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Abstract

Radio frequency identification (RFID) is a non-contact technology that uses radio frequency electromagnetic fields to
transfer data from a tag attached to an object, for the purposes of automatic identification and tracking. One of the
common problems that arise in any RFID deployment is the collision between tags which reduces the efficiency of
the RFID system. Dynamic framed-slotted ALOHA (DFSA) is one of the most popular approaches to resolve the tag
collision problem. In DFSA, each tag randomly selects one of the time slots of a frame and transmits its data at the slot.
Unless the tag successfully transmits its data to a reader, it will try again in the next frame. It is widely known that the
optimal performance of framed-slotted ALOHA is achieved when the frame size (i.e., number of time slots) is equal to
the number of tags to be identified. So, a reader dynamically adjusts the next frame size according to the number of
tags. Thus, it is important to accurately estimate the number of tags. In this article, we propose an accurate maximum
a posteriori (MAP)-based tag estimation method with low computational complexity. The idea behind our method is
to more accurately determine the most potential number of tags which draws the observed results on the basis of
both a posteriori probability and a priori probability. Simulation results show that our method improves the accuracy
of tag estimation and the speed of tag identification.

Introduction
Radio frequency identification (RFID) systems that iden-
tify tagged objects via near/far-field wireless communica-
tions to realize ubiquitous computing are drawing much
attention. The operation of RFID systems often involves
a situation in which numerous tags are simultaneously
placed in the interrogation zone of a single reader. The
tags may collide with each other, leading to retransmis-
sion of tag data that brings about a waste of bandwidth
and an increase in the total delay. To resolve the tag col-
lision problem, a number of tag anti-collision algorithms
have been proposed [1]. The primary concern in the algo-
rithms is how to read multiple tags as fast and as reliably
as possible.
Tag anti-collision algorithms are mainly grouped into

tree-based [2] and ALOHA-based [3] algorithms. Tree-
based algorithms work by repeatedly splitting the group
of colliding tags into two disjoint subsets. The subsets
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become smaller and smaller until the number of tags
within a subset reduces to one, in which case the tag
would be uniquely identified. However, as the number of
tags increases, the performance of tree-based algorithms
decreases. This is because the colliding tags are succes-
sively grouped into two subsets, and each subset may still
contain many tags resulting in collisions. The tree-based
algorithms have been studied extensively in the literature
[4-6].
ALOHA-based algorithms are mostly referred to as

Framed-Slotted ALOHA (FSA) [7,8]. In FSA, time is
divided into frames of multiple slots and the reader begins
its interrogation round by announcing the frame size (i.e.,
the number of time slots) to the tags. Each tag selects one
of the time slots at random and transmits its data at the
slot. Unless the tag successfully transmits its data to the
reader, it will try again in the next frame. According to [9],
the expected throughputU of FSA withN tags and L slots
in a frame is given by

U(N , L) = N
L

(
1 − 1

L

)L−1
. (1)
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It is obvious from the above equation that the through-
put depends on the appropriate choice of frame size
L, given the number of tags N in the interrogation
range. Figure 1 shows the well-known upper bound of
the throughput of e−1 that is characteristic for slotted
ALOHA and also applies to FSA. The maximum through-
put occurs when the frame size equals to the number of
tags, i.e., L = N . Thus, for high performance, it is desir-
able that the frame size is dynamically adjusted according
to the number of unread tags; the mechanism is referred
to as Dynamic Framed-Slotted ALOHA (DFSA) [3]. How-
ever, DFSA necessitates the reader accurately estimating
the number of unread tags to decide an appropriate frame
size. To deal with this, various methods to estimate the
number of unread tags have been studied in the literature
[9-20].
In this article, we propose an accurate and simple max-

imum a posteriori (MAP)-based tag estimation method
for DFSA in RFID systems. In the proposed scheme, we
derive a probability mass function (PMF) that describes
the relative probability of detection results occurring at
a given number of tags and then, based on the derived
PMF and the prior tag distribution (if it is postulated),
determine the most potential number of tags which
draws the detection results observed in a read cycle as
the optimal estimate. However, this method may result
in a heavy computational load due to the wide search
range of tag quantity. To deal with this problem, we
propose a simple iterative algorithm based on Newton’s
method. In our simulations, comparison with several con-
ventional tag estimates shows that the proposed itera-
tive algorithm has lower computational complexity and
less error.

The rest of the article is organized as follows. We ana-
lyze several important tag estimation methods in the fol-
lowing section. In Section “The proposed tag estimation
mechanism”, we propose an MAP-based tag estimation
with low computational complexity. Simulation results are
shown in Section “Numerical results”. Finally, we give our
concluding remarks in Section “Conclusion”.

