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Abstract

Developing energy-efficient MAC protocols for lightweight wireless systems has been a challenging task for
decades because of the specific requirements of various applications and the varying environments in which
wireless systems are deployed. Many MAC protocols for wireless networks have been proposed, often custom-
made for a specific application. It is clear that one MAC does not fit all the requirements. So, how should a MAC
layer deal with an application that has several modes (each with different requirements) or with the deployment of
another application during the lifetime of the system? Especially in a mobile wireless system, like Smart Monitoring
of Containers, we cannot know in advance the application state (empty container versus stuffed container).
Dynamic switching between different energy-efficient MAC strategies is needed. Our architecture, called
PluralisMAC, contains a generic multi-MAC framework and a generic neighbour monitoring and filtering framework.
To validate the real-world feasibility of our architecture, we have implemented it in TinyOS and have done
experiments on the TMote Sky nodes in the w-iLab.t testbed. Experimental results show that dynamic switching
between MAC strategies is possible with minimal receive chain overhead, while meeting the various application
requirements (reliability and low-energy consumption).

Keywords: wireless networks, MAC, multi-MAC, neighbour management, framework, dynamic switching, testbed,
smart container monitoring

1. Introduction
Developing energy-efficient MAC protocols for light-
weight wireless systems has been a challenging task for
decades because of the specific requirements of various
applications and the varying environments in which
wireless systems are deployed. Many MAC protocols for
wireless networks have been proposed, often custom-
made for a specific application. However, we have
noticed two evolutions in wireless (sensor) networks.
First, there is a shift from simple monitoring applica-
tions towards multiple applications (or an application
with several modes) in the same network. Second, there
is a shift from homogeneous devices towards heteroge-
neous devices (e.g. mobile battery-powered devices with
limited processing power and a minimum required life-
time of 2 years, fixed mains-powered devices with many

communication interfaces, or battery-powered portable
devices which are easy to recharge on a daily or weekly
basis). So, how should a MAC layer deal with an appli-
cation that has several modes (each with different
requirements) or with the deployment of another appli-
cation during the lifetime of the system?
This is exactly the problem we have encountered dur-

ing the design and implementation of a solution of a
smart container monitoring system. The architecture is
a complex system of mobile and lightweight devices
with stringent energy consumption requirements and
varying requirements for the MAC layer because of the
peculiarities of the monitoring application.
To the best of the authors’ knowledge, we have not

found a MAC protocol that can meet all these require-
ments. Although hybrid MAC protocols exist, these are
not sufficient in mobile systems, like the smart container
monitoring system. This smart container use case, which
will be described in Section 2, has inspired us to create
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a multi-MAC framework and a neighbour management
framework (NMF). These frameworks are generic, so
they can be deployed in a broader context and deal with
other use cases (e.g. building automation, smart cities,
etc.) as well that have conflicting requirements that can-
not be addressed by monolithic or inflexible solutions.
Instead of designing one monolithic MAC protocol,

we will switch between MAC strategies (the so-called
maclets) based on the application state and require-
ments. In Section 3, we will show why one MAC does
not fit for all our requirements. Section 4 gives an over-
view of the PluralisMAC design goals and our architec-
ture is described in Section 5. We will offer common
functionalities of a MAC protocol in shared primitives.
This way, maclets do not have to implement these
themselves. We have implemented this in TinyOS and
have done experiments on the w-iLab.t testbed (Section
6). The results of our experiments are presented in Sec-
tion 7. In Section 8, an overview of related work is
given. Lastly, we conclude by a summary in Section 9.

2. An inspiring use case: smart containers
One of the major tasks of supply chain management is
to follow goods, stored in containers, from origin to
final destination. A huge number of containers are
stored in container port terminals, empty or loaded, or
on freight ships and tracking their location could
increase business efficiency. During the transport of
goods, it is important to have an accurate view on the
condition of goods (in particular for goods with a lim-
ited lifetime, such as food, or goods which needs to be
stored at controlled conditions) and on the trajectory.
Smart container monitoring is therefore required. This

means that the containers will be equipped with a
device that will periodically generate data that need to
be sent to a central ICT system in the cloud. However,
in order to be accepted by the sector, such a smart con-
tainer monitoring system must take into account several
requirements.

• Lightweight system with a low investment cost.
• Easy to install the system on a container thereby
lowering installation costs and avoiding the need for
skilled labour.
• Extended battery lifetime: GPRS/UMTS communi-
cation is highly energy consuming. Therefore, by
realizing energy-efficient communication amongst
the monitoring devices instead of sending their
information separately, information from several
devices could be collected and sent in bulk over a
single GPRS/UMTS interface. This avoids many
separated GPRS/UMTS connections and thus high
energy consumption for each device.

• Increased connectivity for all containers: A 3D
stacked container environment is a hostile environ-
ment for wireless communication: the containers
provide physical, visual and radio shielding. By let-
ting devices communicate with and via each other
(multi-hop), containers that are placed at the centre
of a big block may still be able to reach the outside
world through all the other metal containers without
a costly and more powerful transmitter. Our real-life
tests indicate that one container can communicate
with an adjacent container and the container adja-
cent to that container (in both directions).
• Ultra-low battery consumption to reduce battery
replacements and increase the lifetime of the device:
By applying intelligent sleep schemes and communi-
cation strategies according to the application
requirements, energy consumption can strongly be
reduced.
• Allowing a gradual roll-out: Communication
between containers can be useful as indicated above.
However, such a solution should also be usable even
when deployed only in a limited number of
containers.
• Additional devices to increase efficiency: next to
the devices mounted on the container, additional
devices mounted on fixed infrastructure or on the
carrier or portable devices are required that are able
to interact with the container devices in order to
improve communication, reduce energy consump-
tion and enhance process efficiency.

Within the MoCo project [1], in which the authors
participate, a smart container system architecture is
being developed and implemented. This includes a
small, cheap, lightweight monitoring device that will
make intelligent use of different wireless technologies
(UMTS/GPRS and IEEE 802.15.4 sensor technology) in
order to enable optimized and energy-efficient container
monitoring. The goal is to realize a cheap generic and
energy-efficient connectivity solution including IEEE
802.15.4 sensor technology for communication between
3D stacked containers and making use of tailored and
highly energy-efficient protocols.
In the following sections, we will first identify the

importance of container monitoring by briefly describing
related work. Next, we will highlight the most important
aspects and characteristics of our architecture and iden-
tify the challenges for the design of an efficient MAC
layer for the IEEE 802.15.4 radio.

2.1. Related work on container monitoring
Most of the systems that are used today for monitoring
containers use RFID tags to monitor the goods inside
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the container or to monitor the container itself. The
range of these RFID tags is very limited and it is not
possible to access this information over a longer dis-
tance. Only recently, researchers have started to use
wireless sensor networks for monitoring containers. In
[2], an architecture of low-power wireless sensor net-
works for container tracking and monitoring applica-
tions is described. They have proposed three devices: (1)
internal monitors (sensor nodes), (2) container monitor
(has a WSN interface, GSM and GPS) and (3) Prime
Monitor (infrastructure node). IBM’s Secure Trade Line
[3] proposes a safe and secure solution for monitoring
containers. For wide range communication, GSM/GPRS
or satellites are used; ZigBee provides short-range com-
munication inside the container. Each container needs
to be equipped with a device that either has a GSM or
satellite receiver, making the device cost expensive. Net-
working between the containers is not considered (in
[4], it is stated that in IBM’s solution, a meshed Blue-
tooth network can be established if one or more con-
tainers do not have a working satellite uplink). The
Monitoring and Security of Containers (MASC) system
[4] introduces a similar container monitoring system
that collects data from sensors inside the container.
These sensors are wired connected to an outside
antenna that directly reports to a base station. No mesh
networking between the containers is used. The com-
munication between the container and the remote ser-
ver is push-based (because the MASC units are battery
powered). The EPC Sensor Network [5] introduces a
combined global standard infrastructure for WSNs and
RFID systems based on the EPCglobal Architectural Fra-
mework [6] to support data sharing between partners.
The EPC Sensor Network tries to add WSN support to
the initial goals of the framework. However, it is not
fully specified how this should be done.
All of these solutions above do not fully investigate

the communication issues, but mainly focus on provid-
ing services. The communication part is handled by
standardized components, i.e. ZigBee or Bluetooth, and
mostly focuses on direct communication between a con-
tainer and an external network. We believe that not all
the containers can contact the external network using
their own WAN interface because of the hostile envir-
onment for wireless communication they operate in.
Recently, some research group started to investigate

communication between containers. In [7], multi-hop
routing is proposed in order to cope with communica-
tion problems caused by multipath propagation. The
Intelligent Container project by University of Bremen
uses a combination of RFID and sensors within one
container [8]. Communication between the containers is
executed using different mobile networks, such as
WLAN, GPRS or UMTS, depending on availability. The

goal is to monitor quality changes that could occur dur-
ing transport. In [9,10], a hierarchical architecture is
proposed: (1) an internal container network for commu-
nication using a combination of RFID tags and sensor
motes; (2) an external network between containers that
uses more powerful gateways, using an IEEE 802.11
interface or a GPRS modem. In this architecture, each
container needs to be equipped with such a gateway.
This research group is also the first one who has con-
ducted a real-life experiment in a 3 × 3 stacked con-
tainer configuration. They also found that energy
consumption is critical for the success of such a wireless
system.
Currently, mainly WLAN is used for this purpose.

However, this solution is not power efficient. By using a
wireless sensor network (e.g. IEEE 802.15.4 based) and
designing protocols tailored to the specific characteris-
tics of the container environment and applications, a
longer lifetime and lower costs can be achieved. This is
exactly the goal of the MoCo project and its architecture
that is being implemented.
Finally, also the following two patents are worth men-

tioning. In [11], a method for tracking containers using
a low-rate wireless personal area network is proposed.
The devices will transmit the GPS-recorded, environ-
mental parameter data and sensory reading data to a
control station of the cargo vessel through a local area
network on the cargo vessel. In our architecture, we do
not use a local area network on the cargo vessel. In
[12], a method for optimizing power consumption of
container tracking devices through mesh networks is
proposed. Tracking devices form a mesh network to the
edge server installed on the vessel. Again, in our archi-
tecture, no infrastructure is required on the vessel.

2.2. MoCo smart container system architecture
In Figure 1, a high-level overview of the complete MoCo
architecture, with the different components and connec-
tions, is shown. The main device is called the MoCo
Device. This is a lightweight battery-powered device that
will be mounted on a container and will become an
unbreakable part of that container. In addition, it is con-
nected to a door sensor capable of monitoring opening
and closing of container doors. Apart from a GPRS/
UMTS radio, for direct connectivity to the central ICT
system, and GPS, it also has an 802.15.4 radio for short-
range, low-power communication with neighbouring
MoCo Devices or with a MoCo Router or MoCo
Reader. A MoCo Router is an optional component that
is very similar to a MoCo Device, but is part of the
fixed infrastructure (e.g. the container terminal, a logis-
tics site, etc.), is mostly mains-powered and can have
additional network technologies for connectivity to the
central ICT system such as Ethernet or Wi-Fi. A MoCo

De Mil et al. EURASIP Journal on Wireless Communications and Networking 2012, 2012:166
http://jwcn.eurasipjournals.com/content/2012/1/166

Page 3 of 16



Reader is a portable device, very similar to the MoCo
Device, but with a user interface. Finally, the cargo of
the container can be equipped with additional sensors
for monitoring the status of the cargo.
The MoCo Device will periodically report status infor-

mation (e.g. position, battery status, etc.) to the central
ICT system, will inform about critical events (e.g. open-
ing of door after sealing) and, optionally, will send data
collected by sensors attached to the cargo consisting of
sensitive and high-value products (e.g. temperature,
toxic gasses, etc.). The sensors attached to the cargo will
communicate with the MoCo Device over 802.15.4. This
is the so-called intra-container communication. In order
for a MoCo Device to transmit its status to the central
ICT system, several possibilities exist. The MoCo Device
can directly send the data by turning on and using its
UMTS/GPRS radio or forward it over 802.15.4 to a
nearby MoCo Router thereby saving energy. This is
called extra-container communication. Alternatively, in
order to save battery, the MoCo Device can also trans-
mit the information to neighbouring MoCo Devices,
sharing UMTS/GPRS connectivity. The communication
between 3D stacked containers is called inter-container
communication. Finally, a MoCo Reader can directly
interact with a MoCo Device. All communication types
are summarized in Table 1, together with some high-
level challenges.

