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Abstract

In mobile technologies two trends are competing. On the one hand, the mobile access network requires
optimisation in energy consumption. On the other hand, data volumes and required bit rates are rapidly
increasing. The latter trend requires the deployment of more dense mobile access networks as the higher bit rates
are available at shorter distance from the base station. In order to improve the energy efficiency, the introduction
of sleep modes is required. We derive a heuristic which allows establishing a baseline of active base station
fractions in order to be able to evaluate mobile access network designs. We demonstrate that sleep modes can
lead to significant improvements in energy efficiency and act as an enabler for femtocell deployments.

1 Introduction

Compared to the different wired access network tech-
nologies, mobile access networks are significantly less
energy efficient [1]. In light of ICT being estimated to
be responsible for about 2-4% of the worldwide carbon
emissions [2,3], this is an important challenge and
energy efficiency is a key design parameter for current
and future mobile access networks.

On the other hand, in mobile communications the user
bit rate demand is ever increasing. In the past, mobile
access networks were mainly used for voice and text
communication, However, data communications are
rapidly increasing and currently responsible for the larger
part of the traffic on mobile access networks [4].

The above trends pose an important challenge for the
future mobile access network. On the one hand, it needs
to sustain the increasing user demand, which corre-
sponds with deploying an increasing number of base sta-
tions, while at the same time it is required to limit
carbon emissions and energy consumption.
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One solution is the optimisation of the base stations in
order to make them more energy efficient. Also, new net-
work technologies like long term evolution (LTE) [5] are
emerging, which will allow higher bit rates as well as
higher ranges to provide these bit rates. It is however
questionable whether these solutions will suffice since
the rising bit rate demand implies a drastic increase in
the number of base stations. Thus, solutions that reduce
the power consumption of a mobile access network as a
whole are required.

When optimising a system for energy efficiency, the
introduction of sleep modes is one of the most commonly
used approaches and is already well known in other wire-
less communication systems such as sensor networks [6].
In this article, we will demonstrate the introduction of
sleep modes is essential if we want to deploy mobile access
networks with a high coverage for large bit rates. More-
over, we will provide a method to establish the best-effort
active base station fraction in such a network. We will
limit our discussion to LTE implementations as this is the
emerging standard designed for high bit rate applications
[5]. This can be used as a baseline to evaluate the energy
efficiency of practical implementations.

In Section 2, we elaborate on the work related to our
study. In Section 3, we discuss the base station behaviour.
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This is used as an input for a heuristic to find an optimal
distribution of active base stations, which is derived in
Section 4. We apply the heuristic on a theoretical topol-
ogy to evaluate the active base station fraction (Section 5)
and then evaluate the environmental impact of the differ-
ent design choices (Section 7). Afterwards, in Section 8
we demonstrate the use of the heuristic in a topology
designed for an urban environment. In Section 9 we sum-
marise the main conclusions.

2 Related work

Sleep modes in wireless networks are already used in mul-
tiple situations. For example, the requirement of providing
a certain coverage while certain nodes can sleep is a well
known problem in sensor networks [7,8]. The authors of
[6] give a good overview of the different techniques that
can be used in wireless contexts. Due to the requirement
for long battery life times, sleep modes were also intro-
duced in the mobile subscriber devices [9,10].

In this article, we are focussing on the mobile access
network and more specifically the base station. In some
studies, it is suggested to reduce the carbon footprint of a
base station by using renewable energy sources [11,12].
Although this effort is viable in itself, it doesn’t improve
the energy consumption of the mobile access network.
Other authors make improvements on the base stations
themselves [13]. These efforts are viable but, as we will
demonstrate, optimisations in the network as a whole are
possible as well.

In terms of introducing sleep modes in base stations,
some solutions are already suggested. Some authors make
the distinction between micro-sleep where base stations
are only shortly suspended and deep-sleep where users
need to connect to different base stations in order to
maintain connectivity [14,15]. In this study we do not con-
sider these micro-sleep modes. Also, in [16], it is demon-
strated that sleep modes are an enabler for introducing
small cell base stations and low power mobile access net-
works. In [17,18], a similar exercises are performed to
evaluate the switching off of macrocells in order to limit
power consumption of the access network. In the above
cited studies, the network optimization is performed with-
out taking into account the user behaviour. However, the
authors of [19] propose an algorithm in which also the
requirements of the users are accounted for.