Related study
In DFSA, the reader begins its interrogation by first
announcing the frame size to all tags within its radio
range. Then, each tag randomly selects one of the available
time slots and transmits its information at the selected
slot. For a given time slot, only three possible outcomes
can happen: idle channel, successful transmission, or col-
lision, as shown in Figure 2. The channel is idle if no tag
transmits its information at the time slot. A successful
transmission means that only one tag sends its informa-
tion. If two ormore tags transmit at the same time slot, the
reader suffers from collision and no tag can be read. Based
on the detection results, the reader dynamically adjusts
the frame size for next read cycle (frame). Asmentioned in
Introduction section, since the system throughput, which
is defined as the ratio between success slots and the frame
size, can be maximized when the frame size equals to the
number of unread tags, a number of studies have focused
on accurate tag estimation [9-20].
The lower bound method [10] is obtained through the

observation that a collision involves at least two different
tags. Suppose that after carrying out an FSA in which the
frame size is set to F , the reader can observe si idle slots,
ss success (or singly occupied) slots, and sc collision slots,
where si + ss + sc = F . Then, the lower bound method
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Figure 1 Frame size versus expected throughput in FSA.
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Detection results:
- Num. of idle slots: 3
- Num. of success slots: 3
- Num. of collision slots: 2

C SICSI

I: idle      S: success      C: collision

Figure 2 An example of the detect results from an FSA when the
frame size is set to 8. Tags are randomly allocated to slots within a
frame (above). This result in some slots remaining empty and others
contain one or more tags (below).

simply estimates the number of tags as 2sc. On the other
hand, the Schoute method evaluates the expected num-
ber of tags per collision slot as 2.39 on the basis of the
results in [9]. The authors of [11,12] proposed tag esti-
mation methods based on the Schoute method for RFID
anti-collision using FSA. According to these studies, if
the frame size is assumed to be the number of tags, the
expected value of collision tags is 2.39sc. Although the
lower bound and the Schoutemethods are simple and easy
to implement, their assumptions are difficult to confirm
in practice. Thus, using the expected value to estimate
tag quantity may cause significant error and increase read
delay [13].
In [14], the authors proposed tag estimationmethods on

the basis of approximations to the binomial distribution.
Consider n tags are to be read and a frame of F time slots.
For a given time slot, the number of tags allocated to the
slot is binomially distributed with n Bernoulli trials and
1/F occupied probability. Thus, the probability of finding
r tags in the slot is given by

B (r) =
(
n
r

) (
1
F

)r (
1 − 1

F

)n−r
. (2)

If the frame size F is sufficiently large, (2) can be
approximated by a Poisson distribution with mean n/F .

Accordingly, the probabilities of idle, successful transmis-
sion, and collision for the slot is given by

pi = B (0) =
(
1 − 1

F

)n
≈ e−

n
F (3a)

ps = B (1) = n
F

(
1 − 1

F

)n−1
≈ n

F
e−

n
F (3b)

pc = 1 − pi − ps = 1 −
(
1 − 1

F

)n
− n

F

(
1 − 1

F

)n−1

≈
(
1 −

(
1 + n

F

)
e−

n
F
)
. (3c)

From (3a)-(3c), the expectations of si, ss, and sc are given
by

E [si] = F
(
1 − 1

F

)n
≈ Fe−

n
F (4a)

E [ss] = n
(
1 − 1

F

)n−1
≈ F

n
F
e−

n
F (4b)

E [sc] = F
(
1 −

(
1 − 1

F

)n
− n

F

(
1 − 1

F

)n−1
)

≈ F
(
1 −

(
1 + n

F

)
e−

n
F
)
. (4c)

Then, assuming the detection results observed in a read
cycle is close to their expectations, the three binomial
mean estimators, i.e., zero estimator (ZE), singleton esti-
mator (SE), and collision estimator (CE), can respectively
derive their tag estimates n̂ZE , n̂SE and n̂CE by solving the
following problems:

e−(̂nZE/F) = si
F

(5a)

n̂SE
F

e−(̂nSE/F) = ss
F

(5b)(
1 −

(
1 + n̂CE

F

)
e−(̂nCE/F)

)
= sc

F
. (5c)

In [15,16], the authors proposed the Lottery Frame
(LoF) scheme to reduce the multiple-reading by multi-
ple readers with overlapping interrogation regions. LOF
adopts the ZE of [14] and dynamically adjusts the system
load factor (the ratio of the tag quantity to the frame size)
to eliminate the multiple-reading.
In [17], the authors derive the mean values of idle and

success slots using a binomial distribution and combine
them into a single equation for the number of tags. Solving
both (4a) and (4a) for the number of tags n, then the Chen
method’s estimate denoted by n̂Chen is given by

n̂Chen = (F − 1)
E[ ss]
E[ si]

. (6)

