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Abstract

Wideband spectrum sensing for cognitive radio requires high rate analog to digital (A/D) converters whose power
consumption is proportional to the sampling rate. In this article, we propose to use sub-Nyquist non-uniform
sampling for spectrum sensing to reduce the power consumption. Since the received signal samples are correlated in
the time domain, we estimate the missing samples by using the expectation-maximization (EM) algorithm. It is shown
that the combined sub-Nyquist non-uniform sampling and EM algorithm consume much less power than A/D
converter at the Nyquist rate making the proposed algorithm a viable low-power solution for spectrum sensing.
Moreover, it is shown by simulations that the proposed sub-Nyquist rate non-uniform sampler is accurate enough to
detect the edges of the estimated power spectral density.

Keywords: Power spectral density (PSD) estimation, Cognitive radio (CR), Spectrum sensing, Compressive sensing
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Introduction
A cognitive radio (CR) system [1,2] improves the spec-
trum utilization by allowing secondary users (SU) to
access unused licensed spectrum. Moreover, it assesses
its environment and adapts its parameters (e.g. the fre-
quency and power of transmission) to reduce power con-
sumption while having a reliable communication. One
reason for increased power consumption is due to elec-
tromagnetic pollution. As more wideband access systems
are designed, the underlying electromagnetic noise floor
increases which in turn requires licensed users to increase
their transmit power to maintain required signal to noise
ratios (SNRs). CR adds little if any to the noise floor by
allowing SU access to the unused bands. Furthermore, by
reducing the power consumption of the SU themselves,
we can significantly increase transmitted data volumes
without a large increase in power consumption or CO2
emissions. Along with reducing people’s exposure to elec-
tromagnetic waves, this makes it an excellent candidate
for green technology [3]. One important way to reduce
power consumption is through developing new signal
processing algorithms with lower power consumption.
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The vacant subbands used by SU are found using spec-
trum sensing. The first step in spectrum sensing is power
spectral density (PSD) estimation. In non-parametric PSD
estimation techniques, the PSD is obtained by observ-
ing the finite samples of the signal itself. Discrete Fourier
transform (DFT)-based PSD estimation methods are the
most widely used one[4].Welch’s method [5,6] is an exam-
ple of DFT-based PSD estimation that was used for spec-
trum sensing for CR [7]. Simplified DFT (SDFT) is also
proposed for PSD estimation in CR [8]. These methods
are the simplest methods of PSD estimation, and thus are
proposed for PSD estimation in CR [7].
In parametric PSD estimation methods, the received

signal samples are modeled as the output of a linear filter
to white noise. The PSD is then obtained by estimating the
coefficients of that filter. Themost important examples are
the Yule-Walker auto-regressive (AR) [9] method and the
Burg method [9]. These methods are more complex than
the previously mentioned non-parametric methods, and
thus have not yet been suggested for CR applications.
In subspace methods, the PSD is estimated based on

eigenvalue analysis of the correlation matrix. The most
important ones are the MUltiple SIgnal Classification
(MUSIC) method [9] and the Eigenvector (EV) method
[9]. In these methods, first the autocorrelation matrix of
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the received signal is calculated. Then, the EVs of the auto-
correlation matrix are computed. The largest eigenvalues
correspond to the signal subspace and are used to esti-
mate the signal spectrum. These methods are even more
complex than parametric methods.
The second step in spectrum sensing is to detect the

PSD edges [10]. PSD edges are the locations of abrupt
transitions between occupied and unoccupied subbands.
It is shown in [11] that the edges can be detected by detect-
ing the local extrema of the first derivative of the continu-
ous wavelet transform (CWT) of the PSD with respect to
frequency. Alternatively, the edges can be detected by dif-
ferentiating the PSD with respect to frequency. Since the
abrupt change in the PSD happens in the edge locations,
the first derivative of the PSD exhibits local extremum at
the edge locations. Different methods of edge detection
for spectrum sensing have been introduced in [10]. In this
article, to simplify the analysis as is done in [11], we ini-
tially assume that the received signal PSD in CR has a
piecewise rectangular-like shape shown in Figure 1. Later,
we use a more realistic shape of Sinc square for PSD.
Irrespective of the above steps, wideband spectrum

sensing requires high rate analog to digital (A/D) con-
verters with the associated high power consumption.
Compressive sensing is a candidate for reduced power
consumption in CR [12].
Compressive sensing uses a sub-Nyquist rate sampler

to sense the received signal [13]. It was shown in [14]
that despite the sub-Nyquist sampling rate, compressive
sensing can recover the signals that are sparse or nearly
sparse in one domain with some limits introduced in [15].
In [16], a simple least square reconstruction technique
was used to recover the samples. Since the frequency
edge vector of the received signal in CR has a nearly
sparse nature, compressive sensing can be used to recover
the edge locations of the PSD in CR [17]. The recov-
ery algorithm of compressive sensing (l1 minimization

algorithm) is computationally complex, and thus time and
energy consuming and cannot be easily implemented for
real-time applications such as in CR.
In this article, we propose a new algorithm for com-

pressive sensing to be used in spectrum sensing in CR.
We show by simulations and analysis that the proposed
sub-Nyquist rate non-uniform sampler allows for accurate
detection of the edges of PSD and consumes much less
power than the conventional sensing method. The pro-
posed sampler samples only some portions of the received
signal and switches off the A/D converter based on a
predefined pattern to reