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Abstract

In this article, transmission over multiaccess fading channels under quality-of-service (QoS) constraints is studied in
the low-power and wideband regimes. QoS constraints are imposed as limitations on the buffer violation
probability. The effective capacity, which characterizes the maximum constant arrival rates in the presence of such
statistical QoS constraints, is employed as the performance metric. A two-user multiaccess channel model is
considered, and the minimum bit energy levels and wideband slope regions are characterized for different
transmission and reception strategies, namely time-division multiple-access (TDMA), superposition coding with fixed
decoding order, and superposition coding with variable decoding order. It is shown that the minimum received bit
energies achieved by these different strategies are the same and independent of the QoS constraints in the low-
power regime, while they vary with the QoS constraints in the wideband regime. When wideband slope regions
are considered, the suboptimality of TDMA with respect to superposition coding is proven in the low-power
regime. On the other hand, it is shown that TDMA in the wideband regime can interestingly outperform
superposition coding with fixed decoding order. The impact of varying the decoding order at the receiver under
certain assumptions is also investigated. Overall, energy efficiency of different transmission strategies under QoS
constraints are analyzed and quantified.

Keywords: effective capacity, energy efficiency, energy per information bit, low-power regime, multiple-access fad-
ing channels, quality of service, superposition coding, time-division multiple access, wideband regime, wideband
slope

1. Introduction
Energy efficiency is an important consideration in wire-
less systems and has been rigorously analyzed from an
information-theoretic perspective. In [1], Verdú has
extensively studied the spectral efficiency-bit energy tra-
deoff in the wideband regime, considering the Shannon
capacity as the performance metric. For the Gaussian
multiaccess channel, Caire et al. [2] have shown that time
division multiple-access (TDMA) is in general a subopti-
mal transmission scheme in the low-power regime unless
one considers the asymptotic scenario in which the
power vanishes. It is also shown that fading channel
makes the superposition strategy more favorable. In this
analysis, Shannon capacity formulation is again adopted
as the main performance metric. However, Shannon

capacity does not quantify the performance in the pre-
sence of quality-of-service (QoS) limitations in the form
of constraints on queueing delays or queue lengths.
Indeed, most communication- and information-theoretic
studies, while providing powerful results, do not generally
concentrate on delay and QoS constraints [3].
At the same time, providing QoS guarantees is one of

the key requirements in the development of next genera-
tion wireless communication networks since data traffic
with multimedia content is expected to grow significantly
and in real-time multimedia applications, such as voice
over IP (VoIP) and interactive-video (e.g., videoconferen-
cing), latency is a key QoS metric. Many efforts have been
made to incorporate the delay constraints in the perfor-
mance analysis [4-7]. In [4], delay limited capacity has
been proposed as a performance metric, which is defined
as the rate that can be attained regardless of the values of
the fading states. In [6], the tradeoff between the average
transmission power and average delay has been analyzed
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by considering an optimization problem in which the
weighted combination of the average power and average
delay is minimized over transmission policies that deter-
mine the transmission rate by taking into account the arri-
val state, buffer occupancy, channel state jointly together.
In [7], the long-term average capacity has been proposed
to study the fading multiaccess channel in the wideband
regime and the suboptimality of TDMA has been shown
again.
In this article, we follow a different approach. We con-

sider statistical QoS constraints and study the energy effi-
ciency under such limitations. We adopt the notion of
effective capacity [8], which can be seen as the maximum
constant arrival rate that a given time-varying service pro-
cess can support while providing statistical QoS guaran-
tees. The analysis and application of effective capacity in
various settings have attracted much interest recently (see
e.g. [9-16] and references therein). For instance, related to
this study, in [13,14], energy efficiency is addressed in a
single-user setting when the wireless systems operate
under buffer constraints and employ either adaptive or
fixed transmission schemes for point-to-point links. The
effective capacity regions for multiaccess channel with dif-
ferent scheduling policies have been characterized in [16].
In that work, it has been found that TDMA and superpo-
sition coding with variable decoding with respect to chan-
nel states can outperform superposition strategy with fixed
decoding. In this article, we consider the performance of
TDMA and superposition strategy in the presence of sta-
tistical QoS constraints but concentrate on the low-SNR
regime. More specifically, we employ the tools provided in
[1,2] to investigate the bit energy and wideband slope
regions under QoS constraints in the low-power and wide-
band regimes. The main contributions of this article are
summarized in the following:
(1) We show that different transmission and reception

strategies do not affect the minimum bit energy levels
required by each user. Additionally, we prove that while
the minimum bit energies are independent of the QoS
constraints in the low power regime, they vary with the
QoS constraints in the wideband regime.
(2) We determine that superposition coding with vari-

able decoding order does not improve the performance
in terms of slope region with respect to fixed decoding
order in the low power regime, while it can achieve larger
slope region in the wideband regime.
(3) When wideband slope regions are considered, we

show that TDMA is always suboptimal in the low power
regime except the special case in which fading states are
linearly dependent. On the other hand, TDMA in certain
cases is demonstrated to perform better than superposi-
tion coding with fixed decoding order in the wideband
regime. We also identify the condition for TDMA to be
suboptimal in this regime.

The remainder of the article is organized as follows. In
Section 2, the system model is briefly discussed. Section 3
presents some preliminaries on the analysis tools and
effective capacity. The results in the low-power regime are
provided in Section 4. Section 5 presents the results in the
wideband regime. Finally, Section 6 concludes this article.

2. System model
As shown in Figure 1, we consider an uplink scenario
where M users with individual power and buffer con-
straints (i.e., QoS constraints) communicate with a single
receiver. It is assumed that the transmitters generate data
sequences which are divided into frames of duration T .
These data frames are initially stored in the buffers before
they are transmitted over the wireless channel. The dis-
crete-time signal at the receiver in the ith symbol duration
is given by

Y [i] =
M∑
j=1

hj [i]Xj [i] + n [i] , i = 1, 2, . . . (1)

where M is the number of users, Xj [i] and hj [i] denote
the complex-valued channel input and the fading coeffi-
cient of the jth user, respectively. We assume that {hj
[i]}’s are jointly stationary and ergodic discrete-time pro-
cesses, and we denote the magnitude-square of the fading
coefficients by zj [i] = |hj [i]|

2. Let z = (z1 , z2, ..., zm) be
the channel state vector. Above, n[i] is a zero-mean, cir-
cularly symmetric, complex Gaussian random variable
with variance E

{|n[i]|2} = N0 . The additive Gaussian

noise samples {n[i]} are assumed to form an independent
and identically distributed (i.i.d.) sequence. Finally, Y [i]
denotes the received signal.
The channel input of user j is subject to an average

energy constraint E
{|xj [i] |2} ≤ Pj/B for all j, where B

is the bandwidth available in the system. Assuming that
the symbol rate is B complex symbols per second, we
can see that this formulation indicates that user j is sub-

ject to an average power constraint of P̄j . With these

Figure 1 The system model.
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definitions, the average transmitted signal to noise ratio

of user j is SNRj = P̄j
N0B

.

3. Preliminaries
3.1. Effective capacity region of the MAC channel
In [8], effective capacity is defined as the maximum con-
stant arrival rate that a given service process can sup-
port in order to guarantee a statistical QoS requirement
specified by the QoS exponent θ. The effective capacity
is formulated as

C (θ) = − lim
t→∞

1
θ t
logeE

{
e−θS[t]} bits/s, (2)

where the expectation is with respect to S [t] =
∑t

i=1 s [i] ,

which is the time-accumulated service process, and {s[i], i =
1, 2, ...} denotes the discrete-time stochastic service process.
Effective capacity can be regarded as the maximum
throughput of the system while the buffer violation prob-
ability is guaranteed to decay exponential fast with decay
rate controlled by θ, i.e., the buffer violation probability
behaves as Pr {Q > Qmax} ≈ e−θQmax for large Qmax , where
Q is stationary queue length.
We assume that the fading coefficients stay constant

over the frame duration T and vary independently from
one frame to another for each user. Hence, we basically
consider a block-fading model. In this scenario, s[i] = T R
[i], where R[i] is the instantaneous service rate in the ith
frame duration [iT; (i+1)T). Then, the effective capacity in
(2) can be expressed as

C (θ) = − 1
θT

logeEz
{
e−θTR[i]} bits/s, (3)

where R[i] is in general a function of the fading state z.
(3) is obtained using the fact that instantaneous rates {R
[i]} vary independently from one frame to another. It is
interesting to note that as θ ® 0 and hence QoS con-
straints relax, effective capacity approaches the ergodic
capacity, i.e., C (θ) → Ez {R [i]} . On the other hand, as
shown in [13], C (θ) converges to the delay limited capa-
city as θ grows without limit (i.e., θ ® ∞) and QoS con-
straints become increasingly more strict. Therefore,
effective capacity enables us to study the performance
levels between the two extreme cases of delay limited
capacity, which can be seen as a deterministic service
guarantee or equivalently as a performance level attained
under hard QoS limitations, and ergodic capacity, which
is achieved in the absence of any QoS considerations.
Suppose that Θ = (θ1, ..., θM) is a vector composed of

the QoS constraints of M users. Let βj =
θjTB

loge2
, j = 1, 2,

..., M be the associated normalized QoS constraints.

