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Abstract

Multicarrier and multiple transmit/receive antenna have become two key technologies underpinning most of the
current development and research efforts towards ubiquitous high-throughput wireless communications. Both
techniques can be used to increase the link throughput and/or to improve its robustness against channel fading and
noise. This paper presents a unified bit error rate analysis for a particular flavour of multicarrier, namely,
group-orthogonal code-division multiplex (GO-CDM), in combination with multiple Tx/Rx antennas. This system can
be shown to encompass many of current wireless architectures and the analysis is general enough to incorporate the
effects of channel frequency selectivity and Tx and/or Rx antenna correlation. The first main outcome of this paper is a
general analytical framework suitable to study the effects of the different types of diversity in multicarrier systems. This
analytical framework paves the way for the second main outcome of this study, namely, the design of effective
reconfiguration strategies that serve to balance different system requirements (e.g., performance, complexity, delay).
Particularly, it will be seen that the analytical results not only allows a-priori design decisions to be made, but it also
provides an insight that enables the derivation of dynamic reconfiguration strategies that take into account
instantaneous channel state information. The overall conclusion is that GO-CDM can play an important role in
improving the performance of adaptive MIMO-OFDM systems.

1 Introduction
Most state-of-the-art wireless systems (e.g., IEEE 802.11n,
IEEE 802.16m, 3GPP-LTE, LTE-Advanced) rely on a phys-
ical layer based on multicarrier multiantenna principles
in trying to fulfill the stringent quality-of-service (QoS)
requirements of modern multimedia applications. In par-
ticular, the combination of orthogonal frequency divi-
sion multiplexing (OFDM) with multiple-input multiple-
output (MIMO) antenna configurations results in a pow-
erful architecture, MIMO-OFDM, that is able to exploit
the various degrees of freedom available in the wireless
environment [1].
A significant improvement over conventional OFDM

was the introduction of multicarrier code division mul-
tiplex (MC-CDM) by Kaiser in [2]. In MC-CDM, rather
than transmitting a single symbol on each subcarrier, as
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in conventional OFDM, symbols are code-division mul-
tiplexed by means of orthogonal spreading codes and
simultaneously transmitted onto the available subcarriers.
Since each symbol travels on more than one subcar-
rier, thus exploiting frequency diversity, MC-CDM offers
improved resilience against subcarrier fading. This tech-
nique resembles very much the principle behind multi-
carrier code-division multiple access (MC-CDMA) where
each user is assigned a specific spreading code to share a
group of subcarriers with other users [3]. A more flexible
approach to exploit the frequency diversity of the channel
is achieved by means of group-orthogonal code-division
multiplex (GO-CDM) [4]. The idea behind GO-CDM,
rooted in a multiple user access scheme proposed in [5],
is to split suitably interleaved symbols from a given user
into orthogonal groups, apply a spreadingmatrix on a per-
group basis and finally map each group to an orthogonal
set of subcarriers. The subcarriers assigned to a group
of symbols are typically chosen as separate as possible
within the available bandwidth in order to maximise the
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frequency diversity gain. Note that a GO-CDM setup can
be seen as many independent MC-CDM systems of lower
dimension operating in parallel. This reduced dimension
allows the use of optimum receivers for each group based
on maximum likelihood (ML) detection at a reasonable
computational cost.
In [4], results are given for group dimensioning and

spreading code selection. In particular, it is shown that
the choice of the group size should take into account
the operating channel environment because an exceed-
ingly large group size surely leads to a waste of com-
putational resources, and even to a performance degra-
dation if the channel is not frequency-selective enough.
Modern wireless setups must be ready to deal with a
large variation of possible scenarios, from small offices
to large indoor/outdoor cells, and equipment configu-
rations, from low-complexity battery-powered handsets
to plugged high-end laptops. Inevitably, the conservative
approach of designing the system to perform satisfacto-
rily in the most demanding type of scenario may lead to
a significant waste of computational power, thus compro-
mising the operation of battery operated devices. In order
to minimise the effects of a mismatch between the oper-
ating channel and the GO-CDM architecture, group size
adaptation in the context of GO-CDM has been proposed
in [6], where it is shown that important complexity reduc-
tions can be achieved by dynamically adapting the group
size in connection with the sensed frequency diversity of
the environment.
Complementing OFDM, multiple-antenna technology

(i.e., MIMO) is the other main enabler towards high speed
robust wireless networks. Expanding the traditional use
of multiple antennae at the receiver side as a means to
increase diversity, the application of multiple antennae at
the transmitter side has been shown to lead to humon-
gous capacity gains. In particular, the linear increase in
capacity achieved when jointly increasing the number of
antennas at transmission and reception, theoretically fore-
casted in [7], has spurred research efforts to effectively
realize it in practice. To this end, three schemes have
achieved notable importance in the standardisation of
modern wireless communications systems, namely, spa-
tial division multiplexing (SDM), space-time block coding
(STBC) and cyclic delay diversity (CDD). While in SDM
[8], independent data streams are sent from the differ-
ent antennas in order to increase the transmission rate, in
STBC [9,10] the multiple transmission elements are used
to implement a space-time code targeting the improve-
ment of the error rate performance with respect to that
achieved with single-antenna transmission. In CDD [11]
a single data stream is sent from all transmitter anten-
nae with a different cyclic delay applied to each replica,
effectively resulting as if the original stream was trans-
mitted over a channel with increased frequency diversity.