2.3. The process
In this section, we will briefly summarize the container
monitoring process as determined in the MoCo project.
When a container is stored empty, its MoCo Device will
daily report about its position and battery level accord-
ing to a fixed Universal Time Coordinated (UTC) time
(e.g. 12:00 UTC time). This way, neighbouring contain-
ers will all transmit around the same time and commu-
nication can be more easily optimized. This status is
called REST mode. When the container is stuffed, its
doors are closed and a MoCo Reader will send a trigger,
putting the MoCo Device in Secured Transport Mode
(STP mode). From now on, the MoCo Device will send
2-hourly status updates and reports of optional sensors
attached to the cargo, again according to UTC time. In
addition, it will immediately report about any critical
event that occurs. Finally, there is an optional mode
called Secured Vessel Mode (SVE mode). By sending a
trigger from a MoCo Router to a MoCo Device upon
loading the container in the vessel, the MoCo Device
can go to energy-saving mode, where the 802.15.4 radio
is disabled, an internal clock is scheduled and no status
updates are sent until the device wakes up again.

2.4. Analysis of the process from a MAC layer point of view
The above process results in very specific communica-
tion patterns. When in REST mode, neighbouring

Figure 1 High-level overview of the smart container architecture.

Table 1 Container communication types and their goals and challenges

Communication
type

Interface Goal Challenges

Intra-container PAN Communication between MoCo device and optional cargo
sensors in the container

Reliable, energy efficient, self-organizing, secure

Inter-container PAN Communication between 3D stacked containers + between
container and a portable MoCo reader

Reliable, energy efficient, self-organizing, secure

Extra-container WAN
(PAN)

Communication between the inter-container network and the
external world using gateway functionality (+ between container
and MoCo Router, using the PAN)

Optimal (best gateway), reliable, energy efficient,
self-organizing, secure and evoking a minimum on
roaming costs
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containers will not transmit anything almost the whole
day. Then, once a day, they will jointly transmit their
status information to the central ICT system, preferably
via a MoCo Router if present, else by sharing UMTS/
GPRS or using their own UMTS/GPRS radio. A similar
situation occurs in STP mode, but with a higher fre-
quency. In addition, at all times it should be possible to
receive a trigger over 802.15.4 and, in STP mode, to
send a critical event. This is illustrated in Figure 2. At
all times, the main goal is to save as much energy as
possible while guaranteeing communication. From a
MAC layer point of view (802.15.4-based MAC), this
means that in the non-transmitting period the radio
should sleep as much as possible, while remaining cap-
able of receiving triggers or sending a critical event. In
the transmitting period, data packets should be sent as
efficiently and reliably as possible, resulting in comple-
tely different requirements on the MAC layer and thus
requiring different MAC strategies and scheduling.
From the above description, it is clear that to realize

this use case, we have to deal with a complex system of
lightweight and mobile devices with stringent energy
requirements and varying requirements for the MAC
layer. From a research point of view, this imposes many
challenges to the design of an efficient MAC protocol
for the 802.15.4 radio. In the remainder of this article,
we will identify the problems in designing an efficient
MAC protocol for this use case and present a generic

approach that fulfils our needs and that can also be
deployed in a broader context.

3. One MAC does not fit for all the goals
The smart container monitoring process described in
Section 2 has revealed the need for a generic and flex-
ible MAC layer that can deal with these changing
requirements over time. It is quite clear that a single
MAC protocol cannot fulfil all the requirements
imposed by our use case. For example, in [13], real-life
performance evaluation of WSN protocol combinations
has shown that, depending on the traffic pattern and the
packet interval, a given combination of MAC and rout-
ing is better under certain circumstances and can out-
perform another combination. The fact that so many
MAC protocols [14] exist is also a clear indication that
one MAC does not fit for all kinds of applications, net-
work conditions or hardware profiles.
Bachir et al. [15] give an excellent overview of the

MAC essentials: a contention-based protocol, like
CSMA, does not rely on a central entity and is robust to
node mobility, which makes it intuitively a good candi-
date for networks with mobility and dynamicity, but suf-
fers from degraded performance when the traffic load
increases. In contrast, TDMA schemes have some short-
comings resulting from their dependency on network
topology and strict time synchronization. This would
require large overheads in the smart container use case.

Figure 2 Communication patterns in the MoCo architecture.
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Unsurprisingly, there exist some protocols like Arisha
[16] where the sink assigns slots to all the nodes or
PEDAMACS [17] where the sink gathers information
during the setup phase and calculates a global schedul-
ing. In the latter, the traffic pattern is always converge-
cast. In our use case, we have identified other traffic
patterns, so once again: one MAC does not fit all our
goals.

4. Design goals of PluralisMAC
The presented use case clearly needs a novel approach
for designing a MAC. Often a MAC protocol is
designed specifically for one application. From our use
case, we are strengthened in our belief that it is time to
move away from a dependence on classic monolithic
MAC protocols. Therefore, we have designed Pluralis-
MAC. This is a generic multi-MAC framework for het-
erogeneous, multiservice wireless networks. Our
container monitoring use case has inspired the design of
this framework, but we want to emphasize that it should
be clear that it can be used in a much broader context
where mobile and lightweight devices are involved. Plur-
alisMAC has the following design goals:

• Provide extensible MAC primitives: Most MAC
protocols share a common set of singular MAC pri-
mitives (e.g. DATA, ACK, BEACON, RTS, CTS, pre-
amble, etc.) used for transmitting data and control
frames. These primitives have to be provided by the
framework in order to improve reusability, to reduce
the memory footprint and to reduce the chances of
bugs. Composed primitives (e.g. RTS-CTS-DATA-
ACK, preamble-DATA, etc.) are a combination of
singular MAC primitives. This way MAC protocols
can be more easily designed, since they do not have
to implement the primitives themselves. Of course,
the set of MAC primitives has to be extensible in
order to be future proof.
• Support dynamic switching of MAC strategies: We
have expressed the need for multiple MAC strategies
(even on one node) previously. PluralisMAC must
work well with many WSN deployments under
dynamic contexts. PluralisMAC should allow fast
development and dynamic addition (plug-in) of
MAC solutions for (future) use cases and new envir-
onments. Therefore, we have introduced a new con-
cept, maclets. A maclet is the short name for a
MAC strategy. A maclet can choose MAC primitives
and PHY settings (e.g. the sleep scheme, transmit
power, etc.). Our framework allows that the applica-
tion expresses certain requirements (e.g. maximum
hop-by-hop latency of the messages) for which Plur-
alisMAC will activate the maclet that provides these
application requirements.