Also, let C(Θ) = (C1(θ1), ..., CM (θM)) denote the vector
of the normalized effective capacities.
In [16], the effective capacity regions of the multi-

access channel for different scheduling policies have
been characterized. The effective capacity region
achieved by TDMA is

⋃
{δj}

⎧⎪⎪⎨
⎪⎪⎩C (�) ≥ 0 : Cj

(
θj
) ≤ − 1

θjTB
logeE

⎧⎪⎪⎨
⎪⎪⎩e

−δjθjTBlog2

⎛
⎝1+SNRj

δj
zj

⎞
⎠
⎫⎪⎪⎬
⎪⎪⎭

⎫⎪⎪⎬
⎪⎪⎭ (4)

where δj is the fraction of time allocated to user j.
The effective capacity region achieved by superposi-

tion coding with fixed decoding order is given by

⋃
{τm}

{
C (�) ≥ 0 : Cj

(
θj
) ≤ − 1

θjTB
logeEz

{
e
−θjT

∑M!
m=1 τmRπ

−1
m (j)

}}
(5)

where τm is the fraction of time allocated to a specific

decoding order πm, Rπ−1
m (j) represents the maximal

instantaneous service rate of user j at a given decoding
order πm, which is given by

Rπ−1
m (j) = B log2

(
1 +

SNRjzj
1 +

∑
π−1
m (i)>π−1

m (j) SNRizi

)
(6)

where π−1
m is the inverse trace function of πm.

Decoding orders can be varied for each channel fading
state z. Suppose the vector space �M

+ of the possible
values for z is partitioned into M! disjoint regions

{Zm}M!
m=1 with respect to decoding orders {πm}M!

m=1 .

Then, the maximum effective capacity that can be
achieved by the jth user is

Cj
(
θj
)
= − 1

θjTB
logeEz

{
e−θjTRj

}

= − 1
θjTB

loge

⎛
⎜⎝ M!∑

m=1

∫
z∈Zm

e
−θjTRπ

−1
m (j)pz (z) dz

⎞
⎟⎠ (7)

for j = 1, ..., M , where pz is the distribution function

of z and Rπ−1
m (j) is given in (6).

3.2. Spectral efficiency vs. bit energy
If we denote the effective capacity normalized by band-
width or equivalently the spectral efficiency in bits per
second per Hertz by

CE (SNR, θ) =
CE (SNR, θ)

B
= − 1

θTB
logeE

{
e−θTR[i]} , (8)

then it can be easily seen that Eb
N0 min

under QoS con-

straints can be obtained from [1]
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Eb
N0 min

= lim
SNR→0

SNR
CE (SNR)

=
1

ĊE (0)
. (9)

Hence, energy efficiency improves as SNR diminishes
and the minimum bit energy is attained as SNR

vanishes. At Eb
N0 min

, the slope S0 of the spectral effi-

ciency versus Eb/N0 (in dB) curve is is called the wide-
band slope, and is defined as [1]

S0 = lim
Eb
N0

↓
Eb
N0 min

CE

(
Eb
N0

)
10 log10

Eb
N0

− 10 log10
Eb
N0 min

10 log102. (10)

Considering the expression for normalized effective
capacity, the wideband slope can be found froma

S0 = −2
(
ĊE (0)

)2
C̈E (0)

loge2 (11)

where ĊE (0) and C̈E (0) are the first and second
derivatives, respectively, of the function CE(SNR) in bits/

s/Hz at zero SNR [1]. The minimum bit energy Eb
N0 min

and the wideband slope provide a linear approximation
of the spectral efficiency-bit energy curve at low SNR
levels and enables us to characterize and quantify the
energy efficiency in the low-SNR regime.

4. Energy efficiency in the low-power regime
As described above, in order to transmit energy effi-
ciently and achieve bit energy levels close to the mini-
mum level, one needs to operate in the low-SNR regime
in which either the power is low or bandwidth is large.
In this section, we consider the low-power regime. We
concentrate on the two-user multiaccess channel. Below,
we first note the maximum effective capacities attained
through different transmission strategies described in in
Section 1. Subsequently, we identify the corresponding
minimum bit energies and the wideband slopes.
Now, for the two-user TDMA, if we fix the fraction of

time allocated to user 1 as δ Î [0, 1], the maximum
effective capacities of the two-users in the TDMA
region given by (4) become

C1 (SNR1) = − 1
θ1TB

logeEz

{
e
−δθ1TB log2

(
1+

SNR1z1
δ

)}
(12)

and

C2 (SNR2) = − 1
θ2TB

logeEz

⎧⎪⎨
⎪⎩e

−(1−δ)θ2TB log2

(
1+
SNR2z2
1 − δ

)⎫⎪⎬
⎪⎭ , (13)

respectively,

Next, consider superposition coding with fixed decod-
ing order. We denote the ratio of the transmitter-side

signal-to-noise ratios as λ = SNR1
SNR2

=
(

P1
N0B

)
/
(

P2
N0B

)
. We

assume that the value of this ratio is arbitrary but is
kept fixed as SNR1 and SNR2 diminish in the low-SNR
regime. Additionally, we let τ denote the fraction of time
in which the decoding order (2, 1) is employed. Note
that if the decoding order is (2, 1), the receiver first
decodes the second user’s signal in the presence of
interference from first user’s signal, and subsequently
decodes the first user’s signal with no interference. Note
that the symmetric case occurs when the decoding
order is (1, 2) in the remaining (1 -τ) fraction of the
time. When this strategy is used, the maximum effective
capacities in the region described in (5) can now be
expressed as

C1 (SNR1)

= − 1
θ1TB

logeEz

⎧⎪⎨
⎪⎩e

−θ1TB

(
τ log2(1+SNR1z1)+(1−τ ) log2

(
1+

SNR1z1
1 + SNR1z2/λ

))⎫⎪⎬
⎪⎭ ,

(14)

C2 (SNR2)

= − 1
θ2TB

logeEz

⎧⎪⎨
⎪⎩e

−θ2TB

(
τ log2

(
1+

SNR2z2
1 + λSNR2z1

)
+(1−τ ) log2(1+SNR2z2)

)⎫⎪⎬
⎪⎭ .
(15)

Finally, we turn our attention to superposition coding
with variable decoding order. In this case, the decoding
order depends on the fading coefficients (z1, z2). We
define z2 = g(SNR1) = g(lSNR2) as the partition function
in the z1 - z2 space.b Depending on which decoding
order is employed in each region, we have different
effective capacity expressions. If users are decoded in
the order (1,2) when z2 < g(SNR1) and are decoded in
the order (2,1) when z2 > g(SNR1), the effective capaci-
ties are given by

C1 (SNR1) = − 1
θ1TB

loge

⎛
⎜⎝

∞∫
0

∞∫
g(SNR1)

e−θ1TB log2(1+SNR1z1)pz (z1, z2) dz2dz1

+

∞∫
0

g(SNR1)∫
0

e
−θ1TB log2

(
1+

SNR1z1
1+SNR1z2/λ

)
pz (z1, z2) dz2dz1

⎞
⎠ ,

(16)

C2 (SNR2) = − 1
θ2TB

loge

⎛
⎝ ∞∫

0

g(λSNR2)∫
0

e−θ2TB log2(1+SNR2z2)pz (z1, z2) dz2dz1

+

∞∫
0

∞∫
g(λSNR2)

e
−θ2TB log2

(
1+

SNR2z2
1 + λSNR2z1

)
pz (z1, z2) dz2dz1

⎞
⎟⎠ .