Another approach which is used is the so called cell
zooming where during low use periods base stations are
turned off and only lower bit rates are fully covered
[20,21]. This technique however only allows a limited
fraction of base stations to be switched off and reduces
the level of service for the users since the approach does
not account for user behaviour.

In the above cited studies, the focus is on the optimi-
zation of current network deployments. As such, the
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performance evaluation of the solution is based on an
always-on network. In this study, we would like to
investigate the question on the maximum number of
sleeping base stations while guaranteeing the required
connectivity for the users. This while taking into
account the future high bit rate requirement of the
users. This question is relevant as the future mobile
access network will require a significant increase in
energy efficiency.

Based on this result, one can establish a baseline to
assess the energy efficiency of future practical implemen-
tations. We will demonstrate that for these high bit rate
mobile access network, a disruptive approach with large
idle base station fractions is possible and necessary.
Moreover, we offer a heuristic on the basis of which algo-
rithms and protocols for this future mobile access net-
work can be designed.

3 Characterisation of base stations

When characterising the power consumption of a
mobile network, one needs to consider that the power
consumption of the base station is more or less con-
stant. This is a direct consequence of the input power
of the antenna, which directly defines the power con-
sumption, being kept at a constant level [22,23]. On the
other hand, the range of the base station varies depend-
ing on which bit rate is needed. The range and the bit
rate are thus strongly correlated. When deploying a
mobile network for a certain bit rate, this will have con-
sequences for the base station density and thus for the
overall power consumption of a network.

To determine the range of a base station, first the maxi-
mum allowable path loss to which a transmitted signal can
be subjected while still being detectable at the receiver, is
calculated [22]. Therefore, a link budget has to be set up.
A link budget takes all the gains and the losses from the
transmitter through the medium to the receiver into
account. When the maximum allowable path loss is
known, the range can be determined by using a propaga-
tion model. Different propagation models exist and the
propagation model used depends on the design para-
meters (e.g. indoor vs. outdoor, macrocell vs. femtocell
base station, urban vs. suburban vs. rural area, etc.). In this
study, we focus on macrocell and femtocell base stations.
For the macrocell base station we used the Erceg C model
[24], while for the femtocell base station the ITU-R P.1238
model is used [25]. For both the macrocell and the femto-
cell we assume a frequency of 2.6 GHz as defined in the
LTE standard. We assume the macrocell to transmit at 43
dBm, whereas femtocells transmit at 21 dBm.

When determining the bit rate at which we want to
evaluate the range, two parameters are key: the receiver
signal-to-noise ratio (SNR) and the channel bandwidth.
The receiver SNR represents the SNR at the receiver for
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a certain bit error rate (BER) and is determined by the
used modulation scheme and coding rate.

The modulation scheme provides the translation of a
binary bit stream into an analogue signal that can be
transmitted through the medium. This is done shifting
both amplitude and phase of the signal, a number of
distinct modulations result in the modulation scheme.
LTE supports three modulation schemes: quadrature
phase shifting keying (QPSK) shifting only on phase and
allowing 2 bits (4 values) per symbol and 16-QAM and
64-QAM (quadrature amplitude modulation), shifting
both amplitude and phase allowing for 4 bits (16 values)
and 6 bits (64 values) per symbol, respectively.

The modulation scheme is always accompanied by a
coding rate that allows to determine if there are any
errors introduced in the signal during transmission. This
is done by adding redundant bits to the signal. The cod-
ing rate is the number of real information bits divided
by the total number of bits. For example, a coding rate
of 2/3 implies that for every two information bits one
redundant bit is added. In LTE, the following combina-
tions are supported: 1/3 QPSK, 1/2 QPSK, 2/3 QPSK, 1/
2 16-QAM, 2/3 16-QAM, 1/2 64-QAM, and 2/3 64-
QAM. The higher the coding rate and the higher the
modulation, the higher the bit rate, but also the higher
the receiver SNR and thus the lower the range becomes.
For a macrocell base station in a 5 MHz channel, for
example, a range of 1089.9 m is obtained for a bit rate
of 2.8 Mbps (1/2 QPSK) and 193.5 m for a bit rate of
16.9 Mbps (2/3 64-QAM).