Different authors have partially addressed comparative
studies between some MIMO strategies. For example, in
[12] CDD and STBC are compared bymeans of simulation
within the context of MC-CDMA, whereas [13] compar-
atively analyses SDM and STBC and a switching strategy
between the two techniques is derived that takes into
account the instantaneous channel state. However, and
to the best of author’s knowledge, no study has compre-
hensively covered the three techniques in a multicarrier
context.
This paper has two main goals. The first goal is to

present a unified BER analysis of the MIMO-GO-CDM
architecture. In order to get an insight of the best possible
performance this system can offer, attention is restricted
to the case whenML detection is employed at the receiver.
The analysis is general enough to incorporate the effects of
channel frequency selectivity, Tx/Rx antenna correlations
and the threemost commonmethods of spatial processing
(SDM, STBC and CDD) in combination with GO-CDM
frequential diversity. The analytical results are then used
to explore the benefits of GO-CDM under different spa-
tial configurations identifying the most attractive group
dimensioning from a performance/complexity perspec-
tive. Based on the previous analysis and building upon
our previous work for SISO OFDM systems [6], the sec-
ond goal of this work is to devise effective reconfiguration
strategies that can automatically and dynamically fix some
of the parameters of the system, more in particular, the
group size of the GO-CDM component, in response to
the instantaneous channel environment with the objec-
tive of optimising some pre-defined performance criteria
(e.g., error rate, complexity, delay). We note that in lieu of
analytical tractability, this work solely focuses on uncoded
BER performance, although most qualitative conclusions
regarding what MIMO technique to use or the dimen-
sioning of the GO-CDM component as a function of
the wireless environment fundamentally hold for coded
scenarios (see for example [14]).
The rest of this paper is organized as follows. Section 2

introduces the system model of a generic MIMO-GO-
CDM system, paying special attention to the steps
required to implement the frequency spreading and the
MIMO processing. In Section 3 a unified BER analysis
is presented for the case of ML detection. In light of
this analysis, Section 4 explores reconfiguration strate-
gies aiming at the optimisation of several critical param-
eters of the MIMO-GO-CDM architecture. Numerical
results are presented in Section 6 to validate the intro-
duced analytical and reconfiguration procedures. Finally,
the main conclusions of this work are recapped in
Section 7.
Notational remark:Vectors andmatrices are denoted by

bold lower and upper case letters, respectively. The super-
scripts ∗, T and H are used to denote conjugate, transpose
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and complex transpose (Hermitian), respectively, of the
corresponding variable. The operation vec(A) lines up the
columns forming matrix A into a column vector. The
symbols ⊗ and � denote the Kronecker and element-by-
element products of two matrices, respectively. Symbols
Ik and 1k×l denote the k-dimensional identity matrix and
an all-ones k × l matrix, respectively. The symbol D(x)
is used to represent a (block) diagonal matrix having x
at its main (block) diagonal. The determinant of a square
matrix A is represented by |A| whereas ‖x‖2 = xxH .
Expression �a� is used to denote the nearest upper inte-
ger of a. Finally, the Alamouti transform of a K × 2 matrix
X = [x1 x2] is defined asA (X) �

[−x∗
2 x∗

1
]
.

2 MIMOGO-CDM systemmodel
We consider a MIMO multicarrier system with Nc data
subcarriers, equipped with NT and NR transmit and
receive antennas, respectively, and configured to trans-
mit Ns (≤ NT ) spatial data streams. Following the group-
orthogonal design principles, the available subcarriers
are split into Ng = Nc/Q groups of Q subcarri-
ers each. In the following subsections the transmitter,
channel model and reception equation are described in
detail.

2.1 Transmitter
As depicted in Figure 1, incoming bits are split into Ns
spatial streams, which are then processed separately. Bits
on the zth stream are mapped onto a sequence sz of sym-
bols drawn from an M-ary complex constellation (e.g.,
BPSK, M-QAM) with average normalized unit energy.
The resulting Ns streams of modulated symbols {sz}Ns

z=1
are then fed to the GO-CDM stage, which comprises
three steps:

1. Segmentation of the incoming symbol stream in
blocks of length Nc (i.e., eventual OFDM symbols),
and serial to parallel conversion (S/P) resulting, over
the kth OFDM symbol period, in sz(k).

2. Arrangement of the symbols in the block into groups{
szg(k)

}Ng

g=1
, where szg(k) =

[
szg,1(k) . . . szg,Q(k)

]T
represents an individual group.

3. Group spreading through a linear combination

s̃zg(k) = 1√
NT

Cszg(k), (1)

where C is a Q × Q orthonormal matrix, typically
chosen to be a rotated Walsh-Hadamard matrix [4].

Before the usual OFDM modulation steps on each
antenna (IFFT, guard interval appending and up-
conversion), the grouped and spread symbols are pro-
cessed in accordance with the MIMO transmission
scheme in use as follows:

2.1.1 SDM (Ns = NT)
In this case the blocks labeled in Figure 1 as STBC and
CDD are not used, and the spread symbols are directly
supplied to the antenna mapping stage, which simply con-
nects the incoming zth data stream to the ith transmit
branch (1 ≤ i ≤ NT ), that is,

s̆ig(k) = ŝig(k) = s̃zg(k). (2)

2.1.2 STBC (Ns = 1, NT = 2)
Two consecutive blocks of spread symbols, s̃1g (k) and
s̃1g (k+ 1), are Alamouti-encoded on a per-subcarrier basis
over two OFDM symbol periods,

ŝ1g (k) = s̃1g (k), ŝ1g (k + 1) = −
(
s̃1g (k + 1)

)∗
,

ŝ2g (k) = s̃1g (k + 1), ŝ2g (k + 1) =
(
s̃1g (k)

)∗
.

(3)

In the antenna mapping stage, STBC-encoded streams are
connected to two transmit branches, one for each symbol
of the STBC code, that is,

s̆ig(k) = ŝig(k). (4)
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2.1.3 CDD (Ns = 1)
In a pure CDD scheme, the same data stream is sent
through NT antennas with each replica being subject to a
different cyclic delay �i, typically chosen as �i = �i−1 +
Nc/NT with�1 = 0 [15], resulting in transmitted symbols

s̆ig,q(k) = s̃1g,q(k) exp
(−j2πdq�i/Nc

)
, (5)

where dq denotes the subcarrier index.

2.1.4 Hybrid schemes
The analytical framework developed in this paper can
also be applied to hybrid systems combining SDM, STBC
and/or CDD. Nevertheless, for brevity of presentation, the
analysis to be developed next focuses on scenarios where
only one of the mechanisms is used.