(17)
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Similar effective capacity expressions can be derived if
users are decoded in the order (2,1) if z2 < g(SNR1) and
decoded in the order (1,2) if z2 > g(SNR1).
Assumption 1: Throughout the article, we consider the

partition functions g(SNR1) that satisfy the following
properties:
(1) g(0) is finite.
(2) The first and second derivatives of g with respect

to SNR1, ġ (SNR1) and g̈ (SNR1) , exist. Moreover,
ġ (0) and g̈ (0) are finite.
As will be seen in the ensuing analysis, the finiteness

assumptions above will serve as sufficient conditions to
ensure that the derivatives of effective capacity in the
limit as SNR vanishes are finite.

Denote
Eb,i
N0

=
SNRi

Ci
as the bit energy of user i = 1, 2.

The received bit energy is

Erb,i
N0

=
Eb,i
N0

E {zi} . (18)

As the following result shows, the minimum received
bit energies for the different strategies are the same.

Theorem 1: For all λ =
SNR1

SNR2
and all g(z1, SNR1) satis-

fying the properties in Assumption 1, the minimum
received bit energy for the multiaccess fading channel
attained through TDMA, superposition coding with
fixed decoding order, or superposition decoding with
varying decoding order, is the same and is given by

Erb,1
N0 min

=
Erb,2
N0 min

= loge2 = −1.59 dB. (19)

Proof: See Appendix 1.
Remark 1: The result of Theorem 1 shows that differ-

ent transmission strategies (e.g., TDMA or superposition
coding) and different reception schemes (e.g., fixed or
variable decoding orders) lead to the same fundamental
limit on the minimum bit energy. Similarly as in [2],
TDMA is optimally efficient in the asymptotic regime in
which the signal-to-noise ratio vanishes. More interest-
ingly, we note that this result is obtained in the presence
of QoS constraints. Additionally, the minimum bit
energy is clearly independent of the QoS limitations
parametrized by the QoS exponents θ1 and θ2. Hence,
the energy efficiency is not adversely affected by the buf-
fer constraints in this asymptotic regime in which
SNR ® 0.
Remark 2: It can be easily shown using the effective

capacity expressions provided in (4), (5), and (7) that
the characterization in Theorem 1, i.e., the result that
the minimum received energy per bit requirement for
each user is -1.59 dB under QoS constraints, holds in

a more general setting in which the number of users
M ≥ 2.
Having shown that the minimum bit energies achieved

by different transmission and reception strategies are the
same for each user, we note that the wideband slope
regions have become more interesting since they quantify
the performance in the non-asymptotic regime in which
SNRs are small but nonzero. With the analysis approach
introduced in [2], we have the following results.
Theorem 2: The multiaccess slope region achieved by

TDMA is given by

S =
{
(S1,S2) : 0 ≤ S1 ≤ Sup

1 , 0 ≤ S2 ≤ Sup
2 ,

κ11κ12

κ11 − S1
+

κ21κ22

κ21 − S2
≤ 1 + κ12 + κ22

}
(20)

where

Sup
1 =

2(E {z1})2
β1
(
E
{
z21
}− (E {z1})2

)
+ E

{
z21
} ,

Sup
2 =

2(E {z2})2
β2
(
E
{
z22
}− (E {z2})2

)
+ E

{
z22
} ,

κ11 =
2(E {z1})2

β1
(
E
{
z21
}− (E {z1})2

) ,
κ12 =

E
{
z21
}

β1
(
E
{
z21
}− (E {z1})2

) ,
κ21 =

2(E {z2})2
β2
(
E
{
z22
}− (E {z2})2

) ,
κ22 =

E
{
z22
}

β2
(
E
{
z22
}− (E {z2})2

) ,
b1 = θ1T B log2 e and b2 = θ2 T B log2 e.
Proof: See Appendix 2.
The following results provide the wideband slope

expressions when superposition transmission is
employed.

Theorem 3: For any λ =
SNR1

SNR2
, the multiaccess slope

region achieved by the superposition coding with fixed
decoding order is

S =
{
(S1,S2) : 0 ≤ S1 ≤ Sup

1 , 0 ≤ S2 ≤ Sup
2 ,

λ(E {z1})2
E {z1z2}

(
1
S1

− 1

Sup
1

)
+

(E {z2})2
λE {z1z2}

(
1
S2

− 1

Sup
2

)
= 1

}
,
(21)

where Sup
1 and Sup

2 are the same as defined in Theo-

rem 2.
Proof: See Appendix 3.

Theorem 4: For any λ =
SNR1

SNR2
, and any g(SNR1) satis-

fying the properties in Assumption 1, the multiaccess
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slope region achieved by superposition coding with vari-
able decoding order is

S =
{
(S1,S2) : 0 ≤ S1 ≤ Sup

1 , 0 ≤ S2 ≤ Sup
2 ,

λ(E {z1})2
E {z1z2}

(
1
S1

− 1

Sup
1

)
+

(E {z2})2
λE {z1z2}

(
1
S2

− 1

Sup
2

)
= 1

}
,
(22)

where Sup
1 and Sup

2 are the same as defined in Theo-

rem 2.
Proof: See Appendix 4.
Remark 3: Comparing (63) with (65) or (64) with (66)

in the proof of Theorem 4 in Appendix 4, we see that
different decoding orders do not change the wideband
slope values for given user only if g(0) = z1, i.e., the z1-z2
space is equally divided. One more interesting remark is
that if we compare the third conditions in (21) and (22),
we notice that fixed decoding order achieves the same
performance as variable decoding order.
Remark 4: It is interesting to note in the above results

that, unlike the minimum bit energy levels, the wideband
slopes depend on the QoS exponents θ1 and θ2 through b1
and b2. Indeed, as can be seen from the expressions of the

upper bounds Sup
1 and Sup

2 , the wideband slopes tend to

diminish as QoS constraints become more stringent and
θ1 and θ2 increase. Smaller slopes indicate that at a given

energy per bit level greater than Erb
N0 min

, a smaller spectral

efficiency is attained. Therefore, spectral efficiency
degrades under more strict QoS constraints. Equivalently,
to achieve the same level of spectral efficiency, higher
energy per bit is required. Hence, from this perspective, a
penalty in energy efficiency is experienced as buffer limita-
tions become more stringent.
In the following result, we establish the suboptimality

of TDMA.
Theorem 5: The wideband slope region of TDMA is

inside the one attained with superposition coding.
Proof: We only need to consider the third conditions

of (20) and (21). Substituting (58) and (59) into the left-
hand side (LHS) of the third constraint in (20), we
obtain

κ12 + κ22 +
E
{
z21
}

E
{
z21
}
+
2 (1 − τ )

λ
E{z1z2}

+
E
{
z22
}

E
{
z22
}
+ 2λτE{z1z2}

. (23)

Comparing the sum of the last two terms with 1 (or
more precisely subtracting 1 from the sum), we can write

E
{
z21
}

E
{
z21
}
+
2 (1 − τ)

λ
E{z1z2}

+
E
{
z22
}

E
{
z22
}
+ 2λτE{z1z2}

− 1

=
E
{
z21
}
E
{
z22
}− 4τ (E{z1z2})2 + 4(E{z1z2})2τ 2(

E
{
z21
}
+
2 (1 − τ )

λ
E{z1z2}

) (
E
{
z22
}
+ 2λτE{z1z2}

) .
(24)

We are interested in the numerator which is a quadratic
function of the parameter τ . We note that the discrimi-
nant of this quadratic function satisfies


 = 16(E {z1z2})4 − 16(E {z1z2})2E
{
z21
}
E
{
z22
}

= 16(E {z1z2})2
(
(E {z1z2})2 − E

{
z21
}
E
{
z22
}) ≤ 0

(25)

where the Cauchy-Schwarz inequality

(E {z1z2})2 ≤ E
{
z21
}
E
{
z22
}
is used. Thus, the numerator

of (24) is always nonnegative, i.e., the slope region
achieved by TDMA is inside the one achieved by super-
position coding. The equality holds only if z1 and z2 are
linearly dependent. □
In Figure 2, we plot the slope regions in independent Ray-

leigh fading channels with variances E {z1} = E {z2} = 1 .
We assume b1 = 1 and b2 = 2. From the figure, we immedi-
ately observe the suboptimality of TDMA compared with
superposition coding.