• Provide generic neighbour monitoring and neigh-
bour filtering: Neighbour management is a crucial
task of many MAC protocols in order to increase
efficiency and reliability. Neighbourhood control can
be used to filter a good subset of neighbours based
on network conditions (e.g. Link Quality Indicator
or Received Signal Strength Indication–RSSI), neigh-
bour information (e.g. remaining energy, network
ID, etc.), topology constraints and/or application
requirements. Often the same information is
retrieved and processed. Providing generic neighbour
monitoring and filtering at an architectural level can
improve reusability. Moreover, because the same
information is only processed once we can even
reduce processing delay.
• Backward compatible and future proof: It is impor-
tant that existing MAC implementations can com-
municate with the maclets, and that it will be easy
to implement future MAC protocols. For example,
the IEEE 802.15.4-2006 is backward compatible to
the 2003 revision. Each revision typically adds new
functionalities or primitives. Note that over-the-air
programming is out of scope of this article. Proto-
cols for reprogramming wireless nodes via the PAN
interface are discussed in [18-20]. In our use case,
firmware upgrades of MoCo Devices and MoCo
Routers can be done via the WAN connection.
• Provide a research platform for MAC designers: By
providing a set of shared primitives and a generic
neighbour framework, different MAC designs can be
compared with each other. This will yield a fairer
comparison of MAC protocols because the same
implementation of primitives for a specific imple-
mentation of the radio driver is used.

5. PluralisMAC architecture
A schematic overview of the frameworks that together
form PluralisMAC is shown in Figure 3. Each frame-
work provides a key functionality of a MAC protocol.
The medium access logic (e.g. when to listen, how to
send, the data transfer model, etc.) is captured in the
multi-MAC framework. Neighbour monitoring and fil-
tering is done in the NMF. The context information
module enables a cross-layer information exchange
between the layers of the stack. The higher layers (e.g.
routing, application), the wrapper, the hardware abstrac-
tion layer (HAL) and the radio driver are briefly dis-
cussed in Section 6. By splitting up an otherwise
monolithic MAC, we get a modular and generic design.

5.1. Multi-MAC framework
The multi-MAC framework is decomposed in several
modules, as shown in Figure 4. The multi-maclet frame-
work contains the modules that (bottom-up) (1)
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implement and execute the shared primitive (primitives
executor), (2) contain the medium access protocol logic
in terms of chosen primitives (maclets) and (3) the coor-
dination and management of the maclets (multi-maclet
selector). The PluralisQueue stores the incoming and
outgoing packets, with associated metadata.
5.1.1. Primitives executor
The primitives executor contains the implementation of
the various MAC primitives (e.g. data frames, control
frames, etc.) and offers also the supported PHY primi-
tives of the HAL (e.g. turn off the radio, wake up, set
transmit power, set channel, etc.). Since each MAC pro-
tocol uses (some of) these primitives anyway, it makes
sense to implement them once instead of multiple
times. This way, each primitive implementation will be
less prone to errors.
We provide two types of MAC primitives: singular

MAC primitives and composed MAC primitives. A sin-
gular MAC primitive is a combination of an addressing
scheme (unicast or broadcast), a message type (data or
control packet) and options (e.g. ack request, clear chan-
nel assessment before sending, etc.). Table 2 lists the set
of singular MAC primitives. Note that any MAC
designer can add a new MAC primitive, but this basic
set should be sufficient for most MAC designs. With
this set of singular MAC primitives, composed MAC
primitives can be created. In one implementation of
Low-Power Listening, the MAC repeats the data mes-
sage during the time of the receiver’s sleep interval with
a certain inter packet delay. Once the receiver turns on
its radio, it will receive the packet. This is an example of
a composed primitive we have implemented. The packet

train can be stopped before the end of the receiver’s
maximum sleep interval if an ACK is received. Another
composed primitive is useful in receiver-initiated MAC
designs. A node will only send data to the next hop if it
receives a beacon message from that next hop first.
While we provide default timings for these composed
primitives, a MAC designer could easily adapt these tim-
ings (because it is a composition of singular MAC pri-
mitives). This can be done either during design-time, or
at run-time with an extra protocol to ensure
interoperability.
The primitives executor also uses the interface offered

by the HAL. This includes turning on/off the radio and
setting the channel, the transmit power, back off inter-
vals for CCA and the node identifier.
5.1.2. Maclets
By providing the primitives, the implementation of a
MAC design is simplified and therefore we call it mac-
lets (by analogy with “applet”). In a maclet, a MAC
designer chooses the primitives that have to be used on
a per-packet basis (if the primitive they want is not

Higher layers 

Hardware Abstraction Layer 

Radio 

Multi-MAC 
Framework 

Wrapper 

Neighbour 
Management 
Framework 

PluralisMAC 

Cross- 
layer  

Context 
Info 

Figure 3 Overview of PluralisMAC in the communication stack.
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available, it is possible to implement it in the primitives
executor). Either a static design is implemented or a
dynamic design that can be influenced by the applica-
tion state (e.g. maximum required hop-by-hop latency),
or other context information (e.g. type of power source).
A maclet must add metadata to the packet, so that the
primitives executor knows what to do. The maclet still
determines when to start the execution of a primitive.
A maclet can be created that will try (we say try,

because it is hard to guarantee Quality of Service in a
wireless system) to ensure for example a maximum
hop-by-hop latency (e.g. 1000 ms). This could be asyn-
chronous or synchronous. The latter is possible if the
MAC designer implements a time synchronization pro-
tocol. It is possible to set timestamps in outgoing pack-
ets when the transmission has already started, and to set
timestamps for incoming packets. These timestamps are
added to the metadata.
Each maclet could do neighbour discovery, or a shared

neighbour discovery maclet can be created. Typically,
neighbour discovery is done during the start-up phase
of a network, or if the number of available neighbours
drops below a certain threshold. Maintaining up-to-date
neighbour information can be done during the execu-
tion of any maclet, and is handled by the NMF.
5.1.3. MultiMacSelector
Since one MAC protocol does not fit all requirements, it
is possible to offer multiple maclets. Each maclet knows
for what kind of applications (e.g. low latency, high
reliability, etc.), network conditions (e.g. a dense net-
work) and hardware profiles (e.g. battery powered,
energy harvester, etc.) it offers the most optimal med-
ium access solution. First, the maclets will send a regis-
tration message containing this information. Next, the
best maclet to process a given packet from a higher
layer will be selected. This can be based on context
information (if available) or a fixed schedule can be cho-
sen. Each maclet can be started, paused, restarted or
stopped. When a maclet is paused or stopped, it must
cancel any ongoing transmission and the MAC designer
can choose to put the radio in sleep mode or receive
mode. Since most sensor nodes have only one radio,
only one maclet can be activated at the time. If more
radios are present, it is possible to assign a maclet to

each radio (this will require a simple extension of the
multi-maclet selector).
5.1.4. PluralisQueue
It is essential that we can buffer incoming and outgoing
messages with associated metadata (listed in Table 3).
We have a queue that can be accessed by any Pluralis-
MAC module (and the radio driver) to get a free entry,
or to release an entry. The requesting module fills in his
module identifier, so that every other module knows
who the creator of that entry is. If a module is passed
the pointer to this entry, it will check if the “next-
Owner” identifier is the module’s own identifier and set
its identifier in the “owner” field. Other modules are not
allowed to change the message or associated metadata if
they are currently not the owner. This mechanism is
inspired by Berkeley’s OpenWSN architecture [21].

