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Abstract

Monitoring widespread environmental fields is undoubtedly a practically important area of research with many
complex and challenging tasks. It involves the building of models of the fields or natural phenomena to be
monitored, the estimation of the spatio-temporal distribution of a variety of environmental parameters of interest,
such as moisture or salinity in a crop field, or the spatial distribution of vital natural resources such as oil and gas,
etc. Sampling, a key operation of the monitoring process, is a broad methodology for gathering statistical
information about the phenomenon, or environmental variable, being monitored. To efficiently monitor widespread
fields and estimate the spatio-temporal distribution of some particular environmental variable, calls for the use of a
sampling strategy can fuse information from different scales of sensors. Such an attractive strategy is well catered
for by both the capabilities and distributed nature of wireless sensor networks and the mobility of robots
performing the sampling (sensing) tasks. This sampling strategy could even be rendered “adaptive” in that the
decision of “where to sample next” evolves temporally with past measurements and is optimally computed. In this
article, we examine various single-robot and multi-robot adaptive sampling schemes based on different extended
Kalman filter filtering structures such as centralized and decentralized filters as well as our own novel decentralized
and distributed filters. Our investigation shows that, whereas the first two filters suffer from a heavy computational
or communication load, our proposed method, through its key feature of distributing the filtering task amongst the
robots used, manages to reduce both loads and the total reconstruction time. It also enjoys the added attractive
feature of scalability that allows the structure of the proposed monitoring scheme to grow with the complexity of
the field under study. Our results are corroborated by our simulation work and offer ample encouragement for a
further theoretical investigation of some properties of the proposed scheme and its implementation on a physical
system. Both of these activities are currently underway.

Keywords: Spatial field estimation, Adaptive sampling, Information fusion, Multi-scale sensing, Robotic sensor
network, Environmental monitoring
Introduction
Mobile robots are being increasingly used as sensor-
carrying agents to perform sampling missions, such as
searching for harmful biological and chemical agents,
search and rescue in disaster areas, and environmental
mapping and monitoring. One of the objectives of these
sampling missions is ‘Field Estimation’. Field estimation
is the construction of an estimate of how a certain
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parameter varies in space and time, i.e., an estimate of
its spatio-temporal distribution, based on observed or
sampled data. As the field of interest is spread over a
wide area, using a dense and fixed sampling scheme for
an efficient field mapping would simply be too costly
and will involve a possibly prohibitive computational
load. Instead, it is far more interesting to use a mobile
sampling scheme that would collect samples at few judi-
ciously selected locations, in a way that would enable it
to gain enough information about the field to be able
to infer, with significant accuracy, the value of the
parameter of interest at the unsampled locations. A
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multitude of research groups have published results
on sampling using mobile robots for chemical plume
source localization [1,2], soil–moisture mapping for
crop monitoring [3], ocean sampling [4,5], forest-fire
mapping [6], etc.
The sensor fusion schemes for sampling missions can

broadly be classified into three categories based on (i)
physical parametric models, (ii) feature-based inference
techniques such as clustering algorithms, neural net-
works, etc., which are generally non-parametric in na-
ture but can lead to black or grey box parametric
representation of the process, and (iii) cognitive-based
models, which use the inference processes of humans
and animals and which are based on fuzzy logic rules,
search techniques, information-theoretic approaches,
etc. Models acquired using these three broad classes of
approaches can be either purely deterministic or purely
stochastic. In many cases, deterministic models affected
by some random noise can also be assumed.
In the area of physical deterministic parametric model-

ing representing the first category of sampling missions,
Christopoulos and Roumeliotis [2] presented an ap-
proach for estimating the parameters of the diffusion
equation that describes the propagation of an instantan-
eously released gas. Cannell and Stilwell [4] presented
two approaches for adaptive sampling (AS) of under-
water processes using AUVs. The first one assumes a
parametric model, while the second one uses an
information-theoretic approach. A number of strategies
for non-parametric AS can also be found in the litera-
ture. A solution for non-parametric ocean sampling is
proposed in [7] based on a classification of the sampling
area. The multi-robot path planning problem is
addressed in [8] using the mutual information collected
using different paths. The study of [5] is also similar to
that of [8] in the sense that both deal with generat-
ing optimal trajectories for multiple underwater vehicles
for sampling purposes. Rule-based non-parametric
approaches are also used widely in chemical plume
tracing on land and in water, odor sensing [2], mine
detection, etc.
Forest fires, chemical source leaks, and temperature

variations in oceans are examples of complex natural
phenomena for which the exact nonlinear model
descriptions are unattainable due to the high-level of
complexity involved. Demetriou and Hussein [9] present
a solution to the problem of estimating a spatial distri-
bution when the process is described by a partial differ-
ential equation. In [10], a non-parametric model is
considered, and a distributed scheme for field estimation
is developed using a Kalman filter-like recursive scheme.
In geostatistics, spatial processes are generally modeled

as random fields, and estimation is performed using Kri-
ging Interpolation techniques [11,12]. Kriging is termed
“simple” if the mean of the distribution is also known,
and “universal” if the mean is treated as an unknown lin-
ear combination of known basis functions. In [13], a dis-
tributed algorithm is presented for spatial estimation
using the Kriged Kalman filter. Graham and Cortes [14]
proposed a Kriged Kalman filter-based approach for a
spatiotemporal field where the discrete-time evolution of
the state is governed by the Kalman filter used. In [15],
the authors represent the time-varying field with a ran-
dom process with a covariance known up to a scaling
parameter. They proposed gradient descent algorithm
which can run in a distributed fashion on multiple
robots. Olfati-Saber [16,17] developed a distributed Kal-
man filter approach along with consensus filters to esti-
mate the state of a process and reach consensus of all
nodes.
Due to the time and energy-critical nature of some of

these sampling scenarios, simply requiring the robots to
perform a raster scan or randomly sample the field of
interest would clearly be a sub-optimal and highly ineffi-
cient sampling strategy. Moreover, many time-varying
distributions of interest encompass a wide area, and
must therefore be observed with sensors having variables
characteristics such as multiple size scales, rates, and ac-
curacies [18]. For example, a forest fire is monitored
using satellite images which provide a large spatial field-
of-view (FOV) but a low-resolution or fidelity. On the
other hand, a plane flying at low altitude would provide
a low-spatial FOV but high-fidelity information.
In order to effectively fuse these different types of

measurements, we proposed a Multi-scale Multi-rate
Adaptive Sampling approach with a parametric descrip-
tion of the field [6]. In this approach, sampling strategies
continuously adapt in response to real-time measure-
ments from sensors of different scales. This scheme re-
lies on building parametric models of the field using
spatial sensor measurements collected from a high-
altitude, and which are thus less accurate, and then
improving the models by using more accurate spot mea-
surements. The extended Kalman filter (EKF) is used to
derive a quantitative information measure that is needed
for the selection of sampling locations that are mostly
likely to yield optimal information. In this approach, the
existing low-resolution information of the field is first
used to acquire an initial parametric representation of
the field whose parameters have a higher initial error co-
variance which gradually reduces as high-resolution
samples are taken and processed.
In our previous work [6], we presented a framework