Then, assuming that the numbers of idle and success
slots observed in a read cycle are identical tot heir expec-
tations, the Chen method estimates the number of tags by
substituting the expectations with the observations from
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an FSA. Though the Chen method and the three binomial
estimators are simple, some cases (i.e., si = 0, ss = 0,
sc = 0) need special treatment and their accuracies are not
satisfactory since the outcomes observed in a read cycle
seldom correspond with their expectations [18].
The Vogt method [19,20] uses the distance between the

detection result (si, ss, sc) and the expected value vector
to estimate the number of tags n for which the distance
becomes minimal using the exhaustive search. The Vogt
method’s estimate denoted by n̂Vogt is given by

n̂Vogt = min
n

∣∣∣∣∣∣
⎛⎝ E[ si]

E[ ss]
E[ sc]

⎞⎠ −
⎛⎝ si

ss
sc

⎞⎠∣∣∣∣∣∣ . (7)

The Vogt method improves the accuracy of tag esti-
mation compared with the lower bound and the Chen
methods. However, the Vogt method requires rather large
computational load because it works with no information
about the search space.
The Eom method [18] estimates the number of tags by

properly determining the number of tags per collision slot.
Assuming that the frame size is sufficiently large, it formu-
lates the number of tags per collision slot as two types of
equations, one of which consists of the observed detection
results (see (8a)) and the other consists of the expected
values (see (8b)). Then, it combines them into an iterative
algorithm and regards the corresponding convergence as
the number of tags per collision slot. The Eom method’s
two iterative equations are as follows.

βk = F
γk−1 · sc + ss

(8a)

γk = 1 − e−
1
βk

βk−1

(
1 −

(
1 + 1

βk

)
e−

1
βk

) (8b)

where βk and γk denote the ratio of the frame size to
the tag quantity and the number of tags per collision slot
after the kth iteration, respectively. According to [18], the
sequence in 8 tends to converge for a reasonable thresh-
old. Then, the Eom method’s estimate denoted by n̂ Eom is
given by

n̂ Eom = γk∗ · sc + ss (9)

where γ ∗
k denote the limit value at the k∗th iteration (start-

ing from β1 = ∞, γ1 = 2). The Eommethod gives a rather
accurate estimate when the frame size is large. However,
as the frame size decreases, its estimate error increases.
In general, a reader in an RFID system usually reads

tags only once in a frame. In this context, Bayesian tag
estimate which is available with few observation samples
can be an appropriate approach. In [21], Rivest proposes a

Bayesian transmission strategy for an FSA broadcast sys-
tem. Based on Rivest’s work, Floerkemeier also applies the
Bayesian transmission strategy to a framed aloha RFID
system in [22,23]. These works mainly concern about how
tominimize the posterior expected value of a risk function
(i.e., the posterior expected risk), such as using Bayesian
rule to update the probability distribution of tag quantity
and adjusting the frame size. However, the tag estimation
method has not been discussed in these references.
On the other hand, in [24], using different risk (or

loss) functions, the authors propose three Bayesian tag
estimation methods: Bayesian mean-square, Bayesian
absolute-error, and Bayesian posterior-probability estima-
tion method. According to their simulations, the accuracy
of Bayesian posterior-probability estimate (BPE) is the
best among their methods. BPE is the same form as the
maximum likelihood estimation (MLE) in [13], thus their
accuracies are identical. Although BPE andMLE have bet-
ter estimate performance than other existing methods,
there is substantial room for improvement in estimation
accuracy because they are only grounded on a posterior
probability.
In this article, we propose an accurate MAP-based tag

estimationmethod with low computation complexity. The
idea behind our method is to more accurately deter-
mine the most potential number of tags which draws the
observed results on the basis of both a posteriori proba-
bility and a priori probability. Furthermore, we propose a
simple iterative algorithm based on Newton’s method and
reduce computational complexity.

The proposed tag estimationmechanism
The MAP-based tag estimate
Consider an RFID system in which the tag anti-collision
problem is avoided by the DFSA algorithm. Suppose there
is a detection result s = {si, ss, sc} observed in a read cycle,
coming from a distribution with an unknown PMF f0
depending on the number of tags. It is however surmised
that function f0 belongs to a certain family of distribu-
tions

{
f (s|θ) , θ ∈ �

}
, where � denotes the domain of the

distributable number of tags, so that f0 = f (s|θ0). The
value θ0 is unknown and is referred to as the true value of
parameter θ . We want to find an estimate θ̂ which would
be as close to the true value θ0 as possible.
Now assume that a distribution g over θ exists. This

allows us to treat θ as a random variable as in Bayesian
statistics. Then, the posterior distribution of θ is given by

f (θ |s) = f (s|θ) g (θ)∑
i∈�

f (s|i) g (i)
(10)

where g is PMF of θ . This is a straightforward application
of Bayes’ theorem.
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Our method estimates θ0 by finding a value of θ that
maximizes f (θ |s). Thus, the optimal estimate of θ can be
derived as the mode of the posterior distribution of this
random variable:

θ̂ MAP = argmax
θ∈�

f (s|θ) g (θ)∑
i∈�

f (s|i) g (i)
(11)

The denominator of the posterior distribution does not
depend on θ and therefore plays no role in the optimiza-
tion. Consequently, (11) can be simplified as

θ̂ MAP = argmax
θ∈�

f (s|θ) g (θ). (12)

Now we will derive the PMF of s occurring when the
number of tags is given by θ , i.e., f (s|θ). All the time
slots in a read cycle only belong to one of three possible
outcomes such as idle, success, or collision slot. Thus we
can conclude that the three outcomes are mutually exclu-
sive and collectively exhaustive (MECE). Then, f (s|θ) is
simplified by Bayes’ theorem and the property of MECE:

f (s|θ) = Pr (si, ss, sc|θ)

= Pr (si, ss, sc, θ)

Pr (θ)
= Pr (sc|si, ss, θ) · Pr (si, ss, θ)

Pr (θ)

= Pr (si, ss, θ)

Pr (θ)
= Pr (si, ss|θ)

= Pr (si|θ) · Pr (ss|si, θ) .
(13)

Equation (13) holds because Pr(sc|si, ss, θ) = 1.
Next we need to derive the conditional probability dis-

tributions Pr (si|θ) and Pr (ss|si, θ). Pr (si|θ) means the
probability that θ tags select their respective slots among
F slots leaving exactly si idle slots. Assuming that θ = n,
using (2) and (3) we have

Pr (si|θ) =
(
F
si

)
psii (1 − pi)F−si . (14)

On the other hand, Pr (ss|si, θ) means the probability
that θ tags select their respective slots among (F − si)
slots with exactly ss slots being singly occupied. Since the
(F − si) slots belong to either success or collision slots, the
probability that one of the slots is singly occupied is ps

ps+pc .
Thus we have

Pr (ss|si, θ) =
(
F − si
ss

)(
ps

ps+pc

)ss(
1− ps

ps + pc

)(F−si)−ss

=
(
F − si
ss

) (
ps

1 − pi

)ss ( pc
1 − pi

)sc

.

(15)

(15) holds because si + ss + sc = F and pi + ps + pc = 1.

Finally, we have f (s|θ) as follows.

f (s|θ) = Pr (si|θ) · Pr (ss|si, θ)

=
(
F
si

)
psii (1 − pi)F−si ·

(
F − si
ss

)
×

(
ps

1 − pi

)ss ( pc
1 − pi

)sc

=
(
F
si

) (
F − si
ss

)
psii p

ss
s pscc

= F !
si! ss! sc!

psii p
ss
s pscc .

(16)

According to (12), using both a prior distribution g(θ)

and a posteriori distribution f (s|θ), we can determine
the best estimate θ̂ which is the most potential number
of tags. From a statistical point of view, the method of
MAP estimation is considered to be more robust (with
some exceptions) and yields estimates with good statis-
tical properties [25]. Furthermore, the proposed MAP-
based tag estimate is very suitable for estimation under
few observation samples [26].
The MAP-based tag estimate requires empirical data

about tag detection and a prior distribution over tag quan-
tity θ to obtain an optimal estimate. A prior distribution is
often the purely subjective assessment of an experienced
expert. Nevertheless, there are several ways to collect the
prior. One reasonable approach is to make the prior a nor-
mal distribution with expected value equal to the present
tag quantity, with variance equal to the variance of the
past several tag quantities. This approach has a property
in common with many priors, namely, that the poste-
rior from one problem (present tag quantity) becomes the
prior for another problem (next tag quantity) [27]. Other
approach is to choose a conjugate prior when they can, to
make calculation of the posterior distribution easier. The
details of how to collect a prior distribution are shown
in [28].
If an informative prior (which expresses specific, defi-

nite information about tag quantity) is not postulated or
cannot be collected, we use a uniform prior distribution
(that is, a constant function). This is based on the princi-
ple of indifference, which assigns equal probabilities to all
possibilities [29]. Then, the MAP estimate of θ coincides
with MLE in [13] and BPE [24], and thus the accuracy of
our estimation method is equal to those of MLE and BPE.
Except for the accuracy of estimation, one obvious con-

cern of both estimates is a tag quantity range over which
the maximum probability needs to be searched. If the
range is wide, the estimates’ computational complexity
will be high. To find extremum, our estimate and MLE
basically needs to search N − ss + 2sc times in the search
range of tag quantity (i.e., from θ = ss + 2sc to θ = N).
In this article, we are based on the results of [24], we
reduce the computational complexity by narrowing the
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search range. Consequently, our method needs to search
|θ̂MAP − θ | + 2 times where θ = ln (si/F) / ln (1 − 1/F).
On the other hand, if we need to use a uniform prior dis-

tribution due to non-informative prior, we can reduce the
complexity more. In next section, we propose an iterative
algorithm to determine the estimate in less computa-
tional complexity when informative prior is not given or a
uniform prior distribution is used.