5.2. Neighbour management framework
The NMF adds monitoring and filtering capabilities to
PluralisMAC. It is common for many MAC protocols to
do some processing on packets to gather neighbour sta-
tistics like average RSSI, inter packet delay or various
other MAC parameters. Therefore, to improve reusabil-
ity we can extract this common building block and pro-
vide it as generic feature. We also provide the possibility
to add generic packet filters like a link level duplicate
filter and neighbour filters like a RSSI threshold filter.
The design of NMF is depicted in Figure 5 and consists
of four major building blocks. These will be discussed in
detail in the following sections.
5.2.1. Neighbour controller
The neighbour controller provides a generic interface
between the NMF modules and the higher/lower layer
for processing packets. Using generic interfaces makes
NMF portable and also has the advantage that a develo-
per can choose to bypass the NMF completely. The
NMF also provides cross-layer interfaces to access the
common neighbour repository. This interface can be
used by all MAC protocols (maclets) and higher layer
protocols at different moments during packet proces-
sing. A protocol has to add functions for its specific
owner id in order to process and filter packets. These
functions are added to the Neighbour Monitor and
Neighbour Filter Engine. More details about those

Table 2 Singular MAC primitives

Singular primitives Addressing Options

Data Unicast or broadcast Ack request, clear channel assessment, retries, channel, transmit power

ACK (acknowledgment) Unicast Channel, transmit power

Beacon Broadcast Channel, transmit power

RTS (request to send) Unicast or broadcast Channel, transmit power

CTS (clear to send) Unicasts or broadcast Channel, transmit power
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functions are given in the following sections. When the
neighbour controller processes a packet, it first executes
the Neighbour Monitor before passing it to the Neigh-
bour Filter Engine. This way, filters can use information
that is already gathered during the processing of packets
in the Neighbour Monitor. The Neighbour Controller
interface is shown in Table 4.

5.2.2. Neighbour repository
The Neighbour Repository is designed so that we can
have multiple access levels for neighbours. The different
access levels define the modules that can view, change
and remove neighbour information. The access levels
are organized in a hierarchical manner so that every
access level exactly has one predecessor and one succes-
sor. With the use of access levels we can create different
views on the neighbour repository. This feature makes it
possible to shield certain neighbours from higher layers.
This can be useful when considering the case where a
MAC protocol has an always on neighbour discovery
period and routing beacons are aggregated with MAC
beacons. This could yield to a situation where a routing
protocol chooses a neighbour as next hop for a certain
destination but the MAC protocol does not create a
communication scheme with this neighbour, for
instance a TDMA protocol does not assign a slot for
this neighbour. When we are able to shield those neigh-
bours from the higher layers, a MAC protocol can still
collect information without influencing the behaviour of
higher layer modules.
Currently, we have three different access levels: Moni-

tored, Enabled and Activated. A neighbour is always
added in the monitored state by the Neighbour Control-
ler. If a neighbour passes the neighbour filter checks,
the Neighbour Controller changes its state to enabled.
Note that a filter can also enable a neighbour by default
(this will be the common case for most MAC protocols).

Table 3 Metadata that can be filled in by the PluralisMAC modules and the radio driver

moduleID_t creator The identifier of the module that requested a free entry in the queue

moduleID_t owner The identifier of the module that is busy processing the entry

moduleID_t nextOwner The identifier of the next module that must process this entry

uint8_t handle A handle that is used if more than one queue is present in the stack (e.g. IDRA queue) so that we
can match entries

uint8_t Length Length of the payload. Must be updated if a MAC header is added

Bool useTransmitPower If set to FALSE, a default transmit power will be used. Otherwise “TransmitPower” will be used

transmitPower_t transmitPower The transmit power for sending packets

Bool useChannel If set to FALSE, a default channel will be used. Otherwise, “Channel” will be used

channel_t channel The channel on which the packet has to be sent

Bool useCCA If set to FALSE, CCA is not used. Otherwise, CCAmode and backoffInformation is used for the clear
channel assessment

ccaMode_t CCAmode The CCA mode (cfr. IEEE 802.15.4 standard)

backoff_t backoffInformation Contains initial backoff and congestion backoff

uint64_t rxTimestamp The timestamp set when a packet is received

sleepWakeupSchedule_t sleepWakeupSchedule The timings for the sleep/wakeup schedule

int8_t rssi Received Signal Strength Indicator

uint8_t lqi Link Quality Indicator

Boolean crc If set to FALSE, the crc was not correct

uint8_t macletID The identifier of the maclet that must process this packet

uint8_t primitiveID The chosen primitive that needs to be executed for this packet

uint16_t nextHop The next hop address determined by the routing/forwarding layer

Figure 5 Overview NMF.
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A MAC protocol activates a neighbour when it has
negotiated a communication strategy (e.g. assigned a
slot for it in the previous example).
5.2.3. Neighbour monitor
The Neighbour Monitor is in essence an empty shell
filled up with functions from now on referred to as col-
lectors and aggregators. The collectors and aggregators
are provided by the different protocols of the system,
identified by a protocol owner id. The Neighbour Moni-
tor only executes collectors and aggregators for a speci-
fic owner id when it processes packets. Collectors
retrieve directly accessible parameters from packets or
packet metadata like RSSI, timestamps or address infor-
mation and store it in the neighbour repository. Aggre-
gators combine information retrieved by the collectors
in to an aggregated parameter like average RSSI or ‘run-
ning average over n packets’ RSSI and also add it to the
neighbour repository.
Although only the collectors and aggregators for a

specific owner are executed, they can however use the
information stored in the neighbour repository by other
collectors and aggregators. Special care has to be taken
regarding the execution order of the collectors and
aggregators. In the RX- (TX-) chain, a protocol can only
use information collected or aggregated by lower
(higher) layer modules. This information is available for
the developer at design time.
5.2.4. Neighbour filter engine
The Neighbour Filter Engine executes filter rules pro-
vided by the protocols of our system. Again only filter
rules for a specific owner id are executed. The filter
owner (designer) is responsible for combining the differ-
ent filter rules and aggregating the different results into
one single return value. If the return value of the filter
engine equals to success then the neighbour is activated
and the packet is processed further. Otherwise the
packet is dropped. This behaviour can easily be adapted
however.
Link level duplicate detection is a good example for a

filter provided by a MAC protocol. First of all, the MAC
protocol designer provides a collector that retrieves the
packet id and stores it in the neighbour repository. Sec-
ondly, an aggregator adds the previous to last packet id

to the neighbour repository. Finally, a filter can check
on those two packet ids to determine if the current
packet is a duplicate of the previously received packet
(of course more packet ids can be stored with another
aggregator if one wants to make another duplicate
detection filter). In another example, collectors are used
for storing RSSI and a packet counter, and an aggrega-
tor is used to determine the average RSSI in order to
build an RSSI threshold filter.