A second important parameter that influences the bit
rate and the range is the channel bandwidth. The chan-
nel bandwidth indicates the width of the frequency band
used to transmit the data. The higher the channel band-
width, the higher the bit rate, but the lower the range.
For a macrocell base station, the 1/2 QPSK modulation
corresponds to a bit rate of 2.8 Mbps and a range of
1089.9 m in a 5 MHz channel, while it corresponds with
a bit rate of 11.3 Mbps and a range of 778.7 m in a 20
MHz channel.

The bit rates obtained with varying channel band-
width, modulation scheme and coding rate are sum-
marised in Table 1 The relation between bit rate and
range that is thus obtained is displayed in Figure 1. We
displayed the results for LTE femtocells and macrocells
at a channel bandwidth of 5 MHz and 20 MHz.

4 Heuristic to put base stations in sleep mode

4.1 Determination of the heuristic

In Section 3, we demonstrated that higher bit rates cor-
respond with shorter distances between the user and the
base station. Since the bit rate demand is on the rise,
mobile networks will be required to provide coverage
for these higher bit rates. This implies smaller cell sizes,
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Table 1 Bit rates resulting from modulation schemes,
coding rates and channel bandwidths in LTE

Channel BW: 5 MHz 20 MHz
1/3 QPSK 2.8 Mbps 11.3 Mbps
1/2 QPSK 4.2 Mbps 16.9 Mbps
2/3 QPSK 5.7 Mbps 22.5 Mbps
1/2 16-QAM 8.5 Mbps 33.8 Mbps
2/3 16-QAM 11.3 Mbps 45.1 Mbps
1/2 64-QAM 13.3 Mbps 54.1 Mbps
2/3 64-QAM 16.9 Mbps 67.6 Mbps

resulting in a larger number of base stations to cover a
certain area and hence larger power consumption. On
the other hand, since cell sizes are smaller, there is also
a smaller number of users present in a cell and thus the
probability of a user requiring the high bit rates in a cell
is decreasing. This consideration leads to the opportu-
nity to introduce sleep modes in the network. If all
users in a cell can be served by base stations outside the
cell, then the base station in the cell is no longer
required and can be turned to a sleep mode. Hence, the
power consumption of the mobile network can be
reduced.

In order to evaluate this opportunity, we designed a
heuristic to find a best-effort distribution of base sta-
tions to be put to sleep mode in order to minimise
power consumption.

Initially, the topology of the base stations and the dis-
tribution of the users and their associated bit rate
demand are considered to be known. We assume the
number of users as ‘m’ and the number of base stations
as ‘n’. The vector U contains the coordinates of the
users. The vector R contains the required range of the
users. It is calculated based on the bit rate requirement
of the user which is then mapped on the corresponding
base station range. The matrix B contains the coordi-
nates of the base stations. We now construct an m x n
matrix P:

1 if|Bj—Ui} <R;; (1)
J 0if|Bj—Uii >R,‘.

This matrix represents the possibilities to provide a
user with a suitable connection. In case a row of the
matrix P contains only zeroes, this implies that no base
station is close enough to the user to provide its
demand. Since we can do nothing to serve those users
we need to keep them out of the equation.

For the base stations, we assume the capacity limits to
be larger than the actual capacity required by the base
station. This is a valid assumption since LTE is currently
designed providing sufficient resource blocks to cover
the expected load. Moreover, this also implies that
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Figure 1 Bit rate versus range for a macrocell and femtocell base station in a 5 MHz and 20 MHz channel.

extending the capacity of base stations is also possible in
case our design should require it.