5. Energy efficiency in the wideband regime
In this section, we consider the wideband regime in
which the overall bandwidth of the system B is large. Let

ζ = 1
B . Similar as in [13], we know that the minimum bit

energy achieved in sparse multipath fading channelsc as
B ® ∞ (or equivalently ζ ® 0) can be expressed as

Eb,i
N0 min

= lim
ζ→0

Piζ /N0

Ci (ζ )
=
Pi/N0

Ċi (0)
, i = 1, 2. (26)

To make the analysis more clear, below we first
express the capacity expressions in (12)-(17) as functions
of ζ. (12) and (13) can be rewritten as

C1 (ζ ) = − ζ

θ1T
logeEz

⎧⎪⎪⎨
⎪⎪⎩e

−
δθ1T

ζ
log2

⎛
⎝1+P1z1ζ

δN0

⎞
⎠
⎫⎪⎪⎬
⎪⎪⎭ , (27)
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Figure 2 The slope regions for independent Rayleigh fading
channels.
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and

C2 (ζ ) = − ζ

θ2T
logeEz

⎧⎪⎪⎨
⎪⎪⎩e

−
(1 − δ) θ2T

ζ
log2

⎛
⎝1+

P2z2ζ

(1 − δ)N0

⎞
⎠
⎫⎪⎪⎬
⎪⎪⎭ , (28)

respectively.
For superposition coding with fixed decoding order,

and fixed λ =
SNR1

SNR2
=
P1ζ /N0

P2ζ /N0
=
P1
P2

, (14) and (15) now

become

C1 (ζ )

= − ζ

θ1T
logeEz

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e

−
θ1T
ζ

⎛
⎜⎜⎜⎜⎜⎜⎝

τ log2

⎛
⎝1+ P̄1z1ζ

N0

⎞
⎠+(1−τ ) log2

⎛
⎜⎜⎜⎜⎜⎜⎝
1+

P̄1z1ζ
N0

1 +
P̄2z2ζ
N0

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,
(29)

C2 (ζ )

= − ζ

θ2T
logeEz

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e

−
θ2T
ζ

⎛
⎜⎜⎜⎜⎜⎜⎝

τ log2

⎛
⎜⎜⎜⎜⎜⎜⎝
1+

P̄2z2ζ
N0

1 +
P̄1z1ζ
N0

⎞
⎟⎟⎟⎟⎟⎟⎠
+(1−τ ) log2

⎛
⎝1+ P̄2z2ζ

N0

⎞
⎠
⎞
⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
(30)

Note that we can write g(SNR1) as g
(
P1ζ

N0

)
, so simi-

larly we can write (16) and (17) as functions of ζ

C1 (ζ ) = − ζ

θ1T
loge

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∞∫
0

∞∫

g

⎛
⎝P1ζ

N0

⎞
⎠
e
−

θ1T

ζ
log2

⎛
⎝1+

P1z1ζ

N0

⎞
⎠
pz (z1, z2) dz2dz1

+

∞∫
0

g

⎛
⎝P1ζ

N0

⎞
⎠∫

0

e

−
θ1T
ζ

log2

⎛
⎜⎜⎜⎜⎜⎜⎝
1+

P1z1ζ
N0

1 +
P2z2ζ
N0

⎞
⎟⎟⎟⎟⎟⎟⎠
pz (z1, z2) dz2dz1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(31)

C2 (ζ ) = − ζ

θ2T
loge

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∞∫
0

g

⎛
⎝P2ζ

N0

⎞
⎠∫

0

e
−

θ2T

ζ
log2

⎛
⎝1+

P2z2ζ

N0

⎞
⎠
pz (z1, z2) dz2dz1

+

∞∫
0

∞∫

g

⎛
⎝P2ζ

N0

⎞
⎠
e

−
θ2T
ζ

log2

⎛
⎜⎜⎜⎜⎜⎜⎝
1+

P2z2ζ
N0

1 +
P1z1ζ
N0

⎞
⎟⎟⎟⎟⎟⎟⎠
pz (z1, z2) dz2dz1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(32)

Then we immediately have the following result.
Theorem 6: For all g(SNR1) satisfying the properties in

Assumption 1, the minimum bit energies for the two-
user multiaccess fading channel in the wideband regime
attained through TDMA, superposition coding with
fixed decoding order, and superposition decoding with
varying decoding order, depend on the individual QoS
constraints at the users and are given by

Eb,1
N0 min

=
−θ1TP1

N0

logeEz1

⎧⎪⎪⎨
⎪⎪⎩e

−
θ1TP1

N0loge2
z1

⎫⎪⎪⎬
⎪⎪⎭

,
(33)

Eb,2
N0 min

=
−θ2TP2

N0

logeEz2

⎧⎪⎪⎨
⎪⎪⎩e

−
θ2TP2

N0loge2
z2

⎫⎪⎪⎬
⎪⎪⎭

,
(34)

respectively.
Proof: See Appendix 5.
Remark 5: As Theorem 6 shows, the same minimum bit

energy is achieved through different transmission strate-
gies (e.g., TDMA or superposition coding) and different
reception schemes (e.g., fixed or variable decoding orders),
and therefore TDMA is optimally energy efficient in the
wideband regime as B ® ∞. As before, Theorem 6 can be
readily extended and similar expressions for the minimum
energy per bit can be easily obtained for cases in which
there are more than 2 users, i.e., M ≥ 2.
Remark 6: A stark difference from the result in Theo-

rem 1 is that the minimum bit energy now varies with
the specific QoS constraints at the users. When θ = 0,
we can immediately show that the right-hand sides of

(33) and (34) become loge2
E{z1} and loge2

E{z2} , respectively, which

is equivalent to (19). For θ >0, the energy efficiency is
now adversely affected by the buffer constraints in the
wideband regime.
Similarly as in Section 4, we next investigate the wide-

band slopes in order to quantify the performances and
energy efficiencies of different transmission and reception
methods in the non-asymptotic regime in which the band-
width B is large but finite. We have the following results.
Theorem 7: In the wideband regime, the multiaccess

slope region achieved by TDMA is given by

S =
{

(S1,S2) : 0 ≤ S1 ≤ Sup
1 , 0 ≤ S2 ≤ Sup

2 ,
S1

Sup
1

+
S2

Sup
2

≤ 1
}

(35)
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where

Sup
1 = 2

(
N0loge2

θ1TP1

)2

Ez1

⎧⎪⎪⎨
⎪⎪⎩e

−
θ1TP1

N0loge2
z1

⎫⎪⎪⎬
⎪⎪⎭

⎛
⎜⎜⎝logeEz1

⎧⎪⎪⎨
⎪⎪⎩e

−
θ1TP1

N0loge2
z1

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎠

2

Ez1

⎧⎪⎪⎨
⎪⎪⎩e

−
θ1TP1

N0loge2
z1
z21

⎫⎪⎪⎬
⎪⎪⎭

,

Sup
2 = 2

(
N0loge2

θ2TP2

)2

Ez2

⎧⎪⎪⎨
⎪⎪⎩e

−
θ2TP2

N0loge2
z2

⎫⎪⎪⎬
⎪⎪⎭

⎛
⎜⎜⎝logeEz2

⎧⎪⎪⎨
⎪⎪⎩e

−
θ2TP2

N0loge2
z2

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎠

2

Ez2

⎧⎪⎪⎨
⎪⎪⎩e

−
θ2TP2

N0loge2
z2
z22

⎫⎪⎪⎬
⎪⎪⎭

.