that extends our estimation of a simple parametric field
to that of complex time-varying (e.g., forest fires [6]) by
representing these with sums of overlapping Gaussians.
The resulting algorithm was called EKF–NN–GAS, and
is based on (a) a Radial Basis Function (RBF) neural
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network (NN) for the parameterization of the non-
parametric field, (b) an EKF for parameter estimation,
and (c) a heuristic search scheme called ‘Greedy Adap-
tive Sampling’ (GAS).
A further investigation of the AS algorithm using mul-

tiple robots is presented in this article. For widespread
fields, it may be impractical and certainly inefficient for
a single-robot to map the entire field by navigating to
different sampling locations, even when guided by an ef-
ficient sampling algorithm. However, when using mul-
tiple robots, the sampling area is first divided into
smaller regions, and then each sampling instance in a
particular region gains information about the parameters
which have a dominant effect in that region. Therefore,
in order to distribute computations, we need to be able
to fuse the parameter estimates in order to construct the
map of the field density distribution.
This problem is similar to reformulating the algorithm

originally designed for a conventional single-sensor sin-
gle-processor system to work on a more general multi-
sensor, multi-processor system. Distributed algorithms
have been used before in many applications, and the de-
gree of parallelism used in them varies from one algo-
rithm to another, depending on the application at hand.
An example of distributing processing includes target
location estimation using several sensors for data collec-
tion, and then fusing together the collected measure-
ments either at the central station or at each sensor in a
multi-sensor fusion algorithm [19-21].
Since complex fields are represented by hundreds of

parameters [6], it is computationally cumbersome for a
single-robot to compute and store all parameter esti-
mates and the uncertainty measures. It also quickly
becomes unfeasible for individual robots to run a large
Figure 1 Change in spatial resolutions for multi-scale sampling.
AS algorithm, and share large covariance matrices wire-
lessly. Furthermore, with multi-robot sampling, the
resources can be allocated efficiently if some resources
are either busy or not available.
If the filter computation can be distributed among

multiple robots, the number of computations per-
formed by all the robots, i.e., the overall computational
efficiency would be greater than the processing carried
out by a single-robot having to carry-out both the sam-
pling and computational tasks. Moreover, we expect
that the concomitant advantages such as the flexible
degree of parallelism, speed of convergence, and reduc-
tion in complexity that will be thus gained would be
significant. With a single-robot, the total field estima-
tion time includes the time necessary for navigation,
sensing, and computation of the estimate (as there is
no communication involved in this case). With multiple
robots, the field estimation time includes the time
taken for sensing, computation, communication, and
final fusion to recover the field density distribution.
We expect that the speed of convergence would in-
crease by using multiple robots simply because of the
sampling being done in parallel, and that the navigation
time would be reduced significantly at the cost of mod-
est increases in computation, communication, and
fusion.
The rest of the article is organized as follows: in Sec-

tion 2, we present the general formulation of the AS
problem; Section 3 summarizes the existing centralized
and decentralized filters, and their application to sensor
network for field estimation; in Section 4, we present the
novel federated distributed KF; Section 5 presents the
simulation results for the proposed algorithm, and their
discussion; finally Section 6 concludes the article.
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Formulation of multi-robot AS algorithm
As covered in our previous study, a single-robot-based
AS algorithm for a 2D spatially stationary field g(x,y)can
be described as follows [6] (Figure 1).

(1)Low-resolution sampling: The field g(x,y) of size
m×m is divided into uniform square-sized grids
n× n such that n <m, and samples are collected at
the centers of each of the n× n grids. Hence,
m/n×m/n samples are collected as a low-resolution
representation of the actual field.

(2)Parameterization: Parametric representation of the
field g(x,y) is achieved by training a B-neuron RBF
neural network with the acquired low-resolution
data. This results in a representation of the field as a
sum of B Gaussians (one per neuron), and an offset
(or bias) parameter b, with each neuron having its
own parameters such as its peakai , variance σ i, and
center ðx0i; y0iÞ. Each of these parameters has an
initial estimate value A0, and an initial error
covariance P0. The number of neurons B is chosen
depending on the complexity of the field and in such
a way that the initial field estimation error is
minimized to a value less than an acceptable
threshold. Note at this stage that unlike the
low-resolution samples which are uniformly
distributed since they are acquired from uniformly
distributed grids, the Gaussians (one Gaussian per
RBF node) are distributed non-uniformly depending
on the density of the field. We actually use more
Gaussians in denser areas and fewer Gaussians in
smoother areas of the field to be mapped. Further
details on the relationship between the number of
low-resolution samples and the number of neurons
can be seen in [6].

Mathematically, a spatially stationary field is
represented by the parameter vector A defined by

A ¼ b a1 σ1 x01 y01 . . . aB σB½
x0B y0B�Tk ð1Þ

where A is the vector containing the true values of
the parameters, which is not known due to (i) the
resolution error between the actual field and the
acquired low-resolution version, and (ii) RBF
training error.

(3)High-resolution sampling: In order to improve the
field estimate, spot-measurements are made by a
robotic vehicle which collects samples Zk in a grid
of size p× p(where p ≤ n) based on a heuristic GAS
algorithm [6]. According to the GAS algorithm, the
next sampling location is searched within the
vicinity of the currently sampled location, based on
a criterion of minimization of the norm of the
parameters’ error covariance matrix.
The EKF governing and measurement equations are
respectively given by

Akþ1 ¼ Ak þ ω

¼ b0;k a1;k σ1;k x01;k y01;k . . . aB;k
�
σB;k x0B;k y0B;k

�T þ ω; ωeNð0;QÞ

Zk ¼ hðAkÞ þ νk

¼ bþ
XB
i¼1

ai exp �σ i ðxk � x0iÞ2
��

þðyk � y0iÞ2
��þ ν; νeNð0;RÞ ð2Þ

where Q is the process noise covariance, R is the meas-
urement noise covariance and (xk, yk) are the robot sam-
pling locations.
The multi-agent (or multi-robot) AS problem consid-

ered here can be described as follows:

Assumptions:

(i) A nonlinear spatio-temporal field variable is
described via a parametric approximation
Z=Z(A, X, t) depending on an unknown parameter
vector A, position vector X, and time t.

(ii) N robotic vehicles (agents) sample the field with
sensing uncertainty in order to obtain higher
resolution estimates of the field.

(iii)The number of field parameters (L) and their initial
guesses are based on a hypothesis originating from
prior knowledge of the field consistent with a
low-resolution image of the entire field.

