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Green radio despite “Dirty RF” front-end
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Abstract

In this article, we show that the non-ideal Radio-Frequency (RF) front-ends have to be corrected in order to
contribute in a Green radio development. In fact, the effects of typical RF imperfections, like nonlinearities, carrier
frequency offsets, and IQ imbalances, can be compensated for, when digital correction algorithms are applied.
Such algorithms enable Green applications (e.g., Orthogonal Frequency Division Multiple Access for the uplink)
despite a restrictive RF imperfection, or allow a less constrained hardware design, which reduces the chip area and
the number of components (Green design) or facilitate the reduction of spectral pollution and of power
consumption (Green transmission). So, we propose to implement these correction methods to compensate for the
damaging effects of RF imperfections in mind of a Green issue.

Keywords: communication electronic systems and components, interference reduction, RF imperfections compen-
sation, RF nonlinearity, carrier frequency offset, agile multiband synthesizer

Introduction
It is now well established that the optimization of the
performance of the whole communication system has to
consider the effect of its Radio-Frequency (RF) front-end
to avoid a waste of resources and a huge margin in
design. This requirement becomes particularly important
due to the increasing use of complex dynamic signals,
like Orthogonal Frequency Division Multiplexing
(OFDM). Such signals are necessary to improve the sys-
tem performance in hostile environment or to develop
reconfigurable systems for cognitive radio. Concerning
the RF part, designing a Green radio first consists in the
improvement of efficiency. It is well known that the most
power-consuming circuit is the power amplifier (PA) of
the transmitter of handset systems as well as of the base
station [1]. Many authors have considered this issue in
particular since complex modulations with non-constant
envelope signals are employed.
On top of that, the RF front-end limits the performance

of the transmission because of its imperfections. Indeed
the performance is affected by various RF imperfections
like nonlinearities, frequency offset between the transmit-
ter and the receiver, phase noise of local oscillator, IQ
imbalance, etc. These RF imperfections and their impacts
have been reported in a new concept referred as “Dirty

RF” by Fettweis et al. [2]. In recent years, several parts of
the RF front-end have been considered to evaluate the
overall performance of a communication system, and digi-
tal methods have been developed to compensate for their
damaging effects and then to improve the performance of
a given non-ideal system.
In this article, we show how the correction of RF front-

end imperfections can participate in the design of Green
radio. Some of these corrections enable a Green transmis-
sion (in the sense of the reduction of spectral pollution
and energy consumption) or a Green application (like
Orthogonal Frequency Division Multiple Access–OFDMA
in the uplink); other corrections allow to reduce the chip
area and the number of circuit components, and thus
allow a Green production. So, in the sequel, we give some
examples to show that the application of our correction
methods can help in the compensation of the effect of RF
circuit imperfections in different Green objectives.

Green radio despite “Dirty RF physical
implementation” thanks to digital correction
One Green objective for the RF front-end can be to mini-
mize the chip area and the number of components. To
achieve this objective, a transmission system with direct
frequency conversion is a good solution. Unfortunately,
such systems are more sensitive to some RF imperfections,
like IQ imbalance in the modulator/demodulator or car-
rier frequency offsets (CFOs) (due to a higher frequency of
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the local oscillator). The consequences are a degradation
of the performance, which has to be compensated for.
It is well known that the IQ imbalance can be mod-

eled by a mismatch of the phase � due to an imprecise
phase quadrature and/or by a mismatch of the gain g
due to different mixer characteristics between the two
branches I and Q.
For the transmitter case (Figure 1) at the transposed

frequency fOL, the equivalent base band signal affected
by the IQ imbalance can be written in the frequency
domain as

Sk(n) = FeIk
[
Ek(n)KE1k + E∗

−k(n)K
∗
E2−k

]
(1)

with

KE1k =

1 + gEejϕE
FeQk

FeIk
2

(2)

and

KE2−k =

1 − gEe−jϕE
FeQ−k

FeI−k

2

(3)

where FeIk and FeQk are the I and Q frequency
responses on the band, k is the carrier index (particu-
larly in the case of an OFDM signal), n is the symbol
index, and Ek(n) is the initial symbol to be transmitted.
The gain of the PA is considered to be linear and equal
to 1 in this equation.