Proof: See Appendix 6.
Theorem 8: In the wideband regime, the multiaccess

slope region achieved by superposition coding with fixed
decoding order is

S =
{
(S1,S2) : 0 ≤ S1 ≤ Sup

1 , 0 ≤ S2 ≤ Sup
2 ,

(
N0loge2

θ1T

)2

⎛
⎜⎜⎝logeEz1

⎧⎪⎪⎨
⎪⎪⎩e

−
θ1TP̄1
N0loge2

z1

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎠

2

Ez1

⎧⎪⎪⎨
⎪⎪⎩e

−
θ1TP̄1
N0loge2

z1

⎫⎪⎪⎬
⎪⎪⎭

P̄1P̄2Ez

⎧⎪⎪⎨
⎪⎪⎩e

−
θ1TP̄1
N0loge2

z1
z1z2

⎫⎪⎪⎬
⎪⎪⎭

(
1
S1

− 1

Sup
1

)
+
(
N0loge2

θ2T

)2

⎛
⎜⎜⎝logeEz2

⎧⎪⎪⎨
⎪⎪⎩e

−
θ2TP̄2
N0loge2

z2

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎠

2

Ez2

⎧⎪⎪⎨
⎪⎪⎩e

−
θ2TP̄2
N0loge2

z2

⎫⎪⎪⎬
⎪⎪⎭

P̄1P̄2Ez

⎧⎪⎪⎨
⎪⎪⎩e

−
θ2TP̄2
N0loge2

z2
z1z2

⎫⎪⎪⎬
⎪⎪⎭

(
1
S2

− 1

Sup
2

)
= 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(36)

where Sup
1 and Sup

2 are defined in Theorem 7.

Proof: See Appendix 7.
Theorem 9: For any g(SNR1) satisfying the properties in

Assumption 1, the multiaccess slope regions achieved by
superposition coding with variable decoding order in the
wideband regime are different for different decoding
orders. The slope region is

S =
⋃

{g(0)}
{(S1,S2) :

0 ≤ S1 ≤ 2
(
N0loge2

θ1T

)2

⎛
⎜⎜⎝logeEz1

⎧⎪⎪⎨
⎪⎪⎩e

−
θ1TP1

N0loge2
z1

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎠

2

Ez1

⎧⎪⎪⎨
⎪⎪⎩e

−
θ1TP1

N0loge2
z1

⎫⎪⎪⎬
⎪⎪⎭

P
2
1Ez1

⎧⎪⎪⎨
⎪⎪⎩e

−
θ1TP1

N0loge2
z1
z21

⎫⎪⎪⎬
⎪⎪⎭ + 2P1P2

∫∞
0

∫ g(0)

0 e
−

θ1TP1

N0loge2
z1
z1z2p (z1, z2) dz2dz1

0 ≤ S2 ≤ 2
(
N0loge2

θ2T

)2

⎛
⎜⎜⎝logeEz2

⎧⎪⎪⎨
⎪⎪⎩e

−
θ2TP2

N0loge2
z2

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎠

2

Ez2

⎧⎪⎪⎨
⎪⎪⎩e

−
θ2TP2

N0loge2
z2

⎫⎪⎪⎬
⎪⎪⎭

P
2
2Ez2

⎧⎪⎪⎨
⎪⎪⎩e

−
θ2TP2

N0loge2
z2
z22

⎫⎪⎪⎬
⎪⎪⎭ + 2P1P2

∫∞
0

∫∞
g(0)

e
−

θ2TP2

N0loge2
z2
z1z2p (z1, z2) dz2dz1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(37)

if the decoding order is (1,2) when z2 <g(z1, SNR1),
and the decoding order is (2,1) when z2 >g(z1, SNR1).
The slope region is

S =
⋃

{g(0)}
{(S1,S2) :

0 ≤ S1 ≤ 2
(
N0loge2

θ1T

)2

⎛
⎜⎜⎝logeEz1

⎧⎪⎪⎨
⎪⎪⎩e

−
θ1TP1

N0loge2
z1

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎠

2

Ez1

⎧⎪⎪⎨
⎪⎪⎩e

−
θ1TP1

N0loge2
z1

⎫⎪⎪⎬
⎪⎪⎭

P
2
1Ez1

⎧⎪⎪⎨
⎪⎪⎩e

−
θ1TP1

N0loge2
z1
z21

⎫⎪⎪⎬
⎪⎪⎭ + 2P1P2

∫∞
0

∫∞
g(0)

e
−

θ1TP1

N0loge2
z1
z1z2p (z1, z2) dz2dz1

0 ≤ S2 ≤ 2
(
N0loge2

θ2T

)2

⎛
⎜⎜⎝logeEz2

⎧⎪⎪⎨
⎪⎪⎩e

−
θ2TP2

N0loge2
z2

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎠

2

Ez2

⎧⎪⎪⎨
⎪⎪⎩e

−
θ2TP2

N0loge2
z2

⎫⎪⎪⎬
⎪⎪⎭

P
2
2Ez2

⎧⎪⎪⎨
⎪⎪⎩e

−
θ2TP2

N0loge2
z2
z22

⎫⎪⎪⎬
⎪⎪⎭ + 2P1P2

∫∞
0

∫ g(0)

0 e
−

θ2TP2

N0loge2
z2
z1z2p (z1, z2) dz2dz1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(38)

if the decoding order is (2,1) when z2 <g(z1, SNR1),
and the decoding order is (1,2) when z2 >g(z1, SNR1).
Proof: See Appendix 8.
Remark 7: Unlike previous discussions, we have no

closed form expression for the wideband slope region
achieved by superposition coding with variable decoding
order in the wideband regime. Another observation in
the above result is that different decoding orders can
result in different wideband slope regions.
Below we show the superiority of superposition coding

with variable decoding compared with fixed decoding
order.
Theorem 10: Superposition coding with variable

decoding order achieves better performance in terms of
wideband slope region with respect to superposition
coding with fixed decoding order.
Proof: See Appendix 9.
In the following, we present the condition under

which the suboptimality of TDMA compared with
superposition coding with fixed decoding order can be
established.
Theorem 11: If the following is satisfied

Ez

⎧⎪⎪⎨
⎪⎪⎩e

−
θ1TP̄1
N0loge2

z1
z1z2

⎫⎪⎪⎬
⎪⎪⎭Ez

⎧⎪⎪⎨
⎪⎪⎩e

−
θ2TP̄2
N0loge2

z2
z1z2

⎫⎪⎪⎬
⎪⎪⎭

≤ Ez1

⎧⎪⎪⎨
⎪⎪⎩e

−
θ1TP̄1
N0loge2

z1
z22

⎫⎪⎪⎬
⎪⎪⎭Ez2

⎧⎪⎪⎨
⎪⎪⎩e

−
θ2TP̄2
N0loge2

z2
z22

⎫⎪⎪⎬
⎪⎪⎭ ,

(39)

then the wideband slope region of TDMA is inside the
one attained with superposition coding with fixed
decoding order.
Proof: We consider the third conditions in (35) and

(36). Substituting (86) and (87) into the LHS of the
third condition in (35), we have
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1 −

2 (1 − τ )P2Ez

⎧⎪⎪⎨
⎪⎪⎩e

−
θ1TP1

N0loge2
z1
z1z2

⎫⎪⎪⎬
⎪⎪⎭

P1Ez1

⎧⎪⎪⎨
⎪⎪⎩e

−
θ1TP1

N0loge2
z1
z21

⎫⎪⎪⎬
⎪⎪⎭ + 2 (1 − τ)Ez

⎧⎪⎪⎨
⎪⎪⎩e

−
θ1TP1

N0loge2
z1
z1z2

⎫⎪⎪⎬
⎪⎪⎭

+

P2Ez2

⎧⎪⎪⎨
⎪⎪⎩e

−
θ2TP2

N0loge2
z2
z22

⎫⎪⎪⎬
⎪⎪⎭

P2Ez2

⎧⎪⎪⎨
⎪⎪⎩e

−
θ2TP2

N0loge2
z2
z22

⎫⎪⎪⎬
⎪⎪⎭ + 2τP1Ez

⎧⎪⎪⎨
⎪⎪⎩e

−
θ2TP2

N0loge2
z2
z1z2

⎫⎪⎪⎬
⎪⎪⎭

(40)