As a complex spatial field is spread over a large area,
its parameterization will require a large number of para-
meters. Therefore, it becomes unfeasible for a single-
robot to navigate to different locations, collect samples,
and improve parameter estimates in a short period of
time. In addition to time constraints, the sampling prob-
lem also experiences constraints in the amount of energy
available to the robot, as well as suffers from a consider-
able computational burden. These constraints limited
the performance of our single-robot AS algorithm as
described in [22]. Therefore, a key contribution of this
article is to propose a better alternative that greatly alle-
viates the time and energy constraints imposed on the
sampling process by the single-robot approach of map-
ping a spatio-temporal stationary field.
It is assumed here that only a single parameter Z vec-

tor is measured by all of the mobile robots used. How-
ever, in the case where multiple parameter vectors are to
be measured, and the measurement model of each mea-
sured parameter vector is known, then the general EKF-
based framework of AS presented [6] can be used. In
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[23], we considered the scenario with two measurements
only: the field measurement and the location of the
robots.
It is important at this juncture to describe the follow-

ing three main issues which underline the multi-robot
sampling problem tackled here.

(i) How can the sampling area be divided efficiently?

Section 2.1 discusses the above issue and suggests
some efficient ways of tackling it.

(ii) How can the density distribution be estimated
through efficient data fusion when robots are
collecting measurements in parallel?

(iii)How can the computational and communication
burden be distributed efficiently amongst the many
robots used?

To address the last two issues, several possible algo-
rithms are first presented in Sections 3&4, and then
their respective simulation results presented and dis-
cussed in Section 5.

Partitioning of sampling area
A method is clearly needed to efficiently divide the sam-
pling area into clusters, in order to run a parallel AS al-
gorithm with multiple robots. Here, we propose an
approach to efficiently divide the sampling area for para-
metric distributions using Fuzzy c-means clustering
(FCM) and Centroidal Voronoi Tessellation (CVT) dia-
grams.FCM has frequently been used in the past for the
classification of numerical data. CVT diagrams [24] have
also been used for forming non-uniform size grids to
better explore high-variance areas for non-parametric
distributions [7]. Here, we employ a scheme to efficiently
divide the sampling areas for parametric distributions
Figure 2 Sampling area with Gaussian field centers partitioning perfo
using both FCM and CVT. In this approach, FCM clus-
ters samples based on the estimated centers of the ap-
proximating Gaussians used to map the field. Note here
that we have assumed that the partitioning is performed
once only at the beginning of the Fusion filter. For a
time-varying field, further accuracy can be obtained by
re-partitioning the field (and hence repositioning the
Gaussians) after some samples to account for the field
evolution in time.
As discussed in the beginning of this section, low-

resolution samples from g(x, y) are used to train the RBF
neural network which gives an estimate of the field as a
sum of B Gaussians (neurons). This clustering approach
is illustrated in Figure 2, where a field represented by
B= 100 Gaussians is partitioned into eight regions. The
centers of these Gaussians shown in red circles are used
for clustering.
As the clustering is fuzzy, it allows one piece of data

to belong to several clusters via a membership grade u
ranging between 0 and 1, and involves the iterative
minimization of the cost function [25] given in Equation
(3).

Jm ¼
XL
i¼1

XN
j¼1

umij xi � cj
�� ��2; 1≤m < 1; ð3Þ

where L ¼ 4Bþ 1 is the number of Gaussian centers, N
is the number of clusters which is equal to the number
of robots in this case, uij is the degree of membership of
center xi in cluster j, cj is the centroid of the cluster j
and m is a real number greater than 1. Next, a CVT dia-
gram based on Lloyd’s algorithm uses the centroid loca-
tions acquired by fuzzy clustering to classify all points in
discrete space that are closest to the centroid, as a single
group. Mathematically, given C clusters, each with a
L

M

C
S

rmed in two steps using FCM and CVT.
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centroid denoted by cs, then a point p on the field is said
to be part of the cluster r if the following distance in-
equality is satisfied: p� crj j≤ p� csj j; s ¼ 1; . . . ;N ; s 6¼ r.
As a result of this mapping scheme, more Gaussians

will overlap in areas where there are large field varia-
tions. The use of FCM and the CVT diagram for area
classification may result in regions which have more var-
iations and which must be as small as required in order
to sample them thoroughly, i.e., so as not to miss out on
any vital information. The areas with less variation,
though they may be large, would require fewer samples,
since they are represented by only a few parameters.
Centralized, completely decentralized, and
federated decentralized filters
In this section, we first examine completely centralized,
completely decentralized, and federated decentralized fil-
ters, and their use in running the proposed multi-robot
AS algorithm. We then argue that a new and efficient fil-
ter is needed for this application which will be discussed
in detail in the following section.
Using completely centralized filter
In a completely centralized sampling approach, each
robot j ¼ 1; 2; . . . ;N takes sensor measurement Zj;kþ1

and transmits them to the central processor, which then

calculates the required parameter estimates Âkþ1 and
error covariances Pkþ1 . The central processor computes
these estimates, shown below in (4), using the ‘KF equa-
tions for a single robot’, (while single-handedly) taking
on the task of fusing the multiple measurements it
acquires from the N robots used.
Figure 3 Completely centralized filter for multi-robot AS
algorithm.
Figure 3 illustrates the completely centralized ap-
proach, in which all robots transmit their sensor meas-
urement to the central filter, which then calculates the
field estimate using Equation (4) given below where the
superscript ‘-‘ in the vector A and matrix P indicates
pre-measurement, while the lack of it indicates post-
measurement:

EKF Pre-measurement update ða priori estimateÞ
equations :

Â
�
kþ1 ¼ Âk ¼ b̂0;k â1;k σ̂ 1;k x̂01;k ŷ01;k L

h
âB;k σ̂B;k x̂0B;k ŷ0B;k

iT
P�
kþ1 ¼ Pk

EKF Post-Measurement update ða posterior estimateÞ
equations :
Pkþ1 ¼ P�1

k þ GT
k R

�1Gk
� ��1

¼ P�1
k þ

XN
j¼1

GT
j;kR

�1Gj;k

" #�1

Âkþ1 ¼ Âk þ Pkþ1GT
k R

�1

Z1;kþ1

Z2;kþ1

M
ZN ;kþ1

0BB@
1CCA�

gkðÂkÞ
gkðÂkÞ
M

gkðÂkÞ

0BB@
1CCA

2664
3775

where;

Âk ¼ b̂0;k â1;k σ̂ 1;k x̂01;k ŷ01;k . . . âB;k

h
σ̂B;k x̂0B;k ŷ0B;k

iT
gk Âk
� �¼b0;kþ

XB
i¼1

âi;k exp �ðx� x̂0i;kÞ2þðy� ŷ0i;kÞ2
2σ̂ 2

i;k

( )

Gk ¼ @gk
@b̂0;k

@gk
@â1;k

@gk
@σ̂ 1;k

@gk
@x̂01;k

@gk
@ŷ01;k

. . .