6. PluralisMAC realization
One of the major goals of PluralisMAC is the ability to
evaluate different MAC protocols in realistic use cases
and realistic conditions. Our use case presented in Sec-
tion 2, for which we build a proof-of-concept, is a per-
fect candidate. In this section, we will give a brief
explanation of the different tools we have used to test
PluralisMAC and to build our prototype system.

6.1. w-iLab.t testbed
In order to emulate realistic conditions, we make inten-
sive use of the facilities of the w-iLab.t testbed [22]. Fig-
ure 6 gives a general overview of the w-iLab.t testbed
deployed at our office building. The testbed consists of
200 nodes spread over three floors of a 17.5 × 90 m2

office building. The architecture of the testbed is based
on the widely used MoteLab testbed concept from Har-
vard University. The deployed devices under test (DUT)
are Tmote Sky motes. The intermediate nodes (iNode)
are Alix 3C3 devices running Linux. All the iNodes are

Table 4 Neighbour controller interface

Function FilterResult_t processPacket(uint16_t neighbourAddress, uint8_t ownerID, uint8_t length, void*packet)

Parameters uint16_t
neighbourAddress

Mac address of the neighbour

uint8_t ownerID Owner of the packet. This can be a MAC protocol or a higher layer module. A protocol has to add collectors,
aggregators and filters for its specific ownerID in order to process packets

uint8_t length Length of the packet pointer

void* packet Pointer to the packet or a part of the packet. Because a packet is only processed by specific owners, the packet
formatting is always known in advance

Return FilterResult_t Returns the result of the filters executed for the ownerID. If no filters are executed, the result will be SUCCESS

Figure 6 Overview testbed.
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connected to the management backbone using Ethernet
switches. Finally, the Environment Emulator (EE) sits in-
between the iNode and the sensor node. The following
features are used from w-iLab.t.

• Central management server: The server is respon-
sible for managing experiments and logging test data
received during experiments from the DUT into a
MySQL database. The server provides a web inter-
face for creating and executing experiments. The
web interface can also be used to control certain fea-
tures of the EE.
• EE: The EE can disconnect the USB power from
the DUT, and power it with its own regulating vol-
tage source. This enables the EE to emulate the real
behaviour of a battery depleting. The current used
by the DUT can then be measured with a sample
frequency of 10 kHz. Using this approach, we can
easily determine the exact power consumption dur-
ing an experiment. The EE has some General Pur-
pose digital Input/Output pins connected to the
DUT. This allows for real-life, real-time digital sen-
sor/actuator emulation. We use it in our prototype
system to emulate a reliable clock source for the
MoCo Device. The EE is synchronized with the cen-
tral management server using NTP. In a real-life sce-
nario, a MoCo Device would be equipped with a
reliable clock on their UMTS or GPS chip.
• iNode: We use the iNode to run a java program
that emulates the UMTS connection with the cloud.
The java program communicates with the mote over
USB using the TinyOS SerialForwarder.
• DUT: The Tmote Sky executes the MoCo Device
software.

6.2. IDRA
Beside MAC protocols, we also needed an application
and other network protocols. For these, we make use of
the IDRA framework [23]. IDRA is a network architec-
ture and application platform very suitable for develop-
ing L3 protocols and higher layers. IDRA is developed
for TinyOS 2.x and written in nesC. It provides generic
building blocks like queue management, packet decod-
ing or aggregation on a system level for network proto-
cols and applications. PluralisMAC is designed to work
independent of the IDRA framework but for test pur-
poses we have made an integrated solution and provided
wrapper layers between PluralisMAC and IDRA. We
reused the IDRA version of the Collection Tree Proto-
col. We also added a simple gateway discovery protocol
and an application. As gateway discovery was not the
focus of this article we have chosen a fixed device acting
as gateway. Other devices will listen for announcements

from this device. The application manages the timers
for the different stages in the MoCo process, i.e. trans-
mitting and not transmitting. It generates traffic to the
gateway and notifies the MAC and network protocols of
the application state and requirement changes through
the context information module. The application on the
gateway forwards the received application data over USB
to the java application on the iNode.

7. Experimental validation
With this experimental validation we want to show that
PluralisMAC is capable of executing a standard MAC
protocol without introducing a large overhead. The
overhead introduced by our system will be measured in
different circumstances. The focus of this article was
validating an experimental MAC framework in a proof-
of-concept scenario. For this reason, we have limited
ourselves to a simple scenario with a limited number of
nodes. With this evaluation we want to show that

1. It is possible to implement a stable MAC protocol
in PluralisMAC.
2. PluralisMAC can work in an energy efficient
manner.
3. The delay introduced by our system is acceptable.
4. PluralisMAC is capable of switching MAC
protocols.

With this evaluation we do not want to prove that the
implemented MAC protocol is the ideal protocol for
our use case. In fact the version of LPL that we have
implemented in PluralisMAC is a very simple one. No
preamble sampling is used and the on duration could be
shorter. Moreover, we do not send short preambles but
repeat the packet for the length of the LPL sleep
interval.