So if the wideband slope region is inside the one attained
with superposition coding with fixed decoding order, we
must have the above value to be greater than 1 for all 0 ≤ τ
≤ 1. After subtracting 1 from (40), we can obtain

P1

P1Ez1

⎧⎪⎪⎨
⎪⎪⎩e

−
θ1TP1

N0loge2
z1
z21

⎫⎪⎪⎬
⎪⎪⎭ + 2 (1 − τ)Ez

⎧⎪⎪⎨
⎪⎪⎩e
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N0loge2
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⎫⎪⎪⎬
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⎧⎪⎪⎨
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⎧⎪⎪⎨
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⎫⎪⎪⎬
⎪⎪⎭
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⎧⎪⎪⎨
⎪⎪⎩e
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θ1TP1

N0loge2
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⎫⎪⎪⎬
⎪⎪⎭Ez
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θ2TP2

N0loge2
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N0loge2
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⎫⎪⎪⎬
⎪⎪⎭Ez

⎧⎪⎪⎨
⎪⎪⎩e

−
θ2TP2

N0loge2
z2
z1z2

⎫⎪⎪⎬
⎪⎪⎭ τ

+Ez1

⎧⎪⎪⎨
⎪⎪⎩e

−
θ1TP1

N0loge2
z1
z21

⎫⎪⎪⎬
⎪⎪⎭Ez2

⎧⎪⎪⎨
⎪⎪⎩e

−
θ2TP2

N0loge2
z2
z22

⎫⎪⎪⎬
⎪⎪⎭

⎞
⎟⎟⎠

(41)

The first two terms of the multiplication are positive
values. The minimum value of the third term which is a

quadratic function of τ is achieved at τ = 1
2 , and the

minimum value is

Ez1

⎧⎪⎪⎨
⎪⎪⎩e

−
θ1TP̄1
N0loge2

z1
z21

⎫⎪⎪⎬
⎪⎪⎭Ez2

⎧⎪⎪⎨
⎪⎪⎩e

−
θ2TP̄2
N0loge2

z2
z22

⎫⎪⎪⎬
⎪⎪⎭

−Ez

⎧⎪⎪⎨
⎪⎪⎩e

−
θ1TP̄1
N0loge2

z1
z1z2

⎫⎪⎪⎬
⎪⎪⎭Ez

⎧⎪⎪⎨
⎪⎪⎩e

−
θ2TP̄2
N0loge2

z2
z1z2

⎫⎪⎪⎬
⎪⎪⎭

(42)

Thus, we obtain the condition stated in (39) for
TDMA to be suboptimal. □
Remark 8: It is interesting that if the condition (39) is

not satisfied, TDMA can achieve some points outside

the wideband slope region attained with superposition
coding with fixed decoding order. This tells us that
TDMA can be a better choice compared with superposi-
tion coding with fixed decoding order in some cases. As
an additional point, we note that if, on the other hand,
the condition in (39) is satisfied, TDMA performs worse
than superposition coding with variable decoding order
as well due to the characterization in Theorem 10.
In the numerical results, we plot the wideband slope

regions for independent Rayleigh fading channels with
variances E {z1} = E {z2} = 1 . We assume θ1 = 0.01, θ2 =

0.1, T = 2 ms. In Figure 3, we assume P1
N0

= 2 P2
N0

= 104 .

The LHS of (39) is 0.1009, while the right-hand side is
0.1283. Hence, the inequality is satisfied. From the fig-
ure, we can see that TDMA is suboptimal compared
with superposition coding. In Figure 4, we assume
P1
N0

= 1
2
P2
N0

= 104 . The LHS of (39) is 0.0131, while the

right-hand side is 0.006. Hence, the inequality is not
satisfied. Confirming the above discussion, we can
observe in the figure that TDMA indeed achieves points
outside the slope region attained with superposition
coding with fixed decoding order.

6. Conclusion
In this article, we have analyzed the energy efficiency of
two-user multiaccess fading channels under QoS con-
straints by employing the effective capacity as a measure
of the maximal throughput. We have characterized the
minimum bit energy and the wideband slope regions for
different transmission strategies. We have conducted our
analysis in two regimes: low-power regime and wideband
regime. Through this analysis, we have shown the impact
of QoS constraints on the energy efficiency of multiaccess
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Figure 3 The slope regions for independent Rayleigh fading
channels.
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fading channels. More specifically, we have found that the
minimum bit energies are the same for each user when
different transmission and reception techniques are
employed. While these minimum values are equal those
that can be attained in the absence of QoS constraints in
the low-power regime, we have shown that strictly higher
bit energy values, which depend on the QoS constraints,
are needed in the wideband regime. We have also seen
that while TDMA is suboptimal in the low-power regime
when wideband slope regions are considered, it can out-
perform superposition coding with fixed decoding order in
the wideband regime. Moreover, we have proven in the
wideband regime that varying the decoding order can
achieve larger slope region when compared with fixed
decoding order for superposition coding. Numerical
results validating our results are provided as well.

Appendix
1. Proof of Theorem 1
Consider the TDMA strategy. Taking the first derivative
of the functions in (12) and (13) and letting SNR1 = 0,
SNR2 = 0, we obtain

Ċ1 (0) =
E {z1}
loge2

, (43)

Ċ2 (0) =
E {z2}
loge2

. (44)

Substituting (43) and (44) into (9), we have

Eb,1
N0 min

=
loge2
E {z1} ,

(45)

Eb,2
N0 min

=
loge2
E {z2}

(46)

which imply (19) according to (18).
For the superposition coding with fixed decoding,

evaluating the first derivative of (14) and (15) at SNR1 =
0 and SNR2 = 0, we immediately obtain

Ċ1 (0) =
E {z1}
loge2

(47)

Ċ2 (0) =
E{z2}
loge2

(48)

which again imply (19) taking into consideration (9)
and (18).
Next, we prove the result for the variable decoding

case. First, we consider (16) and (17) with the associated
decoding order assignment. The first derivative of (16)
can be expressed as

Ċ1 (SNR1) = − φ̇1

β1φ1loge2

= − 1
β1φ1loge2

⎛
⎝−

∞∫
0

(1 + SNR1z1)−β1

p
(
z1, g (SNR1)

)
ġ (SNR) dz1

−β1

∞∫
0

∞∫
g(SNR1)

(1 + SNR1z1)
−β1−1z1p (z1, z2) dz2z1

+

∞∫
0

(
1 +

SNR1z1
1 + SNR1g (SNR1) /λ

)−β1

p
(
z1, g (SNR1)

)
ġ (SNR1) dz1

−β1

∞∫
0

g(SNR1)∫
0

(
1 +

SNR1z1
1 + SNR1z2/λ

)−β1−1

z1(
1 + SNR1z2/λ

)2 p (z1, z2) dz2dz1

)

(49)

where φ̇1 is the first derivative of j1, which is defined
as
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Figure 4 The slope regions for independent Rayleigh fading
channels.

Qiao et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:136
http://jwcn.eurasipjournals.com/content/2012/1/136

Page 10 of 16



φ1 =

∞∫
0

∞∫
g(z1,SNR1)

e−θ1TB log2(1+SNR1z1)pz (z1, z2) dz2dz1

+

∞∫
0

g(z1,SNR1)∫
0

e
−θ1TB log2

(
1+

SNR1z1
1 + SNR1z2/λ

)
pz (z1, z2) dz2dz1.