2.2 Channel model
The channel linking an arbitrary pair of Tx and Rx anten-
nas is assumed to be time-varying and frequency-selective
with an scenario-dependent power delay profile

S(τ ) =
P−1∑
l=0

φlδ(τ − τl), (6)

where P denotes the number of independent paths of the
channel and φl and τl denote the power and delay of the
l-th path. It is assumed that the power delay profile is the
same for all pairs of Tx and Rx antennas and that it has
been normalized to unity (i.e.,

∑P−1
l=0 φl = 1). A single

realization of the channel impulse response between Tx
antenna i and receive antenna j at time instant t will then
have the form

hij(t; τ) =
P−1∑
l=0

hijl (t)δ(τ − τl), (7)

where it will hold that E
{
| hijl (t) |2

}
= φl. The corre-

sponding frequency response can be expressed as

h̄ij(t; f ) =
P−1∑
l=0

hijl (t) exp(−j2π f τl), (8)

which when evaluated at the Nc OFDM subcarriers yields

h̄ij(t) = [
h̄ij(t; f0) . . . h̄ij(t; fNc−1)

]T . (9)

In order to simplify the notation, assuming that the chan-
nel is static over the duration of a block (i.e., an OFDM
symbol), the frequency response between Tx-antenna i
and Rx-antenna j over the Nc subcarriers during the kth
OFDM symbol can be expressed as

h̄ij(k) =
[
h̄ij0(k) . . . h̄ijNc−1(k)

]T
. (10)

Since the subsequent analysis is mostly conducted on a
per-group basis, the channel frequency response for the
gth group is denoted by

h̄ijg (k) =
[
h̄ijg,1(k) . . . h̄ijg,Q(k)

]T
, (11)

with correlation matrix given by

Rhg = E
{
‖h̄ijg (k)‖2

}
= E

{
h̄ijg (k)

(
h̄ijg (k)

)H}
, (12)

which is assumed to be constant over time, common
for all pairs of Tx and Rx antennas and, provided that
group subcarriers are chosen evenly within the available
bandwidth, common to all groups. In order to maximise
the frequency diversity gain, subcarriers forming a group
should be chosen equispaced across the available band-
width when employing SDM or STBC. In contrast, when
using CDD, subcarriers should be grouped taking into
account that, due to the CDD action, an arbitrary sub-
carrier is totally uncorrelated with the following NT − 1
subcarriers [15].
Now, considering the spatial correlation introduced by

the transmit and receive antenna arrays, the spatially
correlated channel frequency response for an arbitrary
subcarrier q in group g can be expressed as [16]

Hg,q(k) = R1/2
RXHg,q(k)

(
R1/2

TX

)T
, (13)

where RRX and RTX are, respectively, NR × NR and
NT × NT matrices denoting the receive and transmit
correlation, and

Hg,q(k) =

⎛
⎜⎜⎝

h̄11g,q(k) . . . h̄1NT
g,q (k)

...
...

h̄NR1
g,q (k) . . . h̄NRNT

g,q (k)

⎞
⎟⎟⎠ . (14)

2.2.1 Receiver
As shown in Figure 2, the reception process begins by
removing the cyclic prefix and performing an FFT to
recover the symbols in the frequency domain. After S/P
conversion, and assuming ideal synchronization at the
receiver side, the received samples for group g at the
output of the FFT processing stage can be expressed in
accordance with the MIMO transmission scheme in use
as follows:

1) SDM and CDD: In these cases,

rg(k)=vec
([
rg,1(k) . . . rg,Q(k)

])=Hg(k)s̆g(k)+υg(k),
(15)

where the NRQ × NTQmatrix

Hg(k) = D
([
Hg,1(k) . . .Hg,Q(k)

])
, (16)

represents the spatially and frequency correlated
channel matrix affecting all symbols transmitted in



Riera-Palou and Femenias EURASIP Journal onWireless Communications and Networking 2012, 2012:226 Page 5 of 14
http://jwcn.eurasipjournals.com/content/2012/1/226

S
pa

tia
l s

tr
ea

m
 d

ep
ar

se
r

E
st

im
at

ed
 b

its

ML group
detection

FFTCP

FFTCP
S

u
b

ca
rr

ie
r

gr
ou

pi
ng

Segment
P/S

Symbol
De-map

ML group
detection

Segment
P/S

Symbol
De-map

S
T

B
C

 p
re

-p
ro

ce
ss

in
g

Figure 2 Receiver architecture for MIMO-GO-CDM.

group g, the NsQ-long vector of transmitted (spread)
symbols is formed as

s̆g(k) = vec
([

s̆1g (k) . . . s̆NT
g (k)

]T)
, (17)

and finally, υg(k) is an NRQ × 1 vector representing
the receiver noise, with each component being drawn
from a circularly symmetric zero-mean white
Gaussian distribution with variance σ 2

υ .
2) STBC: As stated in (3), STBC encoding period

η = k/2, with k = 0, 2, 4, . . ., spawns two consecutive
OFDM symbol periods, namely, the k th and
(k + 1)th symbol periods. Assuming that the channel
coherence time is large enough to safely consider
thatHg(k + 1) = Hg(k), then,

r̃g(k) = Hg(k)s̆g(k) + υg(k),
r̃g(k + 1) = Hg(k)s̆g(k + 1) + υg(k + 1),

(18)

and, therefore, we can define an equivalent received
vector in STBC encoding period η as

rg(η) �
[

r̃g(k)
r̃∗
g (k+1)

]
=
[ Hg(k)
HA

g (k)

]
s̃g(η)+

[
υg(k)

υ∗
g (k+1)

]

� H̃g(η)s̃g(η) + υ̃g(η),
(19)

where

HA
g (k) � D

([
A
(
Hg,1(k)

)
. . .A

(
Hg,Q(k)

)])
(20)

and

s̃g(η) � vec
([

s̃1g (k) s̃
1
g (k + 1)

]T)
. (21)

In order to facilitate the unified performance analysis
of the different MIMO strategies, it is more convenient

to express the reception equation in terms of the original
symbols rather than the spread ones. Thus, defining

sg(k) = 1√
NT

vec
([

s1g (k) . . . sNs
g (k)

]T)
SDM

sg(η) = 1√
2
vec

([
s1g (k) s1g (k + 1)