The IQ imbalance causes interference between the two
branches. Furthermore, the received signal is affected by
the propagation channel and the receiver noise. A simi-
lar model takes into account the IQ imbalance at the
receiver.
In order to compensate for these degradations, the

receiver needs to jointly estimate the channel response
and the imbalance characteristics before correcting the
received symbols.
Many methods have been proposed to compensate for

the IQ imbalance effect but generally the complexity of
such methods is high or their application requires modi-
fications of standards. Recently, we have developed a
digital correction method, presented in [3], that gives
good performances with a low complexity, even for
large mismatches. Applying this algorithm to a 64QAM-
OFDM signal (like in HiperLAN2) allows for example to
accept:

- an IQ imbalance at the transmitter up to 10° in
phase and 20% in gain with a degradation of the Sig-
nal-to-Noise ratio (SNR) less than 2 dB for a fixed
uncoded BER of 10-2;
- an IQ imbalance at the receiver up to 30° in phase
and 100% in gain with a degradation of the SNR less
than 1.5 dB for a fixed uncoded BER of 10-2.

This example shows that it is then possible to relax
constraints on the implementation because the phase
variation induces a possible variation of the branches
length, leading to a reduction of the chip area. For a

Figure 1 IQ imbalance representation at the transmitter.
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carrier frequency in the GHz range, a phase of several
degrees corresponds to a length of several millimeters.
The ability of efficiently correcting the effect of the IQ

imbalance (frequency selective or not) facilitates to
accept an imperfect physical implementation with a
reduced chip area. That is a way to help in the design of
a Green radio especially in the case of a direct-conver-
sion system.

Green radio despite “Dirty RF amplifier” thanks
to channels pollution reduction method
One Green objective for the RF front-end is to minimize
the spectral pollution of adjacent channels.
At the same time, it is necessary to optimize the trans-

mitter efficiency, for the base station as well as handsets.
To benefit from a large PA efficiency, it is necessary to
operate near the nonlinear zone, degrading consequently
the linearity of the whole system. This brings a particular
disadvantage for non-constant envelope signals. It is then
necessary to compensate for that by applying a lineariza-
tion method or a signal dynamic reduction to avoid the
pollution of neighboring channels.
Though many studies have dealt with this issue, apply-

ing such techniques separately is not sufficient, in parti-
cular in the case of complex signals like OFDM, which
present a large dynamic. The combination of these
methods seems promising [4] as long as the complexity
is not dramatically increased.
In our recent studies [5], we have combined (Figure 2)

a linearization method, usually called “Digital Predistor-
tion” (DPD), and a Peak-to-Average Power Ratio (PAPR)
reduction technique called “Active Constellation Exten-
sion” (ACE) method. This combination has not yet been
studied before, and it allows to improve the linearity per-
formance without degradation of the bit error rate (BER).

Measurements have been made on a real amplifier to
prove its efficiency.
The ACE method is well suited, as it is dedicated to

OFDM signals. Moreover, compared to other methods, it
allows to improve the out-of-band performance without
degrading the in-band performance. The ACE method
makes it possible to modify the constellation of the digital
modulation of OFDM symbols to reduce their dynamic
without degrading the BER. The ACE is an iterative pro-
cess, which requires one extra FFT algorithm. However,
the development of the digital circuits allows the imple-
mentation of the ACE with increasing efficiency [6].
The DPD of the input signal by a function that

approximates the inverse of the nonlinearity is the most
popular linearization method. In our case, the “predis-
tortion function” is determined based on the amplifier
output (path 1 in Figure 2), and it is modeled using a
memory polynomial expression. As this algorithm com-
putes directly the predistorter characteristic, it is less
complex than those that need to evaluate the amplifier
characteristic before inverting it.
The predistortion function is then applied to the