Iterative algorithm to reduce computational complexity
Let S be a vector of three random variables with a prob-
ability distribution with the function f depending on a
parameter x. Assuming that the prior distribution of x is
uniform, the function

L (x|s) = f (s|x) = Pr (S = s|x) (17)

considered as a function of x, is called the likelihood func-
tion (of x, given the outcome s of S) [25]. Let l(x) be
a probability distribution with the likelihood function L
depending on a parameter x. From (16) and (17), we have

l(x) = F !
si! ss! sc!

psii p
ss
s pscc

= F !
si! ss! sc!

(
1 − 1

F

)six
⎧⎨⎩ x
F

(
1 − 1

F

)x−1
⎫⎬⎭

ss

×
⎧⎨⎩1 −

(
1 − 1

F

)x

− x
F

(
1 − 1

F

)x−1
⎫⎬⎭

sc

(18)

where sc ≥ 1 and si+ss ≥ 1. If sc is zero, we can easily con-
clude that all the tags were read. On the other hand, if both
si and ss are zero, we can conclude that all the tags were
collided with each other. As the number of tags increases,
the chances of this happening grow higher. The estimate
from our method must be the maximum number of tags
that the RFID system can read. Thus we only consider a
read cycle where sc ≥ 1 and si + ss ≥ 1, hence x ≥ 2 and
F ≥ 2.
Suppose {x ∈ R|2 ≤ x ≤ N} where N is the maximum

number of tags that the RFID system can tolerate. It is
obvious that l is continuous on the interval because F �= 0.
Thus the maximum value is undoubtedly one among l(2),
l(N) or the extreme values of l. Since the values of l(2) and
l(N) can be simply obtained from (18), we focus on the
extreme values.
If l′(x), i.e., ∂

∂x l(x), exists, l has a local maximum or min-
imum at some number c in [ 2,N] when l′(c) = 0 [30]. To
find the first-order derivative of l it is easier to differenti-
ate the logarithm of the function rather than the function
itself, hence we first take the natural logarithm on both
sides. Then, after implicit differentiation we have

l′(x) = l(x) · ∂

∂x
ln l(x). (19)

For l′(x) = 0, ∂
∂x ln l(x) should be zero because l(x) > 0

for all x. Thus we will focus on the roots of ∂
∂x ln l(x). It

is not easy to obtain the roots using elementary algebra,
so we apply a numerical approach in finding the roots of
general polynomial equation. Let

h(x) = ∂

∂x
ln l(x)

= ∂

∂x

{
ln

F !
si! ss! sc!

+six ln t+ss

(
ln

x
F
+(x−1) ln t

)

+ sc ln
(
1 − tx − x

F
tx−1

)}
= (si + ss) ln t + ss

x
− sc

(
tx + x

F t
x−1) ln t + 1

F t
x−1

1 − (
tx + x

F tx−1)
(20)

where t = 1− 1
F . Clearly, h(x) is continuous on the interval

[ 2,N] because tx + x
F t

x−1 �= 1. Thus we have

h′(x) = − ss
x2

− sc

{(
tx + x

F t
x−1) ln t + 2

F t
x−1} ln t + ( 1

F t
x−1)2{

1 − (
tx + x

F tx−1)}2 .

(21)

It is also obvious that h′(x) is continuous on the inter-
val. Thus, we can use Newton’s method which gives better
approximations to the roots of a real-valued function [31].
As proved in the Appendix, h(x) has only a single root.
Assume that there exists a root q ∈[ 2,N] where h(q) = 0.
According to Newton’s method, if h′(q) �= 0, the sequence
{qk}∞k=0 defined by the iteration

qk+1 = qk − h(qk)
h′(qk)

(22)

will converge to q with any initial estimate q0 ∈[ 2,N].
Nevertheless, it is desirable to choose one as close as pos-
sible to the root to reduce the iteration times. To give
a better initial estimate, we use the Chen method [17]
mentioned in Section “Related study”. In addition, the real
number of tags is at least ss + 2sc. Thus, we set the initial
estimate as

x0 =

⎧⎪⎨⎪⎩max
(
ss + 2sc, (F − 1)

ss
si

)
if si �= 0

ss + 2sc otherwise
.