]T)
STBC

sg(k) = 1√
NT

s1g (k) CDD

(22)

it is straightforward to check that the symbols to be
supplied to the IFFT processing step are given by,

s̆g(k) = (
C ⊗ INs

)
sg(k) SDM

s̆g(k) = s̃g(η) = (C ⊗ I2) sg(η) STBC
s̆g(k) = E�

g
(
C ⊗ 1NT×1

)
sg(k) CDD

where E�
g � D

([
E�1
g . . .E�Q

g
])

is a block diago-

nal matrix with elements E�q
g = D

([
e−j2πdq�1/Nc . . .

e−j2πdq�NT /Nc
])

[15]. Furthermore, since processing
takes place either on an OFDM symbol basis for SDM and
CDD systems or on an STBC encoding period basis for
STBC schemes, the indexes k and/or η can be dropped
from this point onwards, allowing the reception equation
to be expressed in general form as

rg = Agsg + νg

where

Ag =
⎧⎨
⎩
Hg

(
C ⊗ INs

)
SDM

H̃g (C ⊗ I2) STBC
HgE�

g
(
C ⊗ 1NT×1

)
CDD

and

νg =
{

υg SDM/CDD
υ̃g STBC . (23)

It should be noted that, regardless of the MIMO scheme
and group dimension in use, the system matrix Ag has
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been normalised such that the SNR can be defined as
Es/N0 = 1/(2σ 2

υ ).
Upon reception, all symbols in a group (for all streams

in SDM and for both encoded OFDM symbols in STBC)
are jointly estimated using an ML detection process. That
is, the vector of estimated symbols in a group can be
expressed as

s̄g = argmin
sg

‖Ag sg − rg‖2. (24)

This procedure amounts to evaluate all the possible trans-
mitted vectors and choosing the closest one (in a least-
squares sense) to the received vector. Nevertheless, sphere
detection [17] can be used for efficiently performing the
exhaustive search required to implement the ML estima-
tion.

3 Unified bit error rate analysis
3.1 BER analysis based on pairwise error probability
Using the well-known union bound [18], which is very
tight for high signal-to-noise ratios, the bit error probabil-
ity can be upper bounded as

Pb ≤ 1
NgNQMNQ log2M

Ng∑
g=1

MNQ∑
u=1

MNQ∑
w=1
w 
=u

P

× (
sg,u → sg,w

)
Nb(sg,u, sg,w), (25)

where the expression P
(
sg,u → sg,w

)
, usually called the

pairwise error probability (PEP), represents the proba-
bility of erroneously detecting the vector sg,w when sg,u
was transmitted and Nb(sg,u, sg,w) is equal to the number
of differing bits between vectors sg,u and sg,w and NQ is
defined as,

NQ =
⎧⎨
⎩
Ns Q SDM
2Q STBC
Q CDD

. (26)

To proceed further, the PEP conditioned on Ag can be
shown to be [19]

P
(
sg,u→sg,w|Ag

)= 1
2
erfc

⎛
⎝
√

‖Ag(sg,u−sg,w)‖2
4σ 2

υ

⎞
⎠

= 1
π

∫ π/2

0
exp

(
−‖Ag(sg,u−sg,w)‖2

4σ 2
υ sin2 φ

)

× dφ.
(27)

Now, defining the random variable d2g,uw � ‖Ag(sg,u −
sg,w)‖2, the average PEP can be obtained as

P
(
sg,u→sg,w

)= 1
π

∫ π/2

0

∫ +∞

−∞
e−x/4σ 2

v sin2 φpd2g,uw(x)dx dφ

= 1
π

∫ π/2

0
Md2g,uw

(
− 1
4σ 2

υ sin2 φ

)
dφ,

(28)

where px(·) and Mx(·) denote the probability density
function (pdf) and moment generating function (MGF) of
a random variable x, respectively.
Let us now define the error vector eg,uw = sg,u − sg,w.

Using this definition, it can be shown that

d2g,uw � ‖Ageg,uw‖2 = HH
g T

H
g,uwTg,uwHg , (29)

where

Hg � vec
[
vec

(
Hg,1

)
. . . vec

(
Hg,Q

)]
, (30)

and Tg,uw can be expressed as

Tg,uw=
{[(

1Q×1⊗ Sg,uw
)� IQ,NT

]⊗ INR SDM/CDD[(
11×Q⊗ STg,uw

)
� IT

Q,2

]
⊗ I2NR STBC

(31)

with

Sg,uw =
{
eTg,uw

(
CT ⊗ INT

)
SDM/STBC

eTg,uw
(
CT ⊗ 11×NT

)
ET

� CDD (32)

andIn,m � In⊗11×m. The expression of d2g,uw reveals that
it is a quadratic form in complex variablesHg , with MGF
given by

Md2g,uw(s) = ∣∣IN − sGg,uw
∣∣−1 , (33)

where N is equal to QNR for the SDM and CDD schemes,
and equal to 4QNR for the STBC strategy. Furthermore,

Gg,uw = Tg,uwRgTH
g,uw, (34)

with

Rg = Rhg ⊗ RTX ⊗ RRX . (35)

Now, let λg,uw = {λg,uw,1, . . . , λg,uw,Dg,uw} denote the set
of Dg,uw distinct positive eigenvalues of Gg,uw with corre-
sponding multiplicities αg,uw = {

αg,uw,1, . . . ,αg,uw,Dg,uw

}
.