Based on the matrix P, we can now construct two vec-
tors:

n

C':Cl=) P (2)
j=1
m

Cb . C]b = Z Pij (3)
i=1

In C" one can determine the number of base stations
that can serve a certain user. On the other hand, in C?
the number of users potentially connecting to a base
station are expressed. Based on this information, we can
now iteratively switch on base stations until all users are
connected. Since in every iteration the number of active
base stations increases, we aim to keep the number of

iterations as low as possible. Therefore we propose the
following strategy:

1. Identify the users with the least potential
connections.

2. Select the base stations to which these users can
connect.

3. Of these base stations, select the base station to
which most users can connect and switch it on.

4. Remove the users that connect to this base station
from the heuristic and start over.

By first satisfying the users with the least connections
we assure that later on in the algorithm we do not need
to switch on an additional base station just to satisfy
this one user. On the other hand, by assuring that in
each iteration the potential base station satisfying the
most users is selected, in each step we maximise the
number of users we no longer need to consider. Thus,
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we simplify the problem and reduce the number of
iterations.

In the algorithm, we can implement this by defining
an n-dimensional vector S. We initialise this vector on
S; = 0 and for each base station that is switched on, we
put the value on 1. Since we remove the users that are
satisfied at each iteration, the heuristic is stopped once
all users are satisfied. The algorithm is denoted in pseu-
docode in Algorithm 1.

Algorithm 1. Heuristic for a best-effort distribution of sleep
modes in a base station topology for minimal power
consumption

repeat

C*: Gl =20 Py

b . ~b
C:C = Y Py
I = Find (i|C}' = Min (C"))

Z . Z/ = Slgn (Ziel Pz])

c’=cxz"

J = Find (j|c}’ - Min (c"))
Sy, = 1 ()

Q:POS
forj=1—> ndo

if Q; = 1 then
P*l = O
end if

end for

until ¥, ; P; =0

(*) ‘%’ represents elementwise multiplication.

(**) We select only one base station to be switched on,
hence J;.

The heuristic requires information on both the exact
location of the base stations and the users, as well as
the bit rate requirement of the users. In practical
deployments, the user information will not be readily
available. Additionally, the user information is only valid
at a certain moment in time and is subject to change
due to movement and changes in bit rate requirements.
Reevaluation on regular intervals for an entire mobile
access network could be resource and time intensive.

On the other hand, the heuristic does provide a near-
optimal solution for putting deployed base stations in a
sleep mode. Hence, it provides a baseline for practical
implementations of sleep mode algorithms in mobile
access networks to be evaluated against. Also, during
the design of a mobile access network, it can provide
useful information on the suitability of a topology for
the introduction of sleep modes.
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4.2 Use of the heuristic in a theoretical case

In order to determine the potential and consequences of
sleep modes, we evaluate the heuristic in a theoretical base
station topology. For the base stations, we define a series
of bit rates at which they can operate and the correspond-
ing ranges (cf. Figure 2). We define a triangular grid on
which we deploy the base stations. This results in a surface
with hexagonal cells. The side length r of the cell, which is
also the largest possible distance between a user and a
base station (i.e. when the user is at the geometric centre
between three base stations) is defined by range corre-
sponding to the largest bit rate for which we want to pro-
vide coverage. An example of this topology can be seen in
Figure 3, which we will discuss later.

Next, we define a user density and distribute users ran-
domly in the area covered by the base stations until the
required user density is reached. We use a uniform distri-
bution. Since users on the edge of the covered area can
reach less base stations than users in the centre, we need
to make sure the covered area is large enough to limit this
effect.

As mentioned before, the different users will require
different bit rates. In order to model this, we use a dis-
tribution @ representing the probability a user requires a
certain bit rate. We consider this distribution to be
exponential:

1

¢ BR) o< @
In (4), ¢ represents the probability of a user requiring
a bit rate BR. The preference for lower/higher bit rates
is determined by a. For o > 0O there is a larger probabil-
ity for lower bit rates, & = 0 results in a uniform distri-
bution and o < 0 implies a preference for larger bit

rates. The probability distribution is normalised so that

> ¢ BR) =1 5)
BR

We have displayed this probability distribution for the
different available bit rates for LTE at a channel band-
width of 5 MHz in Figure 2. One can see how the para-
meter o defines the distribution. A preference for lower
bit rates (¢ > 0) is typical in a situation where the use
of the mobile access network is mainly for voice calls
and the use of high bit rate applications like video
streaming is limited. Also, cases in which idle users
maintain a low bit rate connection with the access net-
work, can be modelled by using a high value for o.
Situations where the larger part of the users need to
maintain a high bit rate connection with the access net-
work can be modelled with negative values for o.
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In Figure 3 we display an example distribution for a
user density Dy, of 500 users/km” with ¢ = 3 in a femto-
cell access network operating for a channel bandwidth of
5 MHz. In the access network there are 1951 base sta-
tions, covering an area of approximately 1.11 km?, Of
these base stations, 42 need to be active in order to pro-
vide all users with a connection. This leads to an active
base station fraction of 2.15%. In the following discus-
sion, we will denote this as F4 expressing the number of
active base stations divided by the total number of base
stations. Lower values for F, imply more base stations
are switched off and thus power consumption is reduced.