(50)

Under the assumptions that g(0) and ġ (0) are finite,
we can easily see from (49) that letting SNR1 = 0 leads to

Ċ1 (0) =
E {z1}
loge2

. (51)

Similarly, taking the first derivative of (17) and letting
SNR2 = 0, we obtain

Ċ2 (0) =
E {z2}
loge2

. (52)

Applying the definitions (9) and (18), we prove (19)
for this decoding order assignment. For the reverse
decoding order assignment (i.e., users are decoded in
the order (2,1) if z2 <g(SNR1) and decoded in the order
(1,2) if z2 >g(SNR1)), following similar steps, we again
obtain the result in (19). □

2. Proof of Theorem 2
Taking the second derivatives of the functions in (12)
and (13) and letting SNR1 = 0, SNR2 = 0, we obtain

C̈1 (0) =
1

loge2

(
β1
(
(E {z1})2 − E

{
z21
})− 1

δ
E
{
z21
})

(53)

and

C̈2 (0) =
1

loge2

(
β2
(
(E {z2})2 − E

{
z22
})− 1

1 − δ
E
{
z22
})

. (54)

Combining (43), (44), (53), and (54) with (11), we now
get

S1 =
2(E {z1})2

β1
(
E
{
z21
}− (E {z1})2

)
+
1
δ
E
{
z21
} (55)

S2 =
2(E {z2})2

β2
(
E
{
z22
}− (E {z2})2

)
+

1
1 − δ

E
{
z22
} (56)

which, after eliminating δ, provide us the third condi-
tion in (20). □

3. Proof of Theorem 3
The second derivatives of the functions (14) and (15) at
zero signal-to-noise ratio are

C̈1 (0) =
1

loge2

(
β1(E {z1})2 − (β1 + 1)E

{
z21
}− 2 (1 − τ )

λ
E {z1z2}

)

C̈2 (0) =
1

loge2

(
β2(E {z2})2 − (β2 + 1)E

{
z22
}− 2λτE {z1z2}

)
.

(57)

Then, the wideband slopes are given by

S1 =
2(E {z1})2

β1
(
E
{
z21
}− (E {z1})2

)
+ E

{
z21
}
+
2 (1 − τ )

λ
E {z1z2}

(58)

S2 =
2(E {z2})2

β2
(
E
{
z22
}− (E {z2})2

)
+ E

{
z22
}
+ 2λτE {z1z2}

. (59)

After solving for τ in (58) and (59) and subtracting the
resulting equations, we obtain the third condition in (21) □

4. Proof of Theorem 4
We need to consider the wideband slopes for different
decoding order assignments. Due to the complex expres-
sions involved, we here state the derivation for S1 for the
case in which the decoding order is (1,2) when z2 <g(z1,
SNR1), and the decoding order is (2,1) when z2 >g(z1,
SNR1). Taking the second derivative of (16), we have

C̈1 (SNR1) = − φ̈1φ1 − (
φ̇1
)2

β1φ
2
1 loge2

(60)

where φ̇1 is provided in (49) and φ̈1 is given by

φ̈1 =

∞∫
0

(
1 +

SNR1z1
1 + SNR1g (SNR1) /λ

)−β1

p
(
z1, g (SNR1)

)
g̈ (SNR1) dz1

− 2β1

∞∫
0

(
1 +

SNR1z1
1 + SNR1g (SNR1) /λ

)−β1−1

z1(
1 + SNR1g (SNR1) /λ

)2 p (z1, g (SNR1)
)
ġ (SNR1) dz1

+

∞∫
0

(
1 +

SNR1z1
1 + SNR1g (SNR1) /λ

)−β1

ṗ
(
z1, g (SNR1)

) (
ġ (SNR1)

)2
dz1

+ β1 (β1 + 1)

∞∫
0

∞∫
0

(
1 +

SNR1z1
1 + SNR1z1/λ

)−β1−2

z21(
1 + SNR1g (SNR1) /λ

)4 p (z1, z2) dz2dz1

+
2β1

λ

∞∫
0

g(SNR1)∫
0

(
1 +

SNR1z1
1 + SNR1z1/λ

)−β1−1

z1z2(
1 + SNR1g (SNR1) /λ

)3 p (z1, z2) dz2dz1

−
∞∫
0

(1 + SNR1z1)−β1p
(
z1, g (SNR1)

)
g̈ (SNR1) dz1

+ 2β1

∞∫
0

(1 + SNR1z1)
−β1−1z1p

(
z1, g (SNR1)

)
ġ (SNR1) dz1

−
∞∫
0

(1 + SNR1z1)−β1 ṗ
(
z1, g (SNR1)

) (
ġ (SNR1)

)2
dz1

+ β1 (β1 + 1)

∞∫
0

∞∫
g(SNR1)

(1 + SNR1z1)−β1−2z21p (z1, z2) dz2dz1.

(61)

Letting SNR1 = 0 and supposing that g(0), ġ (0) , and
g̈ (0) are finite, we have
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C̈1 (0) = − 1
loge2

⎛
⎝β1

(
E
{
z21
}− (E {z1})2

)
+ E

{
z21
}
+
2
λ

∞∫
0

g(0)∫
0

z1z2p (z1, z2) dz2dz1

⎞
⎠ (62)

Substituting (62) and (51) into (11), we obtain

S1 =
2(E {z1})2

β1
(
E
{
z21
}− (E {z1})2

)
+ E

{
z21
}
+
2
λ

∫∞
0

∫ g(0)

0 z1z2p (z1, z2) dz2dz1
. (63)

Similarly, we can derive

S2 =
2(E {z2})2

β2
(
E
{
z22
}− (E {z2})2

)
+ E

{
z22
}
+ 2λ

∫∞
0

∫∞
g(0)

z1z2p (z1, z2) dz2dz1
. (64)

If the decoding order is (2,1) when z2 <g(z1, SNR1),
and is (1,2) when z2 >g(z1, SNR1), following the steps
described above, we can obtain

S1 =
2(E {z1})2

β1
(
E
{
z21
}− (E {z1})2

)
+ E

{
z21
}
+
2
λ

∫∞
0

∫∞
g(0)

z1z2p (z1, z2) dz2dz1
(65)

S2 =
2(E {z2})2

β2
(
E
{
z22
}− (E {z2})2

)
+ E

{
z22
}
+ 2λ

∫∞
0

∫ g(0)

0 z1z2p (z1, z2) dz2dz1
. (66)

Combining (63) and (64) and eliminating g(0), we can
obtain the third condition in (22). It is interesting that
combining (65) and (66) and eliminating g(0), we still
get the same third condition stated in (22). This shows
us that the slope regions for different decoding order
assignments overlap. □

5. Proof of Theorem 6
Taking the first derivatives of (27) and (28) and letting ζ
= 0, we obtain

Ċ1 (0) = − 1
θ1T

logeEz1

⎧⎪⎪⎨
⎪⎪⎩e

−
θ1TP1

N0loge2
z1

⎫⎪⎪⎬
⎪⎪⎭ (67)

Ċ2 (0) = − 1
θ2T

logeEz2

⎧⎪⎪⎨
⎪⎪⎩e

−
θ2TP2

N0loge2
z2

⎫⎪⎪⎬
⎪⎪⎭ . (68)

Substituting (67) and (68) into (26), we get the results
in (33) and (34).
Next, we consider the superposition coding with fixed

decoding. Evaluating the first derivative of (29) and (30)
at ζ = 0, we again get

Ċ1 (0) = − 1
θ1T

logeEz1

⎧⎪⎪⎨
⎪⎪⎩e

−
θ1TP1

N0loge2
z1

⎫⎪⎪⎬
⎪⎪⎭ (69)

Ċ2 (0) = − 1
θ2T

logeEz2

⎧⎪⎪⎨
⎪⎪⎩e

−
θ2TP2

N0loge2
z2

⎫⎪⎪⎬
⎪⎪⎭ . (70)

which imply the results in (33) and (34).
We can also prove the results for the variable decod-

ing case similarly as in the proof of Theorem 1.
Consider (31) and (32) with the associated decoding

order. The first derivative of (31) can be expressed as

Ċ1 (ζ ) = − 1
θ1T

logeφ1 − ζ φ̇1

θ1Tφ1
(71)

where j1 is

φ1 =

∞∫
0

∞∫

g

⎛
⎝P1ζ

N0

⎞
⎠
e
−

θ1T
ζ

log2

⎛
⎝1+

P1z1ζ
N0

⎞
⎠
pz (z1, z2) dz2dz1

+

∞∫
0

g

⎛
⎝P1ζ

N0

⎞
⎠∫

0

e

−
θ1T
ζ

log2

⎛
⎜⎜⎜⎜⎜⎜⎝
1+

P1z1ζ
N0

1 +
P2z2ζ
N0

⎞
⎟⎟⎟⎟⎟⎟⎠
pz (z1, z2) dz2dz1

(72)

