ferent radii. Shadows are then classified to these circles
as shown in Figure 3.
Finally, we need to mention that performing theoreti-

cal estimation of shadowed areas according to the pro-
cedure described above there could be the case when
two or more shadows overlap as shown in Figure 4,
where different fillings denote doubly and triply over-
lapped shadowed areas. In this case RLASS in the area
where shadows overlap could be different compared to
RLASS in non-overlapping regions of these areas. In this
case the propagation loss in regions where two or more
shadows overlap needs to be computed using different
pass loss exponents.

3.3 The small-scale propagation model
We parameterize small-scale propagation models using
the histogram matching method. Depending on pre-
sence of LOS in the area i, process {Ri(n), n = 0, 1, . . .}
has either Rician or Rayleigh distribution with mean E
[Ri] = Li. Setting the number of states of the Markov
chain in each state of the mobility model to one (H = 1)
and choosing Δf small enough we capture these distri-
butions as

FR,i
(
k�f

) (
�f

)
=

pk
xk+1 − xk

. (7)
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Figure 1 Example of division of a cell based on measurements.
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Figure 2 Three possible placements of a shadow.
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where pk =
∫ xk+1
xk

fX(x)dx, fX(x) is either Rayleigh or

Rician distribution, xk and xk+1 are lower and upper
values for interval k. Alternatively, setting H and solving
the inverse-eigenvalue problem one can capture auto-
correlation 1 and solving the inverse-eigenvalue problem
one can capture autocorrelation properties of the
received signal strength.

4 Extensions and notes
4.1 Signal-to-interference ratio
For a model to be useful, in addition to the received sig-
nal strength we have to take into account the level of
noise and consider the signal-to-interference (SI) ratio.
The interference at the receiver is given by I = W + U,

where W the thermal noise, U =
∑L

l=1 U (l) is received

signal strength from L interfering base stations. W is
usually assumed to be constant. U is stochastic, depends
on the distance and propagation path between the recei-
ver and transmitters of interfering cells. Assume that U
is constant for any state of the mobility model. The
interference process {U(n), n = 0, 1, . . .}, U(n) {U1, U2, .
. ., UM }, is modulated by {SP (n), n = 0, 1, . . .}. We
determine the mean propagation loss E[L(mij)] for a
given area i and interfering transmitter j as a function of
distance them, mij , using (6). E[L(mi)] is then related to
RLASS and ‘mean other cells interference’ is computed

for areas i as Ui =
∑L

l=1 Ui (l).
Adding a constant W to {U(n), n = 0, 1, . . .} affects

the mean only allowing to consider the interference pro-
cess {I(n), n = 0, 1, . . .}, i = 1, 2, . . ., M. The resulting
signal-to-interference process is given by

Y (n) =

⎧⎨
⎩

(R1 − I1) (n) , SP (n) = 1,
. . . . . .
(RM − IM) (n) , SP (n) = M,

(8)

where Ii = W +
∑L

l=1 Ui (l) , i = 1, 2, . . . , M.

4.2 Attraction points
Notice that in our model movement of the user is
homogenous in time and depends on the size of areas
only, see (3). However, in addition to the size of the
areas other factors may affect movement of the user of
the landscape. One of the most important is the so-
called attraction points in a cell, i.e., places (areas in our
terminology) where a user may spent significant amount
of time compared to other areas. Taking into account
the effect of such attraction points is equivalent to intro-
ducing non-homogeneity to the process of user move-
ment between areas, that is, making movement to
depend on some additional factors. Formally, it can be
done introducing a new multipliers gi, i = 1, 2, . . ., M,
each of which corresponds to a certain area into (3).

4.3 The scope of application
We would like to note that when micro or picocells sce-
narios are considered the areas we introduced in this
article are almost impossible to define. The reason is
that in such cells attraction points seem to play much
more important role compared to the size of areas. This
is clearly seen considering “office” scenario, where
employees move between pre-fixed locations such as
working places, meeting rooms, etc. In this case instead
of parameterizing our model based on sizes of areas we
need to consider attractiveness of various locations and
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Figure 3 Example of direct estimation of shadowed areas.