Using the results in [20], the MGF of d2g,uw can also be
expressed as

Md2g,uw(s) =
Dg,uw∏
d=1

1
(1 − sλg,uw,d)αg,uw,d

=
Dg,uw∑
d=1

αg,uw,d∑
p=1

κg,uw,d,p

(1 − sλg,uw,d)p
(36)
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where, using ([21], Theorem 1), it can be shown that

κg,uw,d,p = λ
p−αg,uw,d
g,uw,d

∑


Dg,uw∏
d′=1
d′ 
=d

λ
nd′
g,uw,d′

(αg,uw,d′+nd′−1
nd′

)
(
1 − λg,uw,d′

λg,uw,d

)αg,uw,d′+nd′

(37)

with  being the set of nonnegative integers{
n1, . . . , nd−1, nd+1, . . . , nDg,uw

}
such that

∑
d′ 
=d nd′ =

αg,uw,d − p, which allows (28) to be written as

P
(
sg,u → sg,w

)= 1
π

Dg,uw∑
d=1

αg,uw,d∑
p=1

κg,uw,d,p

∫ π/2

0

×
⎛
⎝ sin2 φ

sin2 φ + λg,uw,d
4σ 2

v

⎞
⎠

p

dφ

=
Dg,uw∑
d=1

αg,uw,d∑
p=1

κg,uw,d,p

⎛
⎝1−�

(
λg,uw,d
4σ 2

v

)
2

⎞
⎠p

×
p−1∑
g=0

(
p−1+g

g

)⎛⎝1+�
(

λg,uw,d
4σ 2

v

)
2

⎞
⎠g ,

(38)

with �(c) = √
c/(1 + c). By substituting (38) into (25),

a closed-form BER upper bound for an arbitrary power
delay profile is obtained. It is later shown that this bound
is tight, accurately matching the simulation results.

3.2 BER analysis based on PEP classes
Note that many pairs (sg,u, sg,w) result in exactly the same
PEP, allowing the definition of a pairwise error class Cg,c �
C(Dg,c,λg,c,αg,c) as the set of all pairs (sg,u, sg,w) character-
ized by a common matrix Gg,uw = Gg,c with Dg,c distinct
eigenvalues λg,c = {λg,c,1, . . . , λg,c,Dg,c} with corresponding
multiplicities αg,c = {αg,c,1, . . . ,αg,c,Dg,c} and therefore, a
common PEP denoted byP(Dg,c,λg,c,αg,c). For each class,
the scalar W (Dg,c,λg,c,αg,c,N ) represents the number of
elements in the class Cg,c inducing N erroneous bits. A
more insightful BER expression can then be obtained by
using the PEP class notation, avoiding in this way the
exhaustive computation of all the PEPs. Instead, the BER
upper-bound can be found by computing the PEP for each
class and weighing it using the number of elements in

the class and the number of erroneous bits this class may
induce. The BER upper bound can then be rewritten as

Pb ≤ 1
NgNQMNQ log2M

×
Ng∑
g=1

∑
∀Cg,c

NQ log2 M∑
N=1

N W (Dg,c,λg,c,αg,c,N )

× P(Dg,c,λg,c,αg,c),
(39)

whereW (Dg,c,λg,c,αg,c,N ) corresponds to the number of
elements in the class Cg,c inducingN erroneous bits.

3.3 Asymptotic performance
Further insight on the parameters affecting the BER per-
formance can be obtained by focusing on the asymptotic
case of large SNR. When Es/N0 → ∞, the argument of
the MGF in (28) also tends to infinity, thus allowing the
asymptotic PEP of the different classes to be expressed as
[4],

Pasym
(
Dg,c,λg,c,αg,c

) = 1
π

∫ π/2

0

(4σ 2
υ sin2 φ)D̃g,c∏Dg,c
d=1 λ

αg,c,d
g,c,d

dφ

= (2D̃g,c)!
2D̃g,c!2

(Es/N0)
−D̃g,c∏D̃min

d=1 λ
αg,c,d
g,c,d

,

(40)

where D̃g,c = ∑Dg,c
d=1 αg,c,d is the rank of the matrix-

defining classGg,c. From (40) it is clear that the probability
of error will be mainly determined by the groups and
classes whose matrices

Gg,c = Gmin
g,c � Tmin

g,c Rmin
g

(
Tmin
g,c

)H
(41)

have the smallest common rank, denoted by

D̃min = rank(Gmin
g,c ) = rank

(
Tmin
g,c Rmin

g

(
Tmin
g,c

)H)
.

(42)

From (40), it can be deducted that the asymptotic BER
minimisation is achieved by maximising the minimum
group/class rank D̃min and the eigenvalue product of all
the groups/classes with rank D̃min. In the following, only
the maximization of D̃min (i.e., maximisation of the diver-
sity order) is pursued since the maximization of the prod-
uct of eigenvalues is far more difficult as it involves the
simultaneous optimization of all the eigenvalue products
in the groups/classes with rank D̃min.

3.3.1 On the rank ofTmin
g,c

As mentioned in Section 2.2, choosing the subcarri-
ers forming a group in an appropriate manner (and in
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accordance with the selected MIMO mode) minimizes
subcarrier correlation allowing the optimization of the
system performance if an adequate family of spreading
codes is properly selected. To this end, rotated spread-
ing transforms have been proposed for multicarrier sys-
tems in [22] where it is shown that the often used
Walsh-Hadamard codes lead to poor diversity gains when
employed to perform the frequency spreading. This can
be explained by the fact that for certain symbol blocks the
energy is concentrated on one single subcarrier and, thus,

rank
(
Tmin
g,c

)
=
{
NR SDM
NT NR STBC/CDD. (43)

A deep fade on this subcarrier dramatically raises the
probability of error in the detection process, regardless
of the state of all other subcarriers, limiting in this way
the achievable diversity order (asymptotic BER slope). A
similar effect can be observed when using other spread-
ing sequences such as those based on the discrete Fourier
transform (DFT). As pointed out in [22], a spreading that
has the potential to maximize the diversity order can be
found by applying a rotation to the columns of the conven-
tional spreading matrix Cconv as C = CconvD(θ), where
θ =[ θ1 . . . θQ] with each θq denoting the chip-specific
rotation, which in the proposed scheme is given by

θq = exp
(
j2π(q − 1)

Q �

)
,

with � being constellation dependent and selected so as
to make 2π/� the minimum angle producing a rotation
of the transmit symbol alphabet onto itself (e.g., � = 2
for BPSK, � = 4 for MQAM). This indicates that while
using conventional Walsh-Hadamard spreading no fre-
quency diversity gain will be achieved, the a rotation of
the spreading matrix such as the ones defined by (3.3.1)
has the potential (depending on the channel correlation
matrix Rg) to attain a frequency diversity gain propor-
tional to the number of subcarriers per group, common
to all groups and classes. That is, when using optimally
rotated spreading codes,

rank
(
Tmin
g,c

)
=
{
QNR SDM
QNT NR STBC/CDD. (44)

3.3.2 On the rank ofRmin
g

The correlation matrix Rmin
g can be expressed in general

form as

Rmin
g = Rmin

hg ⊗ RTX ⊗ RRX , (45)

and consequently [23],

rank
(
Rmin
g

)
= rank

(
Rmin

hg

)
rank (RTX) rank (RRX) .