5 The active base station fraction F,

5.1 Upper limit for F,

In Figure 3 we see that, contrary to macrocell deploy-
ment [22], the density of the base stations Djp is higher
than the user density D;;. This is a direct consequence
of the requirement to cover the area for a high bit rate
and thus with a low range for the base stations. If we

regard the special case where every user needs a dedi-
cated base station, it is clear that because of the lower
user density, not all base stations need to be switched
on. As a consequence, we get an upper limit for the
fraction of active base stations F4 by requiring, the den-
sity of the active base stations is equal to the user den-
sity. This results in the following representation:
Fo< DU (6)
Dg
If r is the range at the highest bit rate, the surface of a
cell is:

V3 )
2
Assuming there is one base station per hexaconal cell,
we obtain for (6):

3v3, ®)

FA<DU ) r
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3, Channel BW = 5 MHz). Squares represent

200

2

network this limit is already reached at a user density of
10 users/km*™.

can connect to base stations at larger distances.
Therefore, lower active base station fractions will be

Additionally, the users operating at lower bit rates
possible.

As one can see in Figure 3, users are not evenly dis-
tributed over the surface and some clusters appear.

5.2 Determination of F, through simulation
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users with a bit rate requirement ranging from 2.8 to 16.9 Mbps.

.

This consideration remains valid as long as the user

density is smaller than the base station density:

33 .2
YT

D™ <

Using the ranges determined in Section 3, in the case
of a femtocell network with a 5 MHz channel band-

width this corresponds with a user density of approxi-

mately 1757 users/km?. In comparison, for a macrocell
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In order to evaluate this, we simulated user distribu-
tions of 500 users/km” in a hexagonal access network of
1951 base stations with varying o and a channel band-
width of 5 MHz and 20 MHz. For each case, we per-
formed 25 simulations of which we display the average
result and the standard deviation, represented by error
bars. The result is displayed in Figure 4a. We also per-
formed the same exercise with macrocell networks.
Here we used a hexagonal access network of 469 base
stations. This result is displayed in Figure 4b.
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When using femtocells (Figure 4a), even in cases with a
large preference for high bit rates (o = -5) the fraction of
active base stations is lower than the theoretical maxi-
mum. For high values of ¢, additional savings in the order
of 85 to 95% compared to the theoretical maximum are
possible. Note however that for o > 3 the probability for a
user requiring a high bit rate is so low that the viability of
deploying such a dense network is questionable.

It is also important to note the standard deviation on
the simulations. Depending on the user distribution the
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result may vary 2 to 10%. This indicates that the actual
fraction of active base stations is difficult to predict.

In the case we use macrocells (Figure 4b), it is also
possible to save energy using sleep modes, albeit in the
case where lower bit rates are preferred over higher bit
rates (o > 0). Active base station fractions of 15-25% for
o = 5 can lead to significant reductions in power con-
sumption although the active base station fractions in
the order of 50-75% seem more realistic.

Finally, we evaluate the influence of the user density
on the active base station fraction. Figure 5a shows the
result of 100 simulations per case for varying user densi-
ties and channel bandwidths when using femtocells with
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o = 3. We also displayed the theoretical upper limit as
described by (6). One can see that although the theoreti-
cal limit is increasing with increasing user density, the
simulations result in a slower increase of active base sta-
tions. Even when using macrocells, the number of users
can become significantly high before reaching an active
base station fraction of 100% (Figure 5b).