7.1. Proof-of-concept scenario
Based on the use case description in Section 2 we have
selected a proof-of-concept scenario that we will use to
validate our framework. We consider a network with an
increasing number of MoCo Devices. One of these
MoCo Devices will announce itself as the gateway (or
sink, the used gateway selection algorithm is out of
scope) every 2 h. This timing is set according to a UTC
time base, which can be obtained via the WAN interface
the first time the device is installed. Each MoCo Device
knows that data collection is done around UTC 0:00,
2:00, 4:00, etc., in STP mode, and once a day (UTC
0:00) in REST mode. For our proof-of-concept scenario,
we focus on the STP mode. We have divided the 2-h
timeslot in three periods: first, a long period where the
application tolerates a hop-by-hop latency of 30 s (ultra-
low duty cycle phase), second, a short (8 s) period in
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which the MoCo Devices wait for sink announcements
(always-on setup phase), and finally a data collection
phase of 52 s, in which the application tolerates a hop-
by-hop latency of 1 s. This will repeat every 2 h in STP
mode. In the ultra-low duty cycle phase, a MoCo Device
could need to send a critical event. In reality, this will
occur very rarely, because first the MoCo Device will try
sending the critical event using its own WAN interface.
Only if that fails, then the MoCo Device will ask a
neighbouring node to send the critical event using its
WAN interface.
During the setup phase, the selected sink will send

sink notifications. We take into account a guard time of
1 s (which is five times more than needed according to
our calculations) at the start of this phase to compen-
sate the clock drift during 2 h. All the devices can adjust
their clock either during the connection with the cloud
or because they receive sink notifications with accurate
timestamps. After this period, the neighbours either
heard the sink notifications, so they know the gateway,
or they did not hear a sink notification and will try to
use their own WAN interface. In the former case, the
MoCo Device will send its monitored data (five packets)
to the sink in the data collection period. In the latter
case, the node can switch to the ultra-low duty cycle
period already.

7.2. Experiment setup
We used five nodes in our experiment: one fixed MoCo
Router acting as sink device and four regular MoCo
Devices. We chose this specific setup because the main
focus is on validating the framework and not on testing
protocols. By limiting the number of nodes we could
examine the test data more carefully.
During an experiment we gradually increase the num-

ber of nodes, going from one regular node and one
fixed sink to four regular devices. This way we can mea-
sure the influence of increasing density on the workload.
This is also the reason why we choose to use a fixed
sink device.
In Table 5, we list the real-time periods and the time

periods used in our experiments. We have used other
timings because otherwise the experiments would last
too long. We have only reduced the ultra-low duty cycle
phase in our experiments. The report interval has been
rescaled to 180 s. During this period, we have 120 s of

not transmitting state where we maintain an ultra-low
duty cycle of 30 s with an on duration of 100 ms. The
other 60 s of transmitting state are divided in an 8 s
always on setup period and a 52 s data collection period.
The total experiment duration is 2160 s or 36 min. The
experiment is divided into four stages with increasing
node numbers going from two nodes in stage 1 to five
nodes in stage 4. In every stage, three report intervals
are executed that leads to 540 s per stage.
In the beginning of each report interval, nodes are

synchronized by the EE with an interrupt on one of the
GPIO pins. This emulates the behaviour of a stable
oscillator that would be integrated on the MoCo Device.
The synchronization is not perfect but even a good
oscillator cannot provide a perfect synchronization on
its own. We measured a variance of ± 500 ms. This can
be due to several reasons. Note that the trigger for the
interrupt generator originates from the w-iLab.t web
interface and has to be processed by the central man-
agement server, send over ethernet to the iNode and
from the iNode to the EE over USB where the request
is processed again.

7.3. Process description
The report interval always begins with an always-on
setup period. During this period, all devices first listen
for 1 s to compensate for the variance in synchroniza-
tion (guard time). Then the sink sends six sink notifica-
tions, one every second. On hearing a sink notification,
a regular node checks if the packet is not a duplicate.
This is necessary because the sink notifications are
broadcasted and propagated in the network. The packet
is dropped when a duplicate is detected; otherwise two
metrics are used to consider the sender of the packet as
best next hop to the sink:

1. Minimum average RSSI threshold: this informa-
tion is gathered by the NMF. By using the NMF, we
automatically include RSSI information from dupli-
cate packets received from this neighbour.
2. Minimum number of hops to the sink.

After 8 s every node should have found a sink device
and starts the data collection period. In the data col-
lection period, an LPL sleep interval of 1 s is main-
tained. This information is automatically deducted
from the application requirements and stored in the
context information module. Using the context infor-
mation module makes it possible to reuse our MAC
protocol for other applications with different require-
ments. During this period, the regular devices send six
packets to the sink device. Because we use LPL, we
actually keep repeating the same packet for the dura-
tion of the LPL sleep interval or until the packet is

Table 5 Proof of concept time periods and their
counterparts in our experiments on the testbed

Period Real length Testbed length

Ultra-low duty cycle 119 min 120 s

Setup 8 s 8 s

Data collection 52 s 52 s
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acknowledged. The regular nodes have 52 s to transmit
their data.
After the data collection period, the transmitting state

is finished and the nodes fall back to an ultra-low power
state. In this state, we maintain an LPL sleep interval of
30 s. This value is mainly deducted from the use case
where the main goal is to save energy. We still need to
maintain a duty cycle because we have to be able to
receive triggers from MoCo Routers or MoCo Readers.
For test purposes, we let a random node send one
packet to the sink in this period.

7.4. Results
7.4.1. Delay measurements
Table 6 gives an overview of the results. We focussed on
delay introduced by our system. We measured the delay
by generating interrupts on the EE. Because all tests are
performed on one node we do not have to compensate for
the synchronization variance. For the receive chain, we
measured an average of 3.8 ms delay for unicast packets
and 4.6 ms delay for broadcast packets. This is mainly due
to the fact that duplicate detection has to do more proces-
sing for broadcasted packets. The NMF introduces an
average delay of 1.8 ms. In the transmit chain, we measure
the delay between a call to send in PluralisMAC and the
send done event from PluralisMAC. This is also depen-
dent on the MAC protocol behaviour, especially when
using different duty cycles for LPL. Therefore, we have
averaged out the result for every stage in our process. The
lowest delay we notice is 72 ms for broadcast packets in
the always-on setup period. This is fairly high but it
includes a packet conversion between IDRA and Pluralis-
MAC and two memcpy instructions, one from the IDRA
queue and one to the radio driver. It also includes the
delay introduced by the radio driver. In the data collection
period, we notice an average delay of 292.7 ms. This is not
bad considering we use an LPL sleep interval of 1000 ms.
The average delay in the ultra-low duty cycle period is
29103.5 ms. We give this value for the sake of complete-
ness because this value is only averaged over 12 packets.
7.4.2. Reliability
Table 7 shows the link level reliability. This does not
include reliability after retransmissions. The reliability is
measured using packet numbers included in every