and φ̇1 is

φ̇1 = −
∞∫
0

ġ

(
Pζ

N0

)
P1

N0
e
−

θ1T
ζ

log2

⎛
⎝1+P1z1ζ

N0

⎞
⎠
pz
(
z1, g

(
P1ζ /N0

))
dz1

+

∞∫
0

∞∫

g

⎛
⎝P1ζ

N0

⎞
⎠
e
−

θ1T
ζ

log2

⎛
⎝1+

P1z1ζ
N0

⎞
⎠

⎛
⎜⎜⎜⎝θ1T

ζ 2
log2

(
1 +

P1z1ζ
N0

)
− θ1T

ζ

P1z1
N0loge2

1 +
P1z1ζ
N0

⎞
⎟⎟⎟⎠ pz (z1, z2) dz2dz1

+

∞∫
0

ġ

(
P1ζ

N0

)
P1

N0
e

−
θ1T
ζ

log2

⎛
⎜⎜⎜⎜⎜⎜⎝
1+

P1z1ζ

N0

1 +
P2g

(
P1ζ /N0

)
ζ

N0

⎞
⎟⎟⎟⎟⎟⎟⎠
pz
(
z1, g

(
P1ζ /N0

))
dz1

+

∞∫
0

g

⎛
⎝P1ζ

N0

⎞
⎠∫

0

e

−
θ1T
ζ

log2

⎛
⎜⎜⎜⎜⎜⎜⎝
1+

P1z1ζ
N0

1 +
P2z2ζ
N0

⎞
⎟⎟⎟⎟⎟⎟⎠
⎛
⎜⎜⎝θ1T

ζ 2
log2

⎛
⎜⎜⎝1 +

P1z1ζ
N0

1 +
P2z2ζ
N0

⎞
⎟⎟⎠

−θ1T
ζ

P1z1
N0loge2(

1 +
P2z2ζ
N0

)(
1 +

P1z1ζ
N0

+
P2z2ζ
N0

)
⎞
⎟⎟⎟⎟⎠ pz (z1, z2) dz2dz1.

(73)

If we define f (ζ ) =
θ1T
ζ 2

log2

(
1 +

P1z1ζ
N0

)
− θ1T

ζ

P1z1
N0loge2

1 +
P1z1ζ
N0

we can show that
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lim
ζ→0

f (ζ ) = θ1T lim
ζ→0

log2

(
1 +

P1z1ζ
N0

)

ζ
−

P1z1
N0loge2

1 +
P1z1ζ
N0

ζ

= θ1T lim
ζ→0

⎛
⎜⎜⎜⎜⎜⎝− 1

ζ 2
log2

(
1 +

P1z1ζ
N0

)
+
1
ζ

P1z1
N0loge2

1 +
P1z1ζ
N0

+

(
P1z1
N0

)2

(
1 +

P1z1ζ
N0

)2

loge2

⎞
⎟⎟⎟⎟⎟⎠

= − lim
ζ→0

f (ζ ) +
θ1T
loge2

(
P1z1
N0

)2

(74)

which gives us that

lim
ζ→0

f (ζ ) =
θ1T

2 loge2

(
P1z1
N0

)2

. (75)

Similarly, we can show that

lim
ζ→0

⎛
⎜⎜⎜⎝θ1T

ζ 2
log2

⎛
⎜⎜⎝1 +

P̄1z1ζ
N0

1 +
P̄2z2ζ

N0

⎞
⎟⎟⎠− θ1T

ζ

P̄1z1
N0 loge2(

1 +
P̄2z2ζ

N0

)(
1 +

P̄1z1ζ

N0
+
P̄2z2ζ

N0

)
⎞
⎟⎟⎟⎠

=
θ1T

2 loge2

(
P̄1z1
N0

)2

+
θ1TP̄1P̄2z1z2
N2

0 loge2
.

(76)

With (75) and (76) in mind, we can obtain

lim
ζ→0

φ̇1 =
θ1T

2loge2
Ez

⎧⎪⎪⎨
⎪⎪⎩e

−
θ1TP̄1

N0 loge2
z1( P̄1z1

N0

)2

⎫⎪⎪⎬
⎪⎪⎭

+
θ1T
loge2

∞∫
0

g(0)∫
0

e
−

θ1TP̄1
N0 loge2

z1 P̄1P̄2z1z2
N2

0
p (z1, z2) dz2dz1

(77)

and hence

Ċ1 (0) = − 1
θ1T

logeEz1

⎧⎪⎪⎨
⎪⎪⎩e

−
θ1TP1

N0 loge2
z1

⎫⎪⎪⎬
⎪⎪⎭ . (78)

Similarly, taking the derivative of (32) and letting ζ =
0, we have

Ċ2 (0) = − 1
θ2T

logeEz2

⎧⎪⎪⎨
⎪⎪⎩e

−
θ2TP2

N0 loge2
z2

⎫⎪⎪⎬
⎪⎪⎭ . (79)

which, after incorporating (26), again gives us the
results in (33) and (34). For the reverse decoding order

assignment, following similar steps, we still get the
results in (33) and (34). □

6. Proof of Theorem 7
The second derivatives of (27) and (28) at ζ = 0 are

C̈1 (0) = − 1
δloge2

(
P1

N0

)2

Ez1

⎧⎪⎪⎨
⎪⎪⎩e

−
θ1TP1

N0loge2
z1
z21

⎫⎪⎪⎬
⎪⎪⎭

Ez1

⎧⎪⎪⎨
⎪⎪⎩e

−
θ1TP1

N0loge2
z1

⎫⎪⎪⎬
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Using the definition in (11), we can express the wide-
band slopes as
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which after simple computation give us the third con-
dition in (35). □

7. Proof of Theorem 8
Evaluating the second derivatives of (29) and (30) at ζ =
0 yields
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and as a result, the wideband slopes are given by
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After solving for τ in (86) and (87) and subtracting the
resulting equations, we have the third condition in (36). □

8. Proof of Theorem 9
Similar to Theorem 4, we here present the derivation for
S1 for the case when the decoding order is (1,2) when z2
<g(z1, SNR1), and the decoding order is (2,1) when z2 >g
(z1, SNR1). The second derivative of (31) is
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(88)

where j1 and φ̇1 are (72) and (73), respectively, and

φ̈1 is given by
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(89)

By letting ζ = 0 and recalling (75) and (76), we can
show that
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Combining (78) and (90) with (11), we have
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Following similar steps, we can derive that
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If the decoding order is (2,1) when z2 <g(z1, SNR1),
and is (1,2) when z2 >g(z1 , SNR1), following the steps
described above, we can obtain
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Also note that the wideband slopes have non-negative
values and we have the inequalities in (37) and (38). □

9. Proof of Theorem 10
We need to compare the upper bound of the slope region
in (36) with the upper bounds of both (37) and (38).
By moving the term with g(0) to the LHS of the equa-

tion, we can rewrite (91) and (92) as
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We know that 0 ≤ g1 ≤ 1 and 0 ≤ g2 ≤ 1 vary with
different g(0). Substitute (95) and (96) into the third
condition of (36), we can obtain
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(99)
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Following similar steps, we can get from (93) and (94)
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⎪⎪⎩e

−
θ2TP2

N0loge2
z1

⎫⎪⎪⎬
⎪⎪⎭

P1P2Ez

⎧⎪⎪⎨
⎪⎪⎩e

−
θ2TP2

N0loge2
z2
z1z2

⎫⎪⎪⎬
⎪⎪⎭

(
1
S2

− 1

Sup
2

)
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(100)

Considering (99) and (100), we know that either g1 +
g2 or 2 - g1 - g2 must be less than 1, which implies that
variable decoding order achieves points outside the
region attained with fixed decoding order, proving the
theorem. □

Endnotes
aWe note that the expressions in (9) and (11) differ from
those in [1] by a constant factor due to the fact that we
assume that the units of CE is bits/s/Hz rather than
nats/s/Hz. bThe partition function can in general be a
function of z1 as well, i.e., g(SNR1) = g(z1, SNR1).

cAs
discussed in [13,14], wideband and low-power regimes
are equivalent if rich multipath fading is experienced.
Hence, in such a case, the same minimum bit energy
and wideband slope expressions are obtained in both
regimes.
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