(23)

After determining an initial value for x0 using (23), we
start the iteration based on

xk+1 = xk − h(xk)
h′(xk)

(24)
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to update tag estimate xk until the difference between xk
and xk−1 is less than a threshold εTH , i.e.,∣∣xk − xk−1

∣∣ < εTH . (25)

Let x∗ be the converged value of xk . According to the
proof in the Appendix, h(x) is strictly decreasing and has
only a single root, i.e., x∗. Note that l′(x) = l(x)h(x)
and l(x) > 0 on the interval [ 2,N]. Since h(x) ≥ 0
where x ≤ x∗, we can conclude that function l monoton-
ically increases on the interval [2, x∗]. On the contrary, l
monotonically decreases on the interval [ x∗,N] because
h(x) ≤ 0 where x ≥ x∗. Consequently, l attains the max-
imum value at x∗. We determine, therefore, the estimate
θ̂ = [x∗] that maximizes the likelihood of detection results
observed in a read cycle.

Computational complexity analysis
Among conventional tag estimates, the simpler ones are
the lower bound method, the Schoute method, the three
binomial mean estimators (i.e., ZE, SE, CE) and the Chen
method. Their estimate can be simply obtained. On the
other hand, to obtain the value of conditional probabil-
ity Pr(θ |s) from θ = ss + 2sc to θ = N , MLE needs to
enumerate the conditional probability N − ss − 2sc + 1
times. Similarly, the Vogt method needs to searchN−ss−
2sc + 1 times over the search tag range to find extremum.
The Eom method uses an iterative algorithm and has
less complexity than the Vogt method or MLE. However,
a more detailed complexity analysis is likely intractable
[18]. Unlike the methods above, by narrowing the search
range of tag quantity, BPE reduces its computational
complexity. According to [24], BPE needs to search
|̂n BPE−n|+2 where n̂ BPE denote the Bayesian tag estimate
and n = ln (si/F) / ln (1 − 1/F).
When we need to use a uniform prior distribution, we

can use a simple iterative algorithm based on Newton’s
method. According to [32], using Newton’s method, the
computational complexity of calculating a root of a func-
tion a(x) with c-digit precision, provided that a good
initial approximation is known, is O

((
log c

)
F (c)

)
where

F(c) is the cost of calculating a(x)/a′(x) with c-digit pre-
cision. On the other hand, when an informative prior
distribution is postulated, the complexity of our method
is similar to that of BPE. The computational complexity of
the primary estimates is listed in Table 1.

Numerical results
Computer simulations are performed to check and extend
the analytical results of the previous section. We consider
a single reader and a number of tags under error-free
channel environment. The prior distribution for tag quan-
tity is assumed a normal distribution with mean μ and
variance σ 2. We set the frame size and the tag quantity of

Table 1 Computational complexity

Estimation method Computational complexity

The Vogt method O (N − ss − 2sc + 1)

MLE O (N − ss − 2sc + 1)

BPE O (|̂nBPE − n| + 2)

MAP (with a uniform prior) O ((log c) F (c))

MAP (with a non-uniform prior) O (|̂nMAP − n| + 2)

each read cycle to generate from the prior normal distri-
bution and obtain detection result S from the read cycle.
Then, we perform the proposed tag estimation method.
Finally, we obtain the average estimate after completing
1,000 cycles. In our method, εTH is set to 0.001.
Figures 3 and 4 show the average estimation error which

is defined as the average difference between the real num-
ber and the estimated number of tags. For the simulation,
we set the frame size to 128 or 32 and vary the mean μ

from 8 to 256 or from 2 to 64, respectively. The variance
σ 2 is set to 0.05μ or 0.1μ, respectively. Note that when
a uniform prior distribution is considered, our method is
actually MLE [13] and has the same results as MLE and
BPE. Thus, we do not give the estimation results of our
method which incorporates a uniform prior distribution
in our simulations. In addition, the performance of SE [14]
is insufficient and we do not give its results.
When the number of tags is considerably less than the

frame size, Lower bound method is the most efficient
among the methods. However, as the number of tags
increases, its estimation errors increase steeply. Among
the existing methods, BPE and MLE which have the
similar curves to the Eom method show reasonable per-
formance. On the other hand, the accuracies of other
estimates such as ZE, CE, Chen, Schoute and Vogt meth-
ods are not satisfactory. Figures 3 and 4 present that the
proposed method provides more precise estimation than
the other methods except the region in which the number
of tags is comparatively less than the frame size.
Figure 5 shows the simulation results for estimate com-

putational complexity, where the computational complex-
ity can also be seen in Table 1. For the simulation, we set
the frame size to 128 or 32. If a uniform prior distribution
is postulated, our method can reduce the computational
complexity using the iterative algorithm in (24). The com-
putational complexity is defined as the average number of
iterations performed to obtain the tag estimate. Note that
the complexity of MLE and the Vogt estimates depend
on the maximum number of tags N and are quite high
(i.e., more than N/2). In addition, the accuracies of simple
estimates such as the lower bound method, the Schoute
method, the three binomial mean estimators and the Chen
method are insufficient. Thus, we do not give the results
of them in Figure 5. Figure 5 presents that the complexity