"
@gk
@âB;k

@gk
@σ̂B;k

@gk
@x̂0B;k

@gk
@ŷ0B;k

#T

ð4Þ

Here we assume a stationary field and hence time pre-
diction is not needed, i.e., the a priori estimates will be

Â
�
kþ1 ¼ Âk and P�

kþ1 ¼ Pk . In [6], we assumed a slow
time-varying field, a single sampling robot was used, and
we included the prediction too considering the time evo-
lution of the field.
This type of scheme is simple, as there is little com-

munication involved and no redundant computations.
But, the disadvantage is that the sensing robots do not
carry any information on the field to be estimated.
Therefore, this algorithm cannot be adaptive for every
sample because the latest estimates are required to gen-
erate new sampling locations, and these estimates are
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not calculated at every robot. Simulation results are
shown in Section 5, where multiple sampling locations
are chosen based on the current field estimate, and then
all the measurement data collected are transmitted to
the central filter for fusion, further processing and deter-
mination of the next sampling locations.
Using completely decentralized filter
For a completely decentralized filter implementation,
each robot not only takes the sensor measurement, but
also runs locally the AS algorithm. However, it only cal-
culates partial estimates of the field parameters and
error covariance. It also generates new sampling loca-
tions within the vicinity of its current position. After
every few samples, the robots communicate and share
with each other their partial field estimate information,
in order to calculate the complete estimates. The par-
ameter estimate vector and the error covariance are the
two terms each robot needs to transmit to the other
robots. Each robot assimilates the received information
using a decentralized EKF scheme formulated in
[19,26].
Figure 4 illustrates the completely decentralized filter

structure in which each robot has its own filter to com-
pute partial estimates, and a fusion filter for assimilating
the estimates acquired from other nodes to generate the
complete field estimate.
If a completely decentralized approach is considered,

then an AS algorithm running on each robot carries the
information about all the field parameters, and thus
there is no need at all for a global fusion filter in this
case. Hence, each robot j can calculate the partial or
Figure 4 Completely decentralized filter for multi-robot AS algorithm
Local Estimate (LE), Âj;kþ1;LE and Pj;kþ1;LE after (k+ 1)th

using Equation (5)

Pj;kþ1;LE ¼ P�1
j;k;LE þ GT

j;k;LER
�1Gj;k;LE

h i�1

Âj;kþ1;LE ¼ Âj;k;LE

þPj;k;LEGT
j;kR

�1 Zj;kþ1 � gj;k;LEðÂj;k;LEÞ
� �

where;

Âj;k;LE ¼ b̂0;k â1;k σ̂ 1;k x̂01;k ŷ01;k . . . âB;k

h
σ̂B;k x̂0B;k ŷ0B;k

iT
j;LE

gj;k;LE Âj;k;LE
� � ¼ b̂0;j;k;LE

þ
XB
i¼1

âi;j;k;LE exp �ðx� x̂0i;j;k;LEÞ2þðy� ŷ0i;j;k;LEÞ2
2σ̂ 2

i;j;k;LE

( )

Gj;k;LE ¼ @gk
@b̂0;k

@gk
@â1;k

@gk
@σ̂ 1;k

@gk
@x̂01;k

@gk
@ŷ01;k

"

. . .
@gk
@âB;k

@gk
@σ̂B;k

@gk
@x̂0B;k

@gk
@ŷ0B;k

#T

j;LE

ð5Þ
Note that Gj,k,LE, where j, k, LE stand for the sensor

number, sample number, and LE, respectively, is the
Jacobian of the Gaussian vector gj,k,LE, and is used in the
above linearized EKF measurement update equation to
estimate Âj;k;LE .
To compute the rth update, robot j calculates the total

estimate ðÂj;r; Pj;rÞafter each robot has collected its own
q samples as explained next. First it (robot j) acquires
from the other robots their new partial estimates
ðÂi;rq;LE ;Pi;rq;LEÞ which were computed from q new sam-
ples and then assimilates these new partial estimates
.
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with both its previous total estimates ðÂj;r�1Pj;r�1Þand
its own new partial estimates. The complete rth

updates, Pj,r and Âj;r , are finally computed by robot j
using Equation (6) [19]:

ðPj;rÞ�1¼ðPj;r�1Þ�1þ
XN
i¼1

ðPi;rq;LEÞ�1 � ðPi;ðr�1Þq;LEÞ�1� �
Âj;r ¼ Pj;r ðPj;r�1Þ�1Âj;r�1 þ

XN
i¼1

ðPi;rq;LEÞ�1Âi;rq;LE
�"

�ðPi;ðr�1Þq;LEÞ�1Âi;ðr�1Þq;LE
�#

ð6Þ
The advantage of this approach is that it does not in-

volve any approximations, and there is no dependence
on a central filter for computing the partial estimates.
Also, the objective of sampling in parallel can be suc-
cessfully achieved. The disadvantage of the algorithm is
that it is demanding and inefficient in terms of commu-
nication and computational requirements when there
are many parameters to estimate and heavy communica-
tion requirements to satisfy. This network has to be fully
connected and there is excessive communication. This
full parallelism (and complete distribution) of this type
of algorithm can be taken advantage of in applications
such as target tracking which involve the estimation of a
few parameters (such as location, speed, etc., of the
Table 1 Comparison of simulation results for single robot, mu

Single-rob

Field size (m×m) 300 × 300

Grid size for initial samples collection (n× n) 30 × 30

Number of neurons (B) 40

RBF variances (σ) 30

Number of sampling robots (N) 1

Grid size for adaptive sampling (p× p) 5 × 5

Horizon size (in grids) for next sample selection for each robot 10

Initial parameters error covariances b ai si
ix0iy0i

� �
200 50

�
Sensor measurement error covariance (R) 1

Initial norm of error covariance of all parameters ð P0k kÞ 375.9

Final norm of error covariance of all parameters ð Pkþ1k kÞ 13.25

Norm of error between original and initial estimated
field ð g� gest0k kÞ

25.05

Norm of error between original and final estimated
field ðE2F ¼ g� gestkþ1k kÞ

19.67

Time taken to reach ð g� gestkþ1k kÞ < 20 11.92 min

No. of samples (qN) 300

No. of times KF runs for calculating the parameter estimates 300 (comp

# of samples/robot after which global estimate is calculated (q/r) 1

No. of times fusion is performed using LEs (r) N/A
target) only. When a large number of parameters are to
be estimated, dividing the entire field of interest into
several sampling areas and provided a sufficient number
of robots is allocated to each area, then there will be no
doubt that, through communication, this will enable dif-
ferent robots to carry better information about different
parameters, thus resulting in an improvement of the
overall estimation of the field. If only a few robots are
used to sample a particular area, then each robot will
have a larger sampling area to cover and it will take
more time to calculate the local parameter estimates up
to a certain degree of accuracy, from which it will then
calculate the global estimate of the field parameters. This
may not be possible under time constraint. This is
clearly illustrated in Table 1 where reduction in number
of robots from 4 to 1 resulted in an almost four fold in-
crease in the total sampling time.
By the way of example, in adaptively sampling a field