6 Evaluation of the heuristic towards optimal
solutions

In the above sections, we used derived our results
based on the presented heuristic. However, it is impor-
tant to evaluate the proximity of the results compared
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to the optimal solution. The optimal solution can be
derived using integer linear programming (ILP). Using
the variables introduced in Section 4.1, we define the
objective function by demanding a set of active base
stations in which as little base stations as possible are
active.

n
Minimise : ) _§;
j=1

(10)

As functional constraint, we specify that each user
needs to be able to connect to at least one base station.
Note that the matrix P is considered as an input for the
ILP.

n
Viiy PS> 1 (11)
j=1

Finally, we need to inform the ILP solver that there is
only two possibilities for each value of S, either on (1)
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or off (0). This is denoted by the following sign con-
straint:
Vj:Sj€(0,1) (12)

We compare the heuristic to the ILP solution in a
femtocell setup with channel bandwidth of 5 MHz. The
access network consists of 1951 base stations. The user
density varies between 200 and 1000 users/km” and o
varies between -5 and 5. We calculated P and then
solved the problem using both ILP and the heuristic.
The ILP problem is solved with the IBM ILOG CPLEX
Optimiser [26]. The difference between both is displayed
in Figure 6. Each point represents a calculation originat-
ing from the same P. Note that the same number of
active base stations does not imply the same set of
active base stations.

First of all, it is clear that the ILP always provides the
optimal solution. Second, for higher base station densities,
the heuristic results in a near-optimal solution. For lower
densities, there is a significant difference between the
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heuristic and the ILP. These values are mainly correspond-
ing with o = 4.

This deviation can be explained by the heuristic being
designed to first satisfy the users requiring the highest bit
rate, and particularly the bit rate defining the base station
density. These users are (almost) not present for the high
values of o. As such, for every user there is a high number
of possible base stations connecting each user and picking
one of these base stations will immediately drastically
reduce the solution space, possibly excluding the optimal
solution.

Although this is a factor to be considered when using
the heuristic, it is of little impact to the overall conclu-
sions, as it only marginally impacts the conclusions for
very low base station densities. Moreover, this is an
extreme case in which it is doubtful whether it is eco-
nomically viable to roll out an access network capable
of these high bit rates when there are almost no users
requiring them.

7 Environmental impact of the mobile access
network

7.1 Power consumption

One of the purposes of the introduction of sleep modes is
reducing the environmental footprint. However, this eva-
luation is largely dependent on the selected environmen-
tal parameter. First we investigate the power
consumption. On the one hand we determine the power
F PM

consumption when the base station is active, P, or Py,

for femtocell base stations or macrocell base stations,
respectively. On the other hand, there is the power con-

sumption PI' or PM when the base stations are in sleep

mode.
When we want to evaluate the power consumption of
the access network, we need to multiply the average
power consumption of a base station by the number of
base stations in the network. This number can be directly
derived from the base station density Dp and the covered
area, which is invariable depending on the design choices.
Hence, if we want to evaluate power consumption
regardless of the magnitude of the covered area, we can
consider the power consumption density Dp :
Dp = D [P{ + Fy (Poy = PY)]

(* = F, M) (13)

with F§ or Fi! the average active base station fraction

of the access network and D§ or D} the base station
density.

If we assume a typical power consumption of 10 W for
a femtocell base station and 3 kW for a macrocell base
station, in the case of D;; = 500 users/km?, o = 3, a chan-
nel bandwidth of 5 MHz and assuming the ideal situation
where P} = 0, a macrocell network would consume 10.7
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kW /km?, whereas a femtocell network would consume
only 0.37 kW/km? or 3.5% of what the macrocell network
would consume. Alternatively, when assuming the base
stations cannot be put in sleep mode or F4 = 1, the fem-
tocell network would consume 17.6 kW/km?* compared
to 30.8 kW/km? for the macrocell network. As in this
case, the femtocell network consumes 57% of the macro-
cell network, we see that the ability to put base stations
in sleep mode is a key enabler to make a femtocell
deployment a significant improvement compared to a
macrocell deployment.

A high base station density leads on the one hand to
more base stations and thus potential power consumers
in the access network and on the other hand to a lower
number of users per cell and associated lower F4. When
comparing two femtocell deployments, deployment I is
favorable over deployment I/ when:

Dy [P! + F, (P,

act

P{)] < Dg [P+ F (P,

act —

P (19

When assuming P!, the power consumption in sleep
mode, is negligible, this simplifies to:

DLF, < DUFY (15)
When assuming a hexagonal grid deployment:

Fl /rﬂ <Fl! /rHZ (16)
or

Fy/EL <" [o (17)

When comparing deployments with channel band-
widths of 5 MHz (I) and 20 MHz (II), 7" / P = 36%.