(46)

Except for pathological setups exhibiting full spatial cor-
relation between pairs of transmit or receive antennas
(scenario not considered in this analysis), RTX and RRX
are full rank matrices with rank (RTX) = NT and
rank (RRX) = NR, and therefore,

rank
(
Rmin
g

)
= NT NR rank

(
Rmin

hg

)
. (47)

Therefore, the maximum attainable frequency diversity
order can be directly related to Rmin

hg and is given by
the number of independent paths in the channel delay
profile. If error performance is to be optimized, enough
subcarriers per group need to be allocated to ensure that
rank

(
Rmin

hg

)
= P. In fact, defining the sampled channel

order L as the channel delay spread in terms of chip (sam-
pling) periods, it is shown in [5] that the maximum rank of
Rmin

hg is attained by setting the number of subcarriers per
group to Q = L+ 1. While this is a valuable design rule in
channels with short delay spread, in most practical scenar-
ios where L can be in the order of tens or even hundreds of
samples, the theoretical number of subcarriers required to
achieve full diversity would make the use of ML detection
difficult even when using efficient search strategies (i.e.,
sphere decoding). Moreover, very often maximum diver-
sity would only be attained at unreasonably large Es/N0
levels.
Since, for most realistic scenarios, setting the group size

to guarantee full diversity (Q = L + 1) is unfeasible, we
need to be able to measure what each additional subcar-
rier is contributing in terms of frequency diversity gain.
Ideally, each additional subcarrier should bring along an
extra diversity order, that is, an increase in rank

(
Rmin

hg

)
by one as it is indeed the case for uncorrelated channels.
For correlated channels, however, this is often not the case
and therefore to choose the group size it is useful to have
some form of measure. A widely used tool in principal
component analysis [24] to assess the practical dimen-
sionality of a correlation matrix is the cumulative sum of
eigenvalues (CSE) that, for the correlation matrix Rmin

hg

with eigenvalues
{
λhg ,q

}Q
q=1

, is defined as

�(n) =
∑n

q=1 λhg ,q∑Q
q=1 λhg ,q

. (48)

For the frequency domain iid channel, �(n) is always a
discrete linearly increasing function of n, and it can serve
as a reference against which to measure the contribution
of each subcarrier in arbitrary realistic channels. Based on
the CSE concept in (48), a more meaningful and practical
definition of rank

(
Rmin

hg

)
is given as

Qε = min {n : �(n) ≥ 1 − ε} , (49)
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where n ∈ {1, . . . , L+1} and ε is a small non-negative value
used to set a threshold on the CSE. Notice that Qε → Q
as ε → 0. Moreover, experiments with practical channel
profiles show that, typically, Qε << L + 1.
In conclusion, provided that scenarios with full spatial

correlation are avoided, setting the number of subcarriers
per group to Q ≤ Qε yields

rank
(
Rmin
g

)
= QNT NR. (50)

3.3.3 On the rank ofGmin
g,c

Given an m × n matrix A and an n × p matrix B, it holds
that [25]

rank(A) + rank(B) − n ≤ rank(AB)

≤ min {rank(A), rank(B)} . (51)

Thus, using optimally rotated spreading codes and setting
the number of subcarriers per groupQ using the proposed
CSE-based approach, provided that pathological scenarios
with full spatial correlation are avoided, we can use (44)
and (50) in (51) to show that the global diversity order for
the analysed MIMO strategies is given by

D̃min = rank
(
Gmin
g,c

)
=
{
QNR SDM
QNT NR STBC/CDD.

(52)

4 Reconfiguration strategies
It is clear from (52) that the (instantaneous) rank of the
group frequency channel correlation matrix Rmin

hg deter-
mines the asymptotic diversity of a MIMO-GO-CDM
system, and therefore, it can form the basis for a group size
adaptation mechanism. Strictly speaking, the maximum
possible rank ofRmin

hg is given by the number of indepen-
dent paths in the channel profile. However, as shown in
Subsection 3.3, very often the practical rank is far below
this number as maximum diversity is only achieved at
unrealistically low error rates. The adaptive group dimen-
sioning scheme proposed next exploits this rank depen-
dence to dynamically set the group size as a function
of the channel response between all pairs of transmit
and receive antennas. Figure 3 illustrates the architec-
ture of the adaptive MIMO-GO-CDM system, where it
can be appreciated that, in light of the acquired channel
state information (CSI) and system constraints (complex-
ity, QoS), the receiver determines the most appropriate
group size to use and communicates this decision to the
transmitter using a feedback channel. Note, as shown
in Figure 3, that CSI and SNR information can also be
used to determine the most appropriate modulation and
coding scheme in conjunction with the GO-CDM dimen-
sioning and MIMO mode selection. However this topic
is beyond the scope of this study and in this work only

fixed modulation and uncoded transmission modes are
considered.
In order to perform the adaptive dimensioning of the

GO-CDM component, the receiver requires an estimate
R̃min

hg of the group frequency channel correlation matrix.
An accurate estimate of the full correlation matrix Rmin

hg
could be computed by means of time averaging over
the frequency domain, however, in indoor/WLANs sce-
narios where channels tend to vary very slowly, this
approach would require of many OFDM symbols to get
an adequate estimate. Fortunately, only the group chan-
nel correlation matrix is required, thus simplifying the
correlation estimation. Exploiting the grouping structure
of GO-CDM-MIMO-OFDM and assuming the channel
frequency response is a wide-sense stationary (WSS) pro-
cess, it is possible to derive an accurate estimate R̃min

hg
from the instantaneous CSI, provided the subcarriers in
a given group have been rightly chosen across the avail-
able bandwidth (see Section 2.2). It is assumed that the
group size to be determined is chosen from a finite set
of possible values Q = {