packet. Gaps in between packet numbers at the receiver
side indicate packet loss. We notice 100% reliability for
broadcast packets in the always-on setup period, for uni-
cast packets in the ultra-low duty cycle period and for
unicasts in the data collection period with two nodes.
The reliability for unicast packets drops to 92.9% when
more nodes content for the medium in the data collec-
tion period. Although this seems bad, we only loose 1
packet per 18 packets, representing 1 packet per 3
reports intervals or 1 packet per test stage. If we would
use retransmissions, we would obtain better results for
the reliability but as reliability is not the focus of this
article, we will leave this for future work.
7.4.3. Energy consumption
Table 8 shows the average current consumption for the
sink node and the first regular node for each period in
function of increasing node density (stages 1 and 4).
The measurements are done by the EE attached to the
nodes. For the setup period (always-on), we can clearly
see that the average current consumption is high and
the same for every node. In the data collection period,
the current consumption is the same for the sink node,
and we see an increase of 8% for the regular node in a
network with five nodes. More nodes are sending, so
the regular node will need more time before an ACK is
received from the sink. In the ultra-low duty cycle per-
iod, we can see that the sender (the regular node) has to
spend ten times more energy than the listener. The
average current consumption for the sink has increased
with 18%. We expected to see no increase in current
consumption because the sleep and listen scheme of the
sink is independent of the number of nodes. This is due
to the fact that the EE averages the current measure-
ments over 50 ms, which is not accurate enough for a
very low current. The “increase” we measured is thus
explained by the fact that 99.67% of the averaged cur-
rent measurements in the ultra-low duty cycle period
fluctuate between minimum 0.26 mA and maximum
0.56 mA (the median is 0.38 mA). A screenshot of the
current measurements is shown in Figure 7.

8. Related study
We have proposed a framework that extracts common
functionality from MAC protocols (e.g. primitives and

Table 6 Delay measurements of PluralisMAC

Measured process Measured delay (ms)

Unicast transmit processing delay in ultra-low duty cycle period 29103.5

Unicast receive processing delay 3.8

Unicast transmit processing delay in data collection period 292.7

Broadcast transmit processing delay in always-on setup period 72

Broadcast receive processing delay in always-on setup period 4.6

Processing delay NMF 1.9
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neighbour management). This enables reusability and
reduces MAC development effort. The lMAC frame-
work [24] and MultiMAC [25] are good examples of
how MAC protocol development can be simplified by
providing generic interfaces for common functionalities,
hereby reducing MAC protocols to their essential task,
namely performing power control (time management)
and deciding when to send.
Several modules are available in lMAC. We will com-

pare them with PluralisMAC modules: (1) The packet
layer (responsible for the actual sending/receiving of a
packet, radio state changes and CCA) is the radio driver
in our architecture. (2) The network time layer (respon-
sible for storage and generation of time-synchronization
information) has no counterpart in our architecture. Set-
ting timestamps on received packets or adding time-
stamps in outgoing packets is done in the radio driver
(because this is best done below the MAC layer) and
the maclets could implement a time-synchronization
protocol. We agree that it should be a general service to
the entire application stack. A PluralisMAC time man-
agement framework is left for future work, because in
our use case we obtain time-synchronization informa-
tion through the WAN interface. (3) The lMAC mod-
ule (responsible for time management) has no
counterpart in our architecture because we do not
require allocating time blocks for transmissions. A Plur-
alisMAC maclet designer has the freedom to design his/
her MAC protocol with the primitives we offer (or add
their own primitives). If the designer knows that, for
example, it can send a reply 200 ms after it has received
a message received from an energy-harvested node
(because the energy-harvested node needs to harvest
some “new” energy to turn the radio in receive mode),
there is no limitation in PluralisMAC to initiate another
primitive that lasts less than 200 ms. (4) The (de-)multi-
plexer is like our wrapper and multi-mac selector. (5)
Transmission layer (contains the unicast, broadcast and

other application-level primitives) is like our primitives,
except for the fact that we do not require to request
time blocks. Furthermore, we have separated singular
MAC primitives and composed MAC primitives.
Multi-MAC, an extension of SoftMAC and MetaMAC,

is an adaptive MAC framework (or mediating layer on
top of MAC protocols) for cognitive radios that automa-
tically selects between multiple MAC protocols. It does
not offer common primitives, but reconfigures and/or
selects a MAC layer.
Generic neighbour management has already been

addressed in literature. The studies of Langendoen et al.
[26] and Polastre et al. [27] clearly show the problems
that can arise when protocols do not share neighbour-
hood information. If the selection of a good neighbour
differs in the MAC protocol and in the routing protocol
(T-Mac and MintRoute [27]), then this will lead to
unexpected behaviour like high packet loss or increasing
delays. Polastre et al. [27] propose the use of a general
neighbour table. This is similar to what we do with the
neighbour repository but they do not provide the possi-
bility to add generic functions (collectors and aggrega-
tors) to collect neighbour information. Neighbours are
added to the neighbour table by asking all the network
protocols. How to resolving conflicts is not addressed
however. We believe that with our filter engine we have
a more generic and flexible approach.
Fonseca et al. [28] proposed a generic 4-bit link esti-

mation that combines information from the physical,
MAC and network layer into a 4-bit value. Again this is
a good example of the necessity for some sort of generic
neighbourhood management but they limit their work
to link estimation and provide no flexibility for future
extensions. The Link Estimation Exchange Protocol
(LEEP) [29] is another example of generic link layer esti-
mation included in TinyOS. LEEP is an example of an
active neighbourhood control protocol because it
exchanges bidirectional link information among

Table 7 Reliability measurements of PluralisMAC

Measured process Reliability (%) Packets lost per stage

Unicast reliability in ultra-low duty cycle period 100 0

Unicast reliability in data collection period for two nodes 100 0

Unicast reliability in data collection period for greater than two nodes 92.9 1

Broadcast reliability in always-on setup period 100 0

Table 8 Average current consumption (mA) for the three periods

Period Two nodes in network (stage 1) Five nodes in network (stage 4)

Sink Regular node Sink Regular node

Setup 18.612 18.784 18.886 18.622

Data collection 2.156 2.210 2.156 2.390

Ultra-low duty cycle 0.443 4.673 0.524 4.903
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neighbouring nodes. This feature is not included in the
proposed NMF but could be easily integrated when pro-
viding the appropriate collectors and aggregators. Active
neighbour management will be included in future work.

9. Conclusion
In this article, we have described the smart container
monitoring use case which made clear that multiple
MAC strategies were needed to achieve a low-power
system able to handle wireless communication with het-
erogeneous devices. We have presented our generic
multi-MAC framework and NMF. We have implemen-
ted our architecture in TinyOS and have done experi-
ments on the w-iLab.t testbed. We have shown that our
framework works, and it does not introduce a significant
overhead (e.g. 4 ms in the receive chain for both the
NMF and the multi-MAC framework). We will start to
implement more (complex) reference maclets, composed
primitives and neighbour filters in the near future and
hope that our framework will be used by many MAC
designers to implement and test their design on real
hardware.
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