The proportion of active base station fractions is 45 to
70%. Thus, the 5 MHz deployment is less power con-
suming, independent of c.

7.2 Life cycle assessment

The use of power consumption as an environmental
parameter is closely related to the requirement to
reduce carbon emissions. However, when evaluating car-
bon emissions, the power consumption during the use
of a device is only one part of the impact. When asses-
sing carbon emissions, or other environmentally impact-
ing factors, life cycle assessment (LCA) is often used. In
LCA, the impacts during material extraction, manufac-
turing, transport, use and end-of-life are evaluated. In
the case of carbon emissions, the use phase impact is
directly correlated to the power consumption. By multi-
plying the average power consumption as given in (13)
with the life time / and the carbon emission intensity I,
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which denotes the amount of CO, emitted when produ-
cing 1 kWh of electrical power, one can calculate the
use phase impact. Analysis of the other phases leads to
an impact L, expressed in kg CO, per device. The latter
impact cannot be influenced by F, and will be an
important factor when evaluating the overall environ-
mental desirability of deploying new mobile access
networks.

8 Use of the heuristic in a practical deployment
As explained, when designing a mobile access network
providing a large coverage for high bit rates, we need to
deploy base stations with a high density. Using femto-
cells, we can create a more energy efficient access net-
work. This was derived based on a theoretical situation
with a hexagonal grid. Therefore, we would like to apply
the derived heuristic in a more realistic situation.
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We applied a genetic heuristic as used by mobile
operators to deploy a set of LTE femtocells in an urban
environment (Ghent, Belgium). The target for the heur-
istic was to provide a 95% coverage at a bit rate of 11.3
Mbps using a channel bandwidth of 5 MHz. On a sur-
face of approximately 56000 m?, 85 femtocells were
deployed resulting in a density of 1518 base stations/
km?. Compared to a theoretical density of 320 base sta-
tions/km?> when using a hexagonal grid, we see the prac-
tical deployment needs about 4,7 times more base
stations.

Using this environment, we randomly distributed
users at a user density of 500 users/km” and o = 1. In
this simulation we omitted the users that can not con-
nect to any base station and replaced them by other
users in order to sustain the required user density and
bit rate requirement distribution. The simulation,
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displayed in Figure 7, resulted in 6 base stations to be
switched on or FA = 7.1%. Assuming Pf, = 10W and

Pf'= 0W, this would result in an average power con-

sumption of 60 W in this area. A simulation performed
on a hexagonal grid designed to cover for a bit rate of
11.3 Mbps with the same user behaviour resulted in an
active base station fraction F4 = 28.7%, or 51 W to
cover the same surface. Comparing both power con-
sumptions, we see that the heuristic limits the effect of
the much higher base station density in the practical
deployment. This implies that for the environmental
impacts which are related to the number of active base
stations, the results of an evaluation in a hexagonal grid
will be a good prediction.

9 Conclusions

In light of the requirement for both increasing bit rates
and reduced energy consumption in mobile access net-
works, the introduction of sleep modes is a key element.
As it is difficult to analytically predict the energy saving
potential that can be achieved by using sleep modes in
mobile access network deployments, we have derived a
heuristic that can serve as a design tool for establishing
a baseline.

Due to the small cell size, femtocell access networks
appear to be better suitable than macrocell networks for
introducing sleep modes. At user densities between 100
and 1000 users the optimal active base station fraction
for high bit rate networks is below 20%. Thus, covering
areas for high bit rates with sleep-enabled femtocells has
a high potential for being less power consuming than
using macrocells. However, also in macrocell networks
there are opportunities for introducing sleep modes,
especially when users have a preference for lower bit
rates.

In practical deployments, where the distribution of
base stations is suboptimal compared to a hexagonal
grid deployment, the introduction of sleep modes helps
in optimising the use of the base stations and reduces
the effects of increased power consumption due to this
suboptimal deployment.
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