Q1, . . . ,Qmax} whose maximum,
Qmax, is limited by the maximum detection complexity
the receiver can support. Suppose that at block sym-
bol k the receiver acquires knowledge of the channel to
form the frequency response h̄ij(k) over all Nc subcarri-
ers. Now, using the maximum group size available, Qmax,
it is possible to form the frequency responses for all
Nmin
g = Nc/Qmax groups,

{
h̄ij1(k), . . . , h̄

ij
Nmin
g

(k)
}
. Taking

into account the WSS property it should hold that

E
{
h̄ijg,q(k)h̄

ij
g,v(k)

}
= E

{
h̄i

′j′
m,q(k)h̄

i′j′
m,v(k)

}
, (53)

for all pairs of transmit and receive antennas (i, j) and
(i′, j′) and any q, v ∈ {1, . . . ,Qmax}, as the correla-
tion among any two subcarriers should only depend on
their separation, not their absolute position or the trans-
mit/receive antenna pair. A group channel correlation
matrix estimate from a single frequency response can now
be formed averaging across transmit and receive antennas,
and groups,

R̃min
hg = 1

NTNRNmin
g

NT∑
i=1

NR∑
j=1

Nmin
g∑

g=1
h̄ijg (k)(h̄

ij
g (k))

H . (54)

Using basic properties regarding the rank of a matrix, it
is easy to prove that rank

(
R̃min

hg

)
≤ min

(
Nmin
g ,Qmax

)
,

therefore, Nmin
g = Qmax maximises the range of possi-

ble group sizes using a single CSI shot. Let us denote the
non-increasingly ordered positive eigenvalues of R̃min

hg by
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Figure 3 Communication architecture for a MIMO-GO-CDMwith group-size adaptation.

�̃hg =
{
λ̃hg ,q

}Q̃
q=1

where, owing to the deterministic char-

acter of R̃min
hg , they can all be assumed to be different

and with order one, and consequently, Q̃ represents the
true rank of R̃min

hg . For the purpose of on-line adaptation,
an analogous of the CSE-based definition of rank in (48)
can now be given based on estimated (rather than true)
eigenvalues,

Q̃ε = min

⎧⎨
⎩n : �(n) =

∑n
q=1 λ̃hg ,q∑Q̃
q=1 λ̃hg ,q

≥ 1 − ε

⎫⎬
⎭ . (55)

Since the group size Q represents the dimensions of
an orthonormal spreading matrix C, restrictions apply on
the range of values it can take. For instance, in the case
of (rotated) Walsh-Hadamard matrices, Q is constrained
to be a power of two. The mapping of Q̃ε to an allowed
group dimension, jointly with the setting of ε, permits
the implementation of different reconfiguration strategies,
e.g.,

Maximise performance : Q = argmin
Q̂∈Q

{Q̂ ≥ Q̃ε} (56a)

Minimise complexity : Q = argmin
Q̂∈Q

{|Q̂ − Q̃ε |}.
(56b)

It is difficult to assess the feedback involved in this
adaptive diversity mechanism as it depends on the dynam-
ics of the underlying channel. The suggested strategy to
implement this procedure is that the receiver regularly
estimates the group channel rank and whenever a varia-
tion occurs, it determines and feeds back the new group

dimension to the transmitter. In any case, the feedback
information can be deemed insignificant as every update
just requires of �log2Q� feedback bits with Q denoting
the cardinality of set Q. Differential encoding of Q would
bring this figure further down.

5 Computational complexity considerations
The main advantage of the group size adaptation tech-
nique introduced in the previous section is a reduction
of computational complexity without any significant per-
formance degradation. To gain some further insight, it is
useful to consider the complexity of the detection pro-
cess taking into account the group size in the GO-CDM
component while assuming that an efficient ML imple-
mentation, such as the one introduced in [17], is in use. To
this end, [26] demonstrated that the number of expected
(complex) operations in an efficient ML detector oper-
ating at reasonable SNR levels is roughly cubic with the
number of symbols jointly detected. That is, to detect one
single group in a MIMO-GO-CDM system, �g = O(N3

Q)

operations are required.
Obviously, to detect all groups in the system, the

expected number of required operations is given by �T =
Nc
Q �g . Figure 4 depicts the expected per-group and total
complexity for a system using Nc = 64 subcarriers, a set
of possible group sizes given by {1, 2, 4, 8} and different
number of transmitted streams. Note that, in the context
of this paper, Ns > 1 necessarily implies the use of SDM.
Importantly, increasing the group size fromQ = 1 toQ = 8
implies an increase in the number of expected operations
of more than two orders of magnitude, thus reinforcing
the importance of rightly selecting the group size to avoid
a huge waste in computational/power resources. Finally,
it should be mentioned that for the STBC setup, effi-
cient detection strategies exist that decouple the Alamouti
decoding andGO-CDMdetection resulting in a simplified
receiver architecture that is still optimum [27,28].
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number of transmitted streams.

6 Numerical Results
In this section, numerical results are presented with the
objective of validating the analytical derivations intro-
duced in previous sections and also to highlight the
benefits of the adaptive MIMO-GO-CDM architecture.
The system considered employs Nc = 64 subcarriers
within a B = 20 MHz bandwidth. These parameters are
representative of modern WLAN systems such as IEEE
802.11n [29]. The GO-CDM technique has been applied
by spreading the symbols forming a group with a rotated
Walsh-Hadamard matrix of appropriate size. The set of
considered group sizes is given by Q = {1, 2, 4, 8}. This
set covers the whole range of practical diversity orders

for WLAN scenarios while remaining computationally
feasible at reception. Note that a system with Q = 1 effec-
tively disables the GO-CDM component. For most of
the results shown next, Channel Profile E from [30] has
been used. Perfect channel knowledge is assumed at the
receiver. Regarding the MIMO aspects, the system is con-
figured with two transmit and two receive antennas (NT =
NR = 2). As in [16], the correlation coefficient between
Tx (Rx) antennas is defined by a single coefficient ρTx
(ρRx). Note that in order to make a fair comparison among
the different spatial configurations, different modulation
alphabets are used. For SDM, two streams are transmitted
using BPSK whereas for STBC and CDD, a single stream
is sent using QPSK modulation, ensuring that the three
configurations achieve the same spectral efficiency.
Figure 5 presents results for SDM, CDD and STBCwhen