Figure 4 Doubly and triply overlapped shadowed areas.
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inter-location movement of users developing new
expressions for estimating inter-location movements.
Since there could be a number of location-specific fac-
tors involved into estimation of these probabilities we
do not provide formulas for micro and picocells.
Our model was originally proposed for macrocell

environments where it is possible to distinguish between
different areas with quantitatively and/or qualitatively
different received signal strength. The theoretical para-
metrization of the model is suitable for suburbs and
country-side areas. When measurements of RLASS are
available the model can be applied in city-center scenar-
ios. The only difference is that in addition to sizes of
areas we also need to take into account possible tunnel-
ing effects. Notice that even in this case we can use the-
oretical parametrization. However, instead of
propagation models specified in [1-3,10] we need to use
special models suitable for such environment. Finally, as
mentioned above with some modifications this model
can be applied to microcell and picocell scenarios where
a user moves between a number of attraction points.
Applying this model in such scenarios additional care
should be taken as even small travel distances may lead
to drastic changes in small-scaled propagation character-
istics due to complicated reflection and scattering
observed in the buildings.

5 Testing assumptions
Unfortunately due to unavailability of data regarding
mobility of users on the landscape we were not able to
test closeness of the proposed mobility model and
empirical data. Aside from this, one of the most impor-
tant assumption we take in this article is that the
received signal strength at a certain separation distance
from the transmitter is indeed stationary while when
changing the location different characteristics of the
received signal strength distribution changes. To test
this assumption we carried out experiments with wire-
less local area network (WLAN) networks operating in
infrastructure DCF mode according to IEEE 802.11b
standard at 11 Mbps (DSSS) in laboratory environments.
The access point is installed in the corridors with rooms
along both sides of it. The main points of interest were
characteristics of the received signal strength process at
a certain separation distance from the transmitter and
its changes as users move between different attraction
points. Signal strength observations were measures with
1 ms granularity and then averaged over 0.5 ms time
intervals.
To test our assumption regarding stationary nature if

the received signal strength two rooms were arbitrarily
chosen and the signal was measured for a long duration
of time. Two samples gather as a result of these experi-
ments are shown in Figure 5. Just observing these traces

no definitive conclusions regarding stationarity of the
SNR process at a certain separation distance from the
transmitter can be made. For this reason we performed
detailed statistical analysis as discussed below.
Histograms of relative frequencies service as estimates

of empirical distributions and their approximations by
Normal distribution are show in Figure 6. As one may
observe approximations are quite good. Testing the null
hypothesis about Normal distribution of data using c2

test confirmed it with the level of significance, a, set to
0.1. Notice that for the second trace the null hypothesis
is accepted even when a = 0.05. Tests performed for
other rooms (not shown here due to space constraints)
also confirm this approximation. We would like to note
that one should not be surprised with normality of
observations. Recall that we averaged the received signal
strength over 0.5 s. intervals providing sufficient aggre-
gation level for central limit theorem to hold.
In addition to distributional properties discussed

above the process is found to be autocorrelated as high-
lighted as normalized autocorrelation functions (NACF)
shown in Figure 6c, d. The Ljung-Box test (a special
type of portmanteau test) performed with the level of
significance a = 0.1 showed that first three lags of the
first sample and the first lag of the second one are sta-
tistically different from zero with level of confidence a
= 0.1. Observing the figures we see that the both func-
tions decay geometrically fast.
Note that the above mentioned analysis does not allow