OFDM signal, of which the PAPR has been reduced.
This predistorded OFDM signal is supposed to be nearly
linearly amplified when passing through the amplifier
(path 2 in Figure 2).
To evaluate the impact of the method, the Adjacent

Channel Power Ratio (ACPR) and Alternate Channel
Power Ratio (AltCPR) (Figure 3) are measured. They
indicate the pollution in direct adjacent channels
(ACPR) and next ones (AltCPR), by comparing it to the
power in the signal bandwidth (Bu). The largest ACPR
and AltCPR correspond to the lowest pollution.
Validated for a simulated nonlinear amplifier, our

algorithm has been first applied to a real amplifier (GaN

Figure 2 Joint DPD and ACE.
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PA polarized in AB-class) for a QPSK-OFDM signal [5].
Figure 4 shows the test bench used to measure the spec-
trum at the output of the amplifier (called Booster in the
figure).
The following figures present the comparison of the

new results in terms of ACPR (Figure 5), and AltCPR
(Figure 6) measured at the amplifier output versus the
output power, obtained for a 16QAM-OFDM signal
with 5-MHz bandwidth. The labels “ACE” or “no ACE”
refer to the case where the ACE method is applied or

not; the labels “DPD” or “no DPD” refer to the case
where the DPD method is applied or not.
These new measurement results confirm an improve-

ment of the linearity performance, compared to the
cases where the two methods are applied separately, in
the immediate adjacent channels as well as in the next
ones. Indeed better ACPR and AltCPR performances are
obtained when ACE and DPD are jointly applied (red
curve). For example, for an output power of 42 dBm,
the ACPR is improved by 17 dB compared to the initial

Figure 3 ACPR and AltCPR display.

Figure 4 Test bench for measurements.
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case (without ACE and DPD) and the AltCPR is
improved by 12 dB. Moreover, for a target ACPR, the
work point can be pushed near the saturation zone of
the amplifier to achieve a better efficiency. These results
are obtained in a more sensitive case (16QAM-OFDM)
than in [5] (QPSK-OFDM) proving the robustness of
our method.
So, we showed that the combination of these two

methods allows to reduce the pollution of both the adja-
cent and the following channels and thus it helps in the
deployment of Green radio systems. Indeed, not only
the transmitter efficiency of the considered user is

improved, but also the adjacent users are less interfered.
Furthermore, BER measurements have shown negligible
degradations after the application of the predistortion
and ACE methods.

Green radio despite “Dirty RF synthesizer” thanks
to interferences reduction method
Another Green objective of new communication systems
is to be flexible. However, band and sub-band flexibility
leads to an increase of the sensibility to the RF imper-
fections or to complex RF front-ends. In the following,
we show two examples for the case where interference

Figure 5 ACPR measurements versus amplifier output power.

Figure 6 AltCPR measurements versus amplifier output power.
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reduction methods permit to deploy efficient Green sys-
tems due to the reduction of the effect of various RF
imperfections of the frequency synthesizer.

OFDMA in uplink systems for Green radio
OFDMA is an adaptation of the well-known OFDM sys-
tem that enables to share the spectrum between several
users based on a Carrier Allocation Scheme. It is well
adapted for Green radio systems as it allows optimized
resource and power allocations, with great flexibility,
leading to an efficient transmission [7]. Well established
for downlink transmission, OFDMA has not yet been
chosen for uplink transmissions because the synthesizer
in the RF front-end at the transmitter (mobile handset)
is not ideal enough and causes interferences between
the sub-carriers of received signals at the base station.
Figure 7 shows the model of the emitter affected by a
CFO resulting from the oscillator frequency mismatch
of the emitters.
In a recent study [8], we have developed a model that

takes into account the CFO between each user and the
base station. The signal at the output of the transmitter
of user u can be written as

x(u)(t) = Re
{
e
j2π

(
fc+δf (u)c

)
t ∑Np−1

k=0
a(u)k p(u)