Choi and Lee EURASIP Journal onWireless Communications and Networking 2012, 2012:268 Page 8 of 12
http://jwcn.eurasipjournals.com/content/2012/1/268

50 100 150 200 250
0

2

4

6

8

10
 Lower bound
 Schoute
 ZE
 CE
 Vogt
 Chen
 Eom
 MLE & BPE
 Our method

A
ve

ra
ge

 e
st

im
at

io
n 

er
ro

r

Mean of the prior distribution (µ)
Figure 3 Difference between the real number and the estimated number of tags when the frame size is set to 128 where σ 2 = 0.05μ.

of our iterative algorithm is less than that of BPE. When
a non-uniform prior distribution is postulated, the com-
plexity of our method is a little bit high than that of BPE.
Nevertheless, our method gives more accurate estimate
than BPE and MLE as shown in Figures 3 and 4.
To evaluate the performance of DFSA in which each tag

estimation method is employed, we measure the number
of time slots used to detect all the tags when the next

frame size is set to the number of unread tags estimated
by each method. In our method, the mean value for the
next prior distribution is adjusted according to its cur-
rent estimate. An initial frame size and the minimum size
are respectively set to 64 and 8, and the mean μ varies
from 100 to 1000. In Figure 6, we compare the RFID sys-
tem efficiency, which is defined as the ratio of the number
of success slots to the number of slots used to detect all
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Figure 4 Difference between the real number and the estimated number of tags when the frame size is set to 32 where σ 2 = 0.1μ.
Figures 3 and 4 show themean estimation error which is defined as themean difference between the real number and the estimated number of tags.
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Figure 5 Simulation results for estimate computational complexity where σ 2 = 0.1μ.

the tags. Figure 6 shows that our tag estimation method
gives the highest system efficiency compared to the others.
It also demonstrates that the performance of DFSA can
be nearly improved to the maximum efficiency of Slotted
ALOHA (about 36.8%) using our tag estimation method.

Conclusion
In this article, we have proposed an accurate MAP-based
tag estimation method for DFSA in RFID systems and

improved the proposed method to reduce computational
complexity. The proposed method can be used to obtain a
point estimate of an unobserved tag quantity on the basis
of empirical detection data and an informative prior. From
our theoretical derivation and simulation results, we draw
the conclusions as follows.
The proposed MAP-based tag estimation improves the

accuracy of tag estimation and requires less time slots to
read out all tags than the other existing methods. When
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Figure 6 System efficiency of DFSA when the frame size is set to the estimated number of tags where σ 2 = 0.1μ. Also shows the
corresponding system efficiency, which is defined as the ratio of the number of success slots to the number of slots used to detect all the tags.
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an informative prior is not postulated or a uniform prior
is used, our method can reduce computational complexity
using the proposed iterative algorithm. Nevertheless, our
method produces the same estimates as MLE and BPE.
When the precise number of tags is not given, which is
usual in practice, our method can achieve accurate esti-
mation performance. Therefore, our method can become
a suitable candidate for such a mechanism and can be use-
ful for engineers to implement the DFSA algorithm in a
real RFID system.

Appendix
Proof that h(x) has only a single root
The function h is continuous on the closed interval [ 2,N].
According to the intermediate value theorem [30], if
h(2)h(N) < 0 and h is a strictly monotonic function, h
has only a single root in the interval. To prove that h has
only a single root, we show that h(2) > 0, h(N) < 0, and
h′(x) < 0. Note that we only consider a read cycle where
sc ≥ 1, si + ss ≥ 1, hence F ≥ 2.
The proof consists of three steps. In the first step, we

prove using contradiction that h(2) > 0. Let

t = 1 − 1
F
.

From (11), we have

h(2) = (si + ss) ln t + ss
2

− sc

(
t2+ 2

F t
)
ln t+ 1

F t

1−
(
t2+ 2

F t
)

= (F − sc) ln t + ss
2

− sc
{(
F2 − 1

)
ln t + (F − 1)

}
= F (1 − scF) ln t + ss

2
− sc (F − 1) .

(26)

Suppose that h(2) ≤ 0. Then, we have

F (1 − scF) ln t + ss
2

− sc (F − 1) ≤ 0. (27)

We subtract ss
2 −sc (F − 1) from each side of the inequal-

ity and then divide both sides by sc (F − 1). Then, we have

−
(
F − 1

sc

) (
F

F − 1

)
ln t ≤ 1 − ss

2sc (F − 1)
. (28)

The right-hand side of (28) is at most one because
ss

2sc(F−1) ≥ 0. If the left-hand side of (28) is larger than one,
it can be concluded that inequality (28) is invalid. Now
we show that the left-hand side of (28) is larger than one.
Given any F , the left-hand side of (28) is minimized when

sc = 1 because ln t < 0. Substituting sc with one, the
left-hand side of (28) is given by −F ln t. Let

m(F) = −F ln t

= −F ln
(
1 − 1

F
) = ln

(
1 + 1

F−1

)F
.