(shown in Figure 2) represented by B= 401 parameters.
The field is divided into N= 8 partitions and the sam-
pling operation is performed using 1 robot/partition.
Running this decentralized algorithm would require each
robot to calculate the partial estimate of 401 parameters,
and to wirelessly transmit an error covariance matrix of
size 401 × 401, and a parameter estimate vector of size
401 × 1 to every other robot. Clearly, such a scheme
would be very inefficient and not scalable.
lti-robot decentralized and federated decentralized filter

ot Multi-robot
centralized KF
(non-AS)

Multi-robot decentralized
federated and
non-federated fusion

300 × 300 300 × 300

30 × 30 30 × 30

40 40

30 30

4 4

5 × 5 5 × 5

30 10

10�7 4 4
�

200 50 10�7 4 4
� �

200 50 10�7 4 4
� �

1 1

375.9 375.9

241.0 17.27

25.05 25.05

48.0 19.33

5.48 min 2.89 min

300 320

lete estimate) 1 (complete estimate) 320 (partial estimate)

300 20

N/A 4
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Using a federated decentralized filter
In this approach, each robot takes some sensor measure-
ments, estimates partial error covariances and field para-
meters, and transmits this information to a global fusion
filter for assimilation, in a similar fashion to the ap-
proach proposed in [20,21,27]. Each robot runs Equation
(5), but the fusion is done only at the fusion filter using
Equation (6). Then these estimates are transmitted by
the global fusion center (or filter) to all of the robots. So,
the only difference between federated and completely
decentralized approach is that in the federated case,
these estimates are centrally calculated by the common
global fusion filter while in complete decentralization,
these are locally estimated at each robot.
Figure 5 illustrates the federated decentralized filter in

which each robot calculates partial field estimates, and
transmits them to the global fusion filter, which then
computes the complete field estimates. The advantage of
this approach is that there is less communication com-
pared to the completely decentralized case. Although in
this case, none of the robots carries the complete infor-
mation about all of the parameters all of the time, this
approach will also be computationally more efficient
than the completely decentralized implementation, sim-
ply because of the removal of the computational redun-
dancy, due to fusion taking place at every robot, that
was needed in the completely decentralized scheme. The
disadvantage that this approach shares with the com-
pletely decentralized one is that partial estimates of all
Figure 5 Federated decentralized filter for multi-robot AS
algorithm.
parameters are still being carried by all of the robots all
of the time, although information about these estimates
might not be complete. Therefore, by federating the
decentralized KF filtering scheme, the computational as-
pect of the problem has been mitigated but not the com-
munication one. A thorough examination of the above
three filtering schemes has therefore led us to take a
novel and fruitful approach that would reduce both
computational and communication overheads simultan-
eously. This novel approach is underpinned by a shift in
focus from the mere decentralization of the KF filter to
its distribution as described in the following section.

Federated distributed Kalman filter
A decentralized and a distributed KF are two different for-
mulations of the same KF algorithm [19]. In a decentra-
lized algorithm, the filter is full-order, which means that
every local filter carries partial information about all para-
meters, and the information is shared in a star topology to
reach consensus amongst all robots on the final parameter
estimates. The objective of distributed algorithms is to effi-
ciently decompose the full-order filter into several
reduced-order filters, in order to reduce the computational
complexity and communication overhead, and hence im-
prove the scalability. It can be said that decentralization is
the first step toward efficient distribution. In case of no
distribution, every collected sample is used to compute the
estimates of all parameters in the field. But with distribu-
tion, this sample is used to compute the estimates of only
those parameters which have significant impact on the re-
gion where this sample has been collected.
The objective of the work presented in this section is

to modify the formulation of a federated decentralized
scheme, in order to reduce both the communication
overheads and the computational load involved. This
formulation considers only the cross-covariance terms
contributed by neighboring Gaussians only and ignores
those contributed by distant Gaussians as a trade-off be-
tween accuracy and computational complexity. The de-
cision behind ignoring distant Gaussians is supported by
the analysis provided in Section 5, where a threshold of
0.001% in the relative contribution of each Gaussian was
used in deciding the number of Gaussians to keep. An
accurate DKF is not possible in this AS problem because
local measurement models are not available. Further-
more, the use of global measurement models at each
node requires the estimate of all parameters, which will
contradict the motivation behind the implementation of
DKF. There are other schemes that handle the error co-
variance terms “very lightly” such as Kalman Consensus
schemes, which take the average of the error covariances
of the parameter estimates in order to implement the
DKF with only communication between neighboring
nodes being used [16,17].
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Decentralized approaches are good enough for appli-
cations involving a small number of states such as track-
ing of objects, etc. But problems such as parametric
sampling involve hundreds of parameters, and hence
distributing the KF filter becomes all the more important
for an efficient operation.

Approach to distributed computations and
communications
Assume that we have a continuous field distribution
within a certain perimeter, which means that there is dis-
continuity between the field and its surroundings. As
shown in Figure 2, this field is represented by L para-
meters, where L ¼ 4Bþ 1, and the field estimate is calcu-
lated at the central station based on the LEs received
from N sampling robots. In the example shown in Fig-
ure 2, B= 100, N= 8, and L= 401. The circles shown are
the center ðx0i; y0iÞof B Gaussians. One of the highlighted
partitions has S parameters, the estimates of which are
expected to change by collecting samples from that parti-
tion. S includes all the parameters inside a partition, as
well as the surrounding parameters which have a signifi-
cant impact on that partition. The collection of a single
sample leads to the change in M parameter estimates,
whereas collecting multiple samples results in the change
of C parameter estimates. Hence, from a set-theoretic
point of view, we can state that M⊂C⊂S⊂L.For the decen-
tralized case, M=C= S= L and all the cross-covariance
terms contributed by all the Gaussians are considered.
However, for the distributed case, we have M⊂C⊂S⊂Land
an increase in M, C, and S will lead to a better accuracy
at the cost of a higher number of computations.
The idea behind this approach is to run a reduced-

order KF rather than a full-order one so as to reduce the
computational load, as well as the communication over-
heads by transmitting only the smallest amount of infor-
mation needed.
Given the following sizes of the variables involved:

ÂM 2 RMx1; PM 2 RMxM; ÂC 2 RCx1; PC 2 RCxC ; ÂS 2
RSx1; PS 2 RSxS; ÂL 2 RLx1; PL 2 RLxL , this approach in-
volve the following steps:

1. Transformation from ðPL;; ÂLÞto ðPS; ÂSÞat the
fusion filter.

The fusion filter evaluates the initial estimate of
ðPS; ÂSÞ by first generating the binary
transformation matrix ULS (to transform L to S), and
transmitting ðPS; ÂSÞ to robot 1. The matrix
ULS ¼ UT

SL is kept in memory by the fusion filter for
the final assimilation stage.