us to conclude that the process at a certain separation
distance is covariance stationary. Unfortunately, there
are no well-behaved tests to access stationarity of sto-
chastic processes. We use the following two-steps proce-
dure. First of all, observe that explicitly assuming
covariance stationarity the above mentioned analysis
allows to model SNR data at a certain separation dis-
tance from the transmitter using autoregressive process
of order 1, AR(1), in the form Yi = j0 + j1 Yi-1 + εi, i =
0, 1, . . ., where j0 and j1 are some constants, εi are
independently and identically distributed random vari-
ables having the same normal distribution with zero
mean and variance s2[ε]. Thus, we used aposteriori
change-point exponential weighted moving average test
for AR(1) (see [11,12]) to detect change in the mean of
SNR data. For our observations no changes have been
observed in both samples. However, this does not neces-
sarily imply that there are no changes in other para-
meters of the process. To address this situation we
divided each sample into three different subsamples and
compare their distributional and correlational properties.
It appeared that using c2 test with the level of signifi-
cance set to a = 0.1 all the subsamples drawn from a
certain sample are homogenous, i.e., have the same 1D
distributions. Usage of rather big value of a is explained
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by presence of correlation in subsamples. To conceal the
effect of correlation we also used every second observa-
tion in each subsample to compute empirical distribu-
tions. The turning point test demonstrated that the
hypothesis about white noise should be rejected with
the level of significant a = 0.05 indicating that there is
memory in each of those sample. Finally, in each sub-
sample NACF decayed geometrically fast. The reason
for performing the turning point test instead of, e.g.,
Ljung-Box portmanteau test is that it is unreasonable to
expect the same number of lags having statistically sig-
nificant correlation in samples of small sizes. Although
these observations do not strictly prove that SNR pro-
cess at a certain separation distance from the transmit-
ter is covariance stationary they provide enough
evidence that first and second-order characteristics likely
remain unchanged.
Recall that in addition to covariance stationarity of

SNR process as a certain separation distance from the

transmitter we also assumed that the mean (and possi-
bly distribution) changes as user moves between differ-
ent locations. To back up our assumption we performed
the following experiments. A mobile station was in sta-
tionary position for some noticeable amount of time.
Then, a user moved into another office room and the
station again remained in stationary state for some
amount of time. Two arbitrarily chosen SNR samples
obtained by changing the location of the user during the
measuring process are shown in Figure 7. Observing
these traces one may notice that the change in the
received signal strength happens almost instantaneously.
The reason is that the distances between attraction
points in office environment are rather short (recall that
the granularity of SNR measurements is 0.5 s).
Results of EWMA change point test are shown in Fig-

ure 8 for two values of smoothing parameters g. In all
demonstrated figures the change in SNR statistics is
detected. Moreover, our results show that changes are
detected for all values of smoothing parameters g that
are less than 0.1 implying that there is no need to access
accuracy of the test using average run length (ARL) sta-
tistics. Note that change-point statistical tests are rather
coarse in general. To ensure that the change in some
parameters of the distribution happened we compared
distributional characteristics of two subsamples drawn
from each sample. To get these subsamples we used
results of EWMA test to exclude those observations
occurring at the change point. c2 test performed with
the level of significance set to a = 0.05 showed that the
null hypothesis about the same empirical distribution
should be rejected.
Note that the above mentioned statistical analysis

demonstrate that (i) SNR process at a certain separation
distance from the transmitter is close to covariance sta-
tionary (ii) SNR process may quantitatively change when
user changes its location. Supplementing the above
mentioned analysis with mobility model between attrac-
tion points we a particular case of the mobility-
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Figure 6 Histograms and NACFs of SNR observations and their
approximations.
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dependent propagation model introduced in this article.
Although these test have been performed in office envir-
onment using IEEE 802.11b WLAN we can expect the
same statistical behavior for public wireless networks.
Still there are important differences. First of all, due to
larger spaces covered by these networks in addition to
attraction points we need to consider areas as described
in Section 2. Secondly, changes in characteristics of the
received signal strength are not expected to happen
drastically as user moved between areas and/or attrac-
tion points.

6 Conclusions
We developed an extension for wireless channel model-
ing techniques explicitly taking into account the move-
ment of the user between areas with different small-
scale propagation characteristics. Although a single cell
environment has been considered, results can be
extended to multiple cells scenario.
The model is suitable for performance evaluation of

applications in presence of signal strength changes
caused by movement of the user. Although the Markov
structure of the model allows for analytical performance
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Figure 7 Time series of SNR observations (location is changed).
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Figure 8 Time series of SNR observations (location is changed).
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modeling, large state space may restrict its usage to
simulation studies. We note that the model can be
extended to capture propagation-dependent behavior.
For example, the current modulation and coding scheme
as a function of mobility of the user can be modeled.
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