(
t − kT

Np

)}
(4)

where fc is the carrier frequency, δf (u)c represents the

CFO of user u with respect to fc, p
(u) is the impulse

response of the filter at the transmitter, T is the symbol
period of an OFDMA symbol, Np is the total number of

subcarriers, and ak(u) are the symbols after the output
of the inverse DFT.
The received signal at the base station is the sum of

the signals from each user affected by their respective
channels. As it has been shown in [8], at the output of
the DFT block the vector of the received signals can be
written as

R =
∑Nu

u=1
G(u)A(u) (5)

where R,an Np × 1 vector containing the samples of
the received signals, A(u) = F-1 a(u), the vector of trans-
mitted modulation symbols of user u after subcarrier
mapping with F, the Np × Np DFT matrix, G(u), the Np

× Np channel matrix that can be expressed as

G(u) = H(u)Fδ(u)F−1 + (δ−Np(u) − 1)Fh(u)� δ(u)F−1 (6)

with H(u), the diagonal DFT channel matrix for a user
u, δ(u), a diagonal matrix of the shift coefficients

δk
(u)

= e

j2πkδf (u)c T

Np
due to the CFO δf (u)c , h�(u) , a triangu-

lar matrix involving the channel impulse response due
to the effect of the CFO on the cyclic prefix (this term
is usually neglected in the literature).
As opposed to other models, like [9], our model of the

received signal takes into account the effect of the CFO
on the cyclic prefix. This makes the model more realis-
tic and improves the channel estimation [10].

Figure 7 OFDMA transmitter affected by CFO’s.
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Based on this model, we propose to correct the effect of
the CFO in presence of estimated channels. This correc-
tion will lead to the suppression of most interference at
the receiver and allows to deploy OFDMA in uplink trans-
missions. For the sake of simplicity we allocate K = Np/Nu

subcarriers to each of the Nu users. Adapted from the
Serial Interference Cancellation (SIC) algorithm, we pro-
pose to divide the blocks G(u) of size K × K into smaller
blocks of size S × S, called the inner-blocks, where Ns = K/
S. Only the S × S blocks are inverted to cancel the interfer-
ence, which reduces considerably the interference cancel-
lation complexity (see Table 1). We call this method the
self-SIC method. Figure 8 shows new results for the per-
formance in presence of CFO and their improvement due
to our self-SIC algorithm. The normalized CFO δf(u) is

obtained by the ratio of the CFO δf (u)c and the subcarrier

spacing Δf, i.e., δf (u) = δf (u)c /�f . The simulation is based

on IEEE 802.11a specifications deployed for Nu = 4 users,
Np = 256 subcarriers, K = Np/Nu = 4, a cyclic prefix of
length Lcp = Np/4 = 64, and an SNR of 15 dB.
The BER performance is improved due to the self-SIC

method, which reduces the interference at the receiver. Up
to a normalized CFO of 0.3, the BER of 10-2 is practically
maintained. A normalized CFO of δf (u) = 0.3 corresponds
in this example to ± 20 ppm stability at 5 GHz; this range
of δf(u) corresponds to realistic characteristics of an actual
VCO.
Various simulated cases show that the quality of

improvement does not depend on the block-size used for
each user. This makes our algorithm very competitive in
terms of complexity compared to other methods. As an
example, the interference cancellation method described
in [11] depends on the block-size K and as a consequence
its complexity increases with the block-size. Indeed, large
block-sizes K × K require the implementation of the inver-
sion of large G(u) matrices. Table 1 compares the compu-
tational complexity of our proposed self-SIC method to
that of the interference cancellation method proposed in
[11].
It is clear that our proposed self-SIC overcomes the

disadvantage of large matrix inversions, especially when
the number of sub-carriers in the block is large.
So, we prove that despite a mismatch in the low-cost

RF front-end synthesizers, it is possible to deploy
OFDMA in an uplink transmission due to a not so
costly digital correction. This dirty RF model and new

digital correction is a suggestion for a Green flexible
system.