(29)

m(F) has following properties.

(i) m(2) > 1.
(ii) lim

F→∞m(F) = 1 because lim
F→∞

(
1 + 1

F−1

)F = e.
(iii) Assuming m is a continuous function, we have

m′(F) = −
(
ln

(
1 − 1

F
) + 1

F−1

)
. Sincem′(F) < 0

where F ≥ 2,m(F) is strictly decreasing. Since frame
size F is finite in practice, taken the three properties
together, we havem(F) > 1. This contradicts the
proposition that h(2) ≤ 0. Therefore, it can be
concluded that h(2) > 0 where sc ≥ 1.

In the second step, we show that h(N) < 0. h(N) is given
by

h(N) = (si + ss) ln t+ ss
N

−sc

(
tN + N

F t
N−1) ln t + 1

F t
N−1

1 − (
tN + N

F tN−1) .

(30)

Assuming thatN is sufficiently large, both tN and N
F t

N−1

can be approximated to zero. Thus, we have

lim
N→∞ h(N) = (si + ss) ln t. (31)

Since ln t < 0 and si + ss ≥ 1, it can be concluded that
h(N) < 0 where N is sufficiently large.
In the final step, we prove that h′(x) < 0 on the interval

[ 2, N]. From (21) we have

h′(x) = − ss
x2

−sc

{(
tx + x

F t
x−1) ln t + 2

F t
x−1} ln t + ( 1

F t
x−1)2{

1 − (
tx + x

F tx−1)}2
= − ss

x2
− sc

F
tx−1 n(x){

1 − (
tx + x

F tx−1)}2.
where n(x) = {(F − 1 + x) ln t + 2} ln t + 1

F t
x−1. Since

both sc
F t

x−1 and
{
1 − (

tx + x
F t

x−1)}2 are larger than zero,
if n(x) is larger than or equal to zero, then h′(x) is negative
at all x. Now we prove that n(x) ≥ 0 by showing that n(x)
is strictly increasing and n(2) ≥ 0. It is obvious that n(x)
is continuous on the interval. Thus we have

n′(x) = ln2 t + 1
F
tx−1 ln t

= 1
F
ln t

(
F ln t + tx−1) . (32)
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In the first step, we have proved that −F ln t > 1, thus
we have F ln t < −1. Since tx−1 < 1, F ln t + tx−1 is less
than zero. It can, therefore, be concluded that n′(x) > 0,
i.e., n(x) is strictly increasing. Next we show that n(2) is
positive at all F . Let x be two and F be the function n’s
variable and allowed to vary freely. Let r(F) be a function
that describes the value of n(2) at varying F . Then, we have

r(F) = {(F + 1) ln t + 2} ln t + 1
F
t. (33)

r(F) has following properties.

(i) r(2) > 0.
(ii) lim

F→∞ r(F) = 0.
(iii) Assuming r is a continuous function, we have

r′(F) = 2
F(F−1)

{
F ln t + 1 + ln t + 1

2F t
}
. The

derivation of r′(F) is as follows. Since t = 1 − 1
F ,

∂t
∂F = 1

F2 . Thus, we have
∂r(F)
∂F = 1

F2
∂r(F)

∂t . Then, r′(F)

is given by

r′(F) = 1
F2

∂r(F)

∂t

= 1
F2

{
F + 1
t

ln t + (F + 1) ln t + 2
t

+ 1
F

}

= 1
F2

1
t

{
(F + 1) ln t + (F + 1) ln t + 2 + 1

F
t
}

= 2
F(F − 1)

{
(F + 1) ln t + 1 + 1

2F
t
}

= 2
F(F − 1)

{
F ln t + 1 + ln t + 1

2F
t
}
.

(34)

From F ln t < −1, we have F ln t + 1 < 0. This inequal-
ity can be transformed into ln t < − 1

F . Since
t
2 < 1, we

have ln t < − 1
F < − 1

2F t. Thus r
′(F) is negative for all F .

Taken three properties together, it can be concluded that
r(F) > 0, i.e., n(2) > 0. Consequently, we have that
n(x) > 0. Therefore, we can conclude that h′(x) < 0 on
the interval [ 2, N].
From the preceding three steps, it can be concluded that

h(x) has only a single root in the interval [ 2, N] where
sc ≥ 1 and si + ss ≥ 1.
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