PS ¼ UT
LSPLULS; ÂS ¼ UT

LSÂL

ÂS 2 RSx1; PS 2 RSxS; ÂL 2 RLx1;
PL 2 RLxL;ULS 2 RLxS

ð7Þ
2. Transmit the estimates of S parameters ðPS; ÂSÞto
Robot #j

3. Collect the measurement- and estimate pair,
ðPM;kþ1; ÂM;kþ1Þ

PM;kþ1 ¼ UT
SM;kþ1PSUSM;kþ1

	 
�1
�
þ GT

M;kþ1R
�1
kþ1GM;kþ1

��1

2 RMkþ1�Mkþ1

ÂM;kþ1 ¼ UT
SM;kþ1ÂS

þ PM;kþ1G
T
M;kðRkþ1Þ�1 Zkþ1 � gðÂM;kÞ

� �
2 RMkþ1�1

GM;kþ1 ¼ @gðAM;kÞ
@ÂM;k

2 R1xMkþ1 ð8Þ

ÂM;kþ1 2 RMkþ1�1; PM;kþ1 2 RMkþ1�Mkþ1 ;

USM;kþ1 2 RSxMkþ1

4. Transformation from ðPM;kþ1; ÂM;kþ1Þto
ðPC;kþ1; ÂC;kþ1Þ

PC;kþ1 ¼ UT
C;kþ1PC;kUC;kþ1 þ UT

MC;kþ1ðPM;kþ1

�UT
SM;kþ1PS;kUSM;kþ1ÞUMC;kþ1

ÂC;kþ1 ¼ UT
C;kþ1ÂC;k þ UT

MC;kþ1ðÂM;kþ1

�UT
SM;kþ1ÂS;kÞ

ÂC;kþ1 2 RCkþ1�1; PC;kþ1 2 RCkþ1�Ckþ1 ;
ÂC;k 2 RCk�1; PC;k 2 RCk�Ck ;

UMC;kþ1 2 RMkþ1�Ckþ1 ;UC;kþ1 2 RCkþ1�Ck

ð9Þ

where UMC;kþ1and UC;kþ1 are the binary matrices
for transformation from M to C for the (k+ 1)th

sample, and the transformation of C from kth to
(k+ 1)th sample, respectively.

5. Repeat steps3 and 4 until an update is requested
from the fusion filter.

6. Transmit the pairðPC ; ÂCÞto the fusion filter
7. The fusion filter then substitutes ðPC ; ÂCÞinto

ðPj;L;LE ; Âj;L;LEÞ which is unique to each robot.

PL;kþn

� �
j ¼ PL;k þ UT

SL;kþnðUT
CS;kþnPC;kþnUCS;kþn

h
�UT

CS;kPC;kUCS;kÞUSL;kþn

i
j

ÂL;kþn
� �

j ¼ ÂL;k þ UT
SL;kþnðUT

CS;kþnÂC;kþn

h
�UT

CS;kÂC;kÞ
i
j

ð10Þ

8. The fusion filter finally runs the global update
Equation (6) considering all the different pairs
ðPj;L;LE ; Âj;L;LEÞto be local updates from different
robots.
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For clarification, an example is shown below with L= 401, S= 10, C= 5, M= 3 (for two samples).

PS ¼

p11 p12 p13 p14 p15 p16 p17 p18 p19 p1;10
p21 p22 p23 p24 p25 p26 p27 p28 p29 p2;10
p31 p32 p33 p34 p35 p36 p37 p38 p39 p3;10
p41 p42 p43 p44 p45 p46 p47 p48 p49 p4;10
p51 p52 p53 p54 p55 p56 p57 p58 p59 p5;10
p61 p62 p63 p64 p65 p66 p67 p68 p69 p6;10
p71 p72 p73 p74 p75 p76 p77 p78 p79 p7;10
p81 p82 p83 p84 p85 p86 p87 p88 p89 p8;10
p91 p92 p93 p94 p95 p96 p97 p98 p99 p9;10
p10;1 p10;2 p10;3 p10;4 p10;5 p10;6 p10;7 p10;8 p10;9 p10;10

2666666666666664

3777777777777775
;AS ¼

a1
a2
a3
a4
a5
a6
a7
a8
a9
a10

2666666666666664

3777777777777775
ð11Þ
Let the sample taken at time (k+ 1),(k+ 2) and (k+ 3),
respectively, estimate the parameters (2,4,7), (3,4,6), and
(1,2,4,9). Then,
For the first sample: parameters (2, 4, 7) changes.

Therefore,

PM;kþ1 ¼ PC;kþ1 ¼
p22 p24 p27
p42 p44 p47
p72 p74 p77

264
375;

AM;kþ1 ¼ AC;kþ1 ¼
a2
a4
a7

264
375; ð12Þ

For the second sample: parameters (3, 4, 6) changes.
Therefore,

PM;kþ2 ¼
p33 p34 p36
p43 p44 p46
p63 p64 p66

24 35;AM;kþ2 ¼
a3
a4
a6

24 35
UC;kþ2 ¼

1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

24 35;

UT
C;kþ2PC;kþ1UC;kþ2 ¼

p22 0 p24 0 p27
0 0 0 0 0
p42 0 p44 0 p47
0 0 0 0 0
p72 0 p74 0 p77

266664
377775;

UMC;kþ2 ¼
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

24 35;

PC;kþ2¼Pj;kþ2;LE¼

p22 0 p24 0 p27
0 p33 p34 p36 0
p42 p43 p44 � p�44 p46 p47
0 p63 p64 p66 0
p72 0 p74 0 p77

266664
377775;

ÂC2 ¼ Âj;kþ2;LE ¼

a2
a3
a4
a6
a7

266664
377775;

ð13Þ
For the third sample parameters (1, 2, 4, 9) changes.
Therefore,

AM;kþ3 ¼
a1
a2
a4
a9

2664
3775; PM;kþ3 ¼

p11 p12 p14 p19
p21 p22 p24 p29
p41 p42 p44 p49
p91 p92 p94 p99

2664
3775

Computational and communication complexities
EKF has an O(L3) computational complexity if each sam-
ple updates all of the L parameters of the two-
dimensional parametric field. However, as a first-order
approximation, it can be assumed that a single sample
affects only neighboring parameters. With this assump-
tion, the algorithm can run in a distributed fashion, and
the computational complexity at the sampling nodes can
then be reduced. Only the fusion filter’s complexity
remains of order O(L3), because it needs to combine in-
formation about all the L parameters. However, this cen-
tral field parameter fusion process occurs less frequently
and hence will have only a small effect on the overall
computational burden.
Table 2 illustrates a comparison of computations and

communication complexity for a centralized, completely
decentralized, federated decentralized and distributed fil-
ter. Let N be the number of sampling robots, L is the
number of field parameters, q is the number of sensor
measurements per robot, and r is the number of times
robots communicate to share their information with
each other.
For the centralized filter, the sensing robots do not

perform any computation. Hence, the computational
and communication complexity are O(qNL3) and O
(qN3), respectively.
For a completely decentralized filter, the computa-

tional complexity involved in calculating the LE at each
robot is O(qL3), whereas that involved in calculating the
global estimate at each robot is OððN � 1ÞrL3Þ, after tak-
ing estimates from (N-1) robots at a frequency r. Hence,
the combined computational complexity becomes



Figure 6 (a-i: from left to right, then top to bottom): Simulation
results for single-robot adaptive sampling. Field estimate is
calculated after every sample. Norm of error ð g� gestkþ1k k2Þ reduces
to19.67 in 302 samples and it took 11.92 min.