transmit and receive correlation are set to ρTx = 0.25 and
ρRx = 0.75, respectively. The first point to highlight from
the three subfigures is the excellent agreement between
simulated and analytical results for the usually relevant
range of BERs (10−3 − 10−7). It can also be observed
the various degrees of influence exerted by the GO-CDM
component depending on the particular spatial process-
ing mechanism in use. For example, at a Pb = 10−4, it
can be observed that in SDM and CDD, the maximum
group size considered (Q = 8) brings along SNR reductions
greater than 10 dB when compared to the setup without
GO-CDM (Q = 1). In contrast, in combination with STBC,
the maximum gain offered by GO-CDM is just above 5
dB. The overall superior performance of STBC can be
explained by the fact that it exploits transmit and receive
diversity whereas in SDM there is no transmit diversity
and in CDD, this is only exploited when combined with
GO-CDM and/or channel coding.
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Figure 5 Analytical (lines) and simulated (markers) BER for GO-CDM configured to operate in SDM (left), CDD (centre) and STBC (right) for
different group sizes in Channel Profile E.
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Figure 6 Analytical (lines) and simulated (markers) BER for GO-CDM configured to operate in SDM (left), CDD (centre) and STBC (right) for
different transmit/antenna correlation values.

Next, the effects of antenna correlation at either side of
the communication link have been assessed for each of
the MIMO processing schemes. To this end, the MIMO-
GO-CDM system has been configured with Q = 2 and
the SNR fixed to Es/N0 = 10 dB. The antenna corre-
lation at one side has been set to 0 when varying the
antenna correlation at the other end between 0 and 0.99.
As seen in Figure 6, a good agreement between analytical
and numerical results can be appreciated. The small dis-
crepancy between theory and simulation is mainly due to
the use of the union bound, which always overestimates
the true error rate. In any case, the theoretical expressions
are able to predict the performance degradation due to

an increased antenna correlation. Note that, in CDD and
SDM, for low to moderate values (0.0−0.7), correlation at
either end results in a similar BER degradation, however,
for large values (> 0.7), correlation at the transmitter is
significantly more deleterious than at the receiver. For the
STBC scenario, analysis and simulation demonstrate that
it does not matter which communication end suffers from
antenna correlation as it leads to exactly the same results.
This is because all symbols are transmitted and received
through all antennas (Tx and Rx) and therefore equally
affected by the correlation at both ends.
Finally, the performance of the proposed group adap-

tivemechanism has been assessed by simulation. The SNR
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complexity.
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has been fixed to Es/N0 = 12 dB and a time varying
channel profile has been generated. This profile is com-
posed of epochs of 10,000 OFDM symbols each. Within
an epoch, an independent channel realisation for each
OFDM symbol is drawn (quasi-static block fading) from
the same channel profile. For visualisation clarity, the
generating channel profile is kept constant for three con-
secutive epochs and then it changes to a different one.
All channel profiles (A-F) from IEEE 802.11n [30] have
been considered. Results shown correspond to an SDM
configuration.
The left plot in Figure 7 shows the BER evolution for

fixed and adaptive group size systems as the environment
switches among the different channel profiles. The upper-
case letter on the top of each plot identifies the particular
channel profile for a given epoch. Each marker represents
the averaged BER of 10,000 OFDM symbols. Focusing on
the fixed group configurations it is easy to observe that a
large group size does not always bring along a reduction in
BER. For example, for Profile A (frequency-flat channel)
there is no benefit in pursuing extra frequency diversity at
all. Similarly, for Profiles B and C there is no advantage in
setting the group size to values larger than 4. This is in fact
themotivation of the proposedMIMOadaptive group size
algorithm denoted in the figure by varQ. It is clear from
the middle plot in Figure 7 that the proposed algorithm is
able to adjust the group size taking into account the oper-
ating environment so that when the channel is not very
frequency selective lowQ values are used and, in contrast,
when large frequency selectivity is sensed the group size
dimension grows.
Complementing the BER behaviour, it is important to

consider the computational cost of the configurations
under study. To this end the right plot in Figure 7
shows the expected number of complex operations (see
Section 5). In this plot it can be noticed the huge compu-
tational waste incurred, since there is no BER reduction,
in the fixed group size systems with large Q when oper-
ating in channels with a modest amount of frequency-
selectivity (A, B and C).

7 Conclusions
This paper has introduced the combination of GO-CDM
and multiple transmit antenna technology as a means
to simultaneously exploit frequency, time and space
diversity. In particular, the three most common MIMO
mechanisms, namely, SDM, STBC and CDD, have been
considered. An analytical framework to derive the BER
performance of MIMO-GO-CDM has been presented
that is general enough to incorporate transmit and receive
antenna correlations as well as arbitrary channel power
delay profiles. Asymptotic results have highlighted which
are the important parameters that influence the practi-
cal diversity order the system can achieve when exploiting

the three diversity dimensions. In particular, the chan-
nel correlation matrix and its effective rank, defined as
the number of significant positive eigenvalues, have been
shown to be the key elements on which to rely when
dimensioning MIMO-GO-CDM systems. Based on this
effective rank, a dynamic group size strategy has been
introduced able to adjust the frequency diversity compo-
nent (GO-CDM) in light of the sensed environment. This
adaptive MIMO-GO-CDM has been shown to lead to
important power/complexity reductions without compro-
mising performance and it has the potential to incorpo-
rate other QoS requirements (e.g., delay, target BER) that
may result in further energy savings. Simulation results
using IEEE 802.11n parameters have served to verify three
facts. Firstly, MIMO-GO-CDM is a versatile architecture
to exploit the different degrees of freedom the envi-
ronment has to offer. Secondly, the presented analytical
framework is able to accurately model the BER behaviour
of the various MIMO-GO-CDM configurations. Lastly,
the adaptive group size strategy is able to recognize the
operating environment and adapt the system appropri-
ately. Future efforts will focus on extending the analytical
results presented here to setups including error correction
techniques.
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