Optimized multi-band synthesizer for Green radio
In the context of modern Green communications, it is
important to allow frequency band hoping to benefit
from frequency diversity for each user or from multi-
mode running. However, the required frequency synthe-
sizer can suffer from high complexity, as it needs to fulfill
the constraints necessary to avoid interference between
the users. Based on the example of the MB-OFDM
(multi-band OFDM) standard [12] with very strict con-
straints, we have studied and developed an agile fre-
quency synthesizer, able to switch between 14 frequency
bands between 3.432 and 10.296 GHz [13]. It requires
only one phase locked loop (PLL); the frequencies are
generated by consecutive mixing and selection between
different outputs of the PLL.
This architecture allows a switch time less than 10 ns.

Imperfections of the components, however, like mixer
or multiplexer leakages, or mixer nonlinearities, lead to
the generation of spurious frequencies when one of the
14 frequencies is selected. To generate as few spurs as
possible, several filters have to be added after the mix-
ers; they are designed to minimize the total spurious
power, which must be at least 24 dBc lower than the
power of the generated frequency to ensure a good SNR
at the receiver. Table 2 shows the spur levels generated
in the case of the most constraining frequencies without
band-pass filter after mixers and those obtained with
suitable band-pass filters. The results prove the positive
impact of the filters.
However, the system can be optimized in terms of the

surface area and the number of components if a compen-
sation algorithm is applied to reduce the interference at
the receiver produced by the spurs. We have shown, in
an uplink transmission, that a SIC algorithm applied at
the receiver can improve the performance [14]. With the
developed method, it is possible to tolerate a level
between total spurious power and the generated fre-
quency of 17 dBc (instead of 24 dBc) with a degradation
of the SNR less than 0.1 dB. As shown in Table 2, this
minimum level is not reached without a filter, except for
the channel Q of 9768 and 10296 MHz, for which the
level is nevertheless very close to 17 dBc.
This result shows that the filters may be removed

because the associated degradation can be compensated

Table 1 Complexity of our algorithm compared to [11]

Self-SIC algorithm Cancellation algorithm in [10]

Complexity O(NsS
3) O(K3) with K = NsS

Complexity for Np = 512, K = 64, S = 4 O(1024) O(262144)
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for. The BER at the receiver will not be increased due to
the reduction of the induced interferences.
Therefore, we propose to simplify the synthesizer

architecture by removing the pass-band filters after the
mixers I, II, III, and IV (Figure 9).

In such a complex structure, removing the filters is an
efficient way to reduce the RF system complexity and to
optimize the chip surface with regard to a Green objec-
tive for the uplink transmission.

Conclusion
Though the RF front-end has often been considered as a
degrading part of the system because of its “dirty” char-
acteristics, it has to be taken into account in the devel-
opment of a Green radio: the imperfections of RF front-
end can either be minimized, or they can be compen-
sated for. The examples presented in this article prove
that it is possible to tolerate RF imperfections, as the
performance can greatly be improved by digital correc-
tion methods. This leads to either more efficient trans-
mission in terms of power consumption or spectral

Figure 8 Performance comparison with and without interference cancellation.

Table 2 Difference between the power of the main
frequency and the total spurs power in dBc (has to be
greater than 24 dBc)

Frequency (MHz) Without band-pass filter With band-pass filter

Channel I Channel Q Channel I Channel Q

8184 18.331 19.031 24.3 27.7

8712 18.745 17.879 24.1 27.1

9240 19.446 18.634 31.8 31.8

9768 17.457 16.673 29.6 25.9

10296 17.839 16.696 27.6 24.4
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pollution, or to a smaller and less complex radio front-
end. Both approaches contribute to a Green radio.
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