Table 2 Comparison of computational complexity and communication overhead for centralized, decentralized,
federated decentralized, and federated distributed filter

Computations Communication

Robot Fusion center Combined

Centralized filter – O(qNL3) O(qNL3) O(qN)

Completely decentralized filter O(qL3 + (N – 1)rL3) – O(NqL3 +N(N – 1)rL3) O(N(N – 1)r(L2 + L))

Federated decentralized filter O(qL3) O(rL3) O(NqL3 + rL3) O(2Nr(L2 + L))

Federated distributed filter O(qM3) O(rL3) O(NqM3 + rL3) O(Nr(C2 + C+ S2 + S))
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OðNqL3 þ NðN � 1ÞrL3Þ. At the same time, the commu-
nication complexity is OðNðN � 1ÞrðL2 þ LÞÞ.
In order to reduce the communication overhead and

computational complexity, a federated filter calculates
the global estimate on the fusion filter only, which
reduces the computational complexity to OðNqL3 þ rL3Þ ,
and the communication complexity to Oð2NrðL2 þ LÞÞ.
Finally, for the proposed distributed version of the

federated decentralized filter, instead of calculating
the estimates of L states at a single robot, we simply
calculate the estimates of M (M < L) states at a single
robot for each sample collected. This approach
reduces the computational and communication com-
plexity to OðNqM3 þ rL3Þ and OðNrðC2 þ C þ S2 þ SÞÞ,
respectively.

Simulation results
In our previous work, we have shown simulation and ex-
perimental results for a single-robot AS procedure to
validate our approach [6,22,23,28,29].We now consider
the multi-robot algorithm with centralized, decentra-
lized, federated decentralized, and distributed filtering
structures.
Here a complex field, of size m�m ¼ 300�

300 pixels , is generated as the truth field, and is to be
reconstructed by AS using N= 4 robots. The field is
divided into uniformly-sized grids of size n� n ¼
30� 30 each, and m=n�m=n ¼ 10� 10 ¼ 100low �
resolution samples are initially collected by considering
a sample from the middle of each grid. These samples
provide a low-resolution description of the field. These
initial samples are used for training the RBF neural net-
work and the training method used is of the ‘Self-
organized selection of centers’ type ([30]). We use the
“new rb” function of MATLAB to train the neural net-
work assuming B= 40 neurons and a spread parameter
of σ= 30. This provides an initial estimate of the field
with L4B+ 1= 161 parameters. Spot measurement-based
AS is then performed by robots roaming in smaller
grids, each of size p� p ¼ 5� 5 , in order to improve
the field estimate. All assumptions used and results
obtained are shown in Table 1.
To estimate the field reconstruction accuracy, two

convergence criteria are used. One is the 2-norm of the
error between the original and the estimated field, i.e.,
E2F ¼ g � gestkþ1k k2 , henceforth referred to as the field
error, which is achieved by calculating the errors for all
points (x,y) in the field, and then calculating the 2-norm
of these point-wise error values. It is obvious that, for a
fixed neural network structure, using more samples for
the initial training would result in a smaller initial field
estimation error. For example, as shown in Figure 6d, if
m=n�m=n ¼ 10� 10 ¼ 100 low-resolution samples
per uniform grid are used for RBF training, then the ini-
tial field error E2F= 32, and the final field error after 302
samples is E2F= 19.67. However, by increasing the num-
ber of low-resolution samples per a uniform grid from
100 to 900 (i.e., a nine fold increase), the initial value of
the field error (E2F) decreases from 32 to 20 (i.e., a de-
crease of 37.5%).
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However, it is important to note here that, while the
example here, based on a lower number (100) samples
per grid, has a high initial field error, it achieves the
same accuracy as the example (covered in [6]), which
uses a higher number (900) of samples per grid. The ac-
curacy achieved by this example is due to the fact that it
relies on AS while using only a smaller total number of
samples of 100 (initial samples) + 302(adaptively
acquired) = 402 samples than the one used in the ex-
ample of [6].
The other criterion is the 2-norm of the parameter

error covariance matrix ð Pkþ1k k2Þ.
Figures 6 and 7, respectively, show the simulation

results when using a single-robot sampling and a multi-
robot one. It can be seen from Figure 6d that the field
estimation error first increases to a peak value before it
starts to decrease. This initial increase in error seems
to be caused by an apparent divergence of the EKF fil-
ter which is prone to divergence because of its depend-
ence on the first-order linearization process that is
Figure 7 (a-i: from left to right, then top to bottom): Simulation resul
filter. Partial field estimates are calculated after every sample. Complete fie
ð g� gestkþ1k k2Þbecomes 19.33 in 320 samples, and it took 2.89 min.
performed to calculate the new estimate. More detailed
analysis of this can be found in [29] where we carried
out a thorough comparison between various nonlinear
filters such as the EKF, Second-order EK, Iterated EKF,
and Unscented KF so as to study and highlight the lim-
itations of the EKF filter. Another possible reason for
this filter divergence could be the insufficient number
of samples used. This can also be exacerbated by the
fact that the further these few samples are apart, i.e.,
the larger the linearization step is, the worse the
linearization error becomes. This increase in error
could also be due to an insufficient coverage of the
sampling area. This therefore reinforces our motivation
to use multiple robots that ensure that different regions
are adequately covered at the same time. The improve-
ment brought about by the use of multiple robots can
be seen in Figure 7d for the multi-robot case where,
the initial error increase, although not completely elimi-
nated, has been greatly reduced compared to the single
robot case (Figure 6d).
ts for multi-robot adaptive sampling with federated decentralized
ld estimates are calculated after every 80 samples. Norm of error
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As discussed in previous sections, if the centralized fil-
ter is used for multi-robots, then AS is not possible.
Figure 8 shows the simulation results when all the sam-
pling locations for the four robots used are generated
in advance based on the initial estimate. Hence, the
sampling approach is non-adaptive in nature. Robots
collect samples from these locations and transmit them
to the central filter for fusion. It can be clearly seen
from Figure 8e that if future sampling locations gener-
ated by the (non-adaptive) sampling algorithm are
based on the initial estimate of error covariance only,
then these locations would not provide much informa-
tion about the global field distribution, as these loca-
tions are all closer to one another and hence would
furnish only a localized knowledge of the field distribu-
tion. In fact, after collecting 300 samples, the error is
still very high as shown in Figure 8d and Table 3.
Moreover, it takes the non-negligible time of 5.48 min
to perform this mission. Figure 7 shows the results for
a federated decentralized approach which is equally
Figure 8 (a–i: from left to right, then top to bottom): Simulation resu
calculated after all the measurements are taken. Norm of error ð g� gestkþk
valid for a completely decentralized one. The only dif-
ference between these two approaches will be in the
computation and communication load to be carried by
the robots. For the completely decentralized approach,
the total number of samples collected is q= 320. After
every 20 samples collected, each robot sends its partial
(local) estimate to the global filter for fusion. This way
this update is performed r= 4 times.
The use of four robots instead of one for sampling also

reduces the time for field reconstruction from 11.92 to
2.98 min which amounts approximately to a fourfold re-
duction in time. The reason for this reduction can be
explained intuitively since, by sampling using four
robots, instead of one, not only does the number of sam-
ples collected by each robot gets reduced, but so does
the navigation time as well because of the smaller sam-
pling area allocated to each robot.
It is important to point out at this juncture that the

process by which only the average number of the most
influencing Gaussians is kept is based on their percent
lts for multi-robot non-adaptive sampling. Field estimate is only

1k2Þis still 48 after 300 samples, and it took 5.48 min.



Table 3 Comparison of computational loads and communication overheads for centralized, completely
decentralized, federated decentralized and federated distributed filters for sampling of the complex field shown
in Figures 6, 7, and 8

Computations Communication

Robot Fusion Center Combined

Centralized filter – 1.34 × 106 1.34 × 106 320

Completely decentralized filter 383.94 × 106 – 1,535.77 × 106 1,251.94 × 103

Federated decentralized filter 333.86 × 106 16.69 × 106 1,352.13 × 106 834.62 × 103

Federated distributed filter 5.51 × 106 16.69 × 106 38.73 × 106 121.02 × 103
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contribution relative to the total contribution of all the
Gaussians. These influencing Gaussians are selected
whenever their relative percent contributions exceed a
very small threshold chosen to be equal to 0.001% in our
simulation.
Table 3 illustrates the number of computations and

communications involved in the above simulations. For
the federated distributed filter, it is assumed that on the
average, each collected sample influences the estimate of
Figure 9 Number of computations versus number of sampling robots
unchanged.
10 neighboring Gaussians, and each communication up-
date transmits the estimates of 15 Gaussians. Hence, the
average number of parameters that can change after
each sample is M= 41, since there are 10 Gaussians, 4
parameters per Gaussian and 1 free offset parameter (i.e.,
M ¼ 4Bþ 1 ¼ 4� 10þ 1 ).Furthermore in our simula-
tion we are assuming that the number of all the para-
meters expected to change is equal to the number of all
the parameters that actually change, i.e., S ¼ C ¼
when the number of parameters representing the field remains
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4Bþ 1 ¼ 4� 15þ 1 . Using the formulae shown in
Table 2 to calculate the number of computations and
communication, the results we get for the federated
decentralized case are, respectively, 1.14 and 1.5 times
smaller than their counterparts in the completely decen-
tralized case. Moreover, the number of computations and
communication in the federated distributed case are, re-
spectively, 35 and 7 times smaller than their counterparts
in the federated decentralized case.

Scalability
The scalability of the proposed federated distributed al-
gorithm is discussed here by comparing the numbers of
computations and packets communicated (i.e., the com-
putational and communication load) in two different
scenarios, as explained below.

i. The number of sampling robots increases but the
number of field parameters is kept unchanged. As
the number of sampling robots increases, the
computational and communication load increases
almost linearly in the case of both the federated
decentralized and distributed filters, whereas for the
completely decentralized filter, this load increases
quadratically. Figures 9 and 10, respectively, show
that the computational and communication loads
increase when the number of robots used increases
from 4 to 20 for all 4 types of filter structures.

ii. The number of parameters representing the field
increases but the number of robots remains
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unchanged. This scenario may represent different
cases where either a highly complex field is used
which requires a large number of parameters for its
description but does not necessarily cover a wide
area or a field that is modestly complex but ranges
over a very wide area or possibly a field that
combines both features. If the field is spread over a
wide area, and the number of robot is kept
unchanged, then it would require more time to
reconstruct the field and the number of
computations and communications would depends
on the number of parameters used to represent the
field.
Figures 11 and 12, respectively, show the
computational and communicational loads when the
increasing numbers of parameters used are 161, 241,
321, 401, and 481. These five scenarios reflect the
cases where the field is represented with 40, 60, 80,
100, and 120 Gaussians, respectively. As shown in
Table 2, the computational complexity is related
cubically to the number of parameters. But, in the
case of the distributed KF algorithm, the rate of
increase is far smaller than the one for the other
three filters as shown in Figure 11. This result is
expected since, for the distributed KF filter, the
complexity is proportional to M3rather than to L3,
and M < L. The computational complexity can be
further reduced by increasing the number of robots
as the number of parameters increases as this will
reduce the factor M.
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The communication complexity is related
quadratically to the number of parameters for the
completely decentralized and federated decentralized
filters. For the centralized filter, this complexity is
not a function of the number of parameters, because
it is the measurement Z, rather than the parameter
estimate, that is transmitted. For the federated
distributed filter, the communication complexity is
161 241 32
0

2

4

6
x 10

11

Number of field pa

N
um

be
r 

of
 c

om
pu

ta
tio

ns

Number of computations versus n

161 241 32
0

5

10
x 10

9

Number of field pa

N
um

be
r 

of
 c

om
pu

ta
tio

ns

Number of communications versus 

centraliz

complet
federate

feder

ure 12 Number of communications versus number of field parameters w
related quadratically to the number of parameters.
However, when the number of parameters increases,
the rate of growth of the communication load is
smaller is smaller than the corresponding rate for
the completely decentralized and federated
decentralized filters. The reason for this is that it is
M and C, rather than the larger L, that are,
respectively, used in the last two entries in the
1 401 481
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columns titled: “Combined” and “Communications”
in Table 2.
Conclusion
In this article, we studied the problem of estimating the
field distribution of some particular environmental vari-
able (e.g., moisture, salinity, etc.) using both single-robot
and multi-robot AS schemes and different filtering
structures, such as the centralized and decentralized
ones as well as our proposed federated distributed filter-
ing structure. Our thorough simulation study, encom-
passing various AS schemes, clearly showed the
superiority of using multi-robot-based AS schemes over
their single-robot-AS counterparts.
These attractive advantages enjoyed by the multi-robot

AS schemes are mainly due to their features of parallel
sampling, a wider area coverage and a decentralization
scheme offered by the multi-robot approach. We pro-
posed a novel scalable structure termed the decentra-
lized distributed filter approach where the full-order
local KF filter used in the conventional decentralized ap-
proach has been distributed into several low-order KFs,
thus leading to a further vital reduction in the field re-
construction time. Our simulation results corroborated
very well our expectations of the higher performance of
our novel decentralization-cum-distribution approach
since the estimates of the communication and computa-
tional loads on the N robots used show that a dramatic
in-excess of-N-fold reduction in the sampling time can
be achieved, leading to a similar reduction in the field
reconstruction time. These very encouraging results pro-
vide us with ample encouragement to further investigate
both the efficiency and convergence properties of our
proposed distributed filter scheme. This analytical inves-
tigation as well as our ultimate goal of successfully test-
ing our proposed approach on a physical multi-robot
system is both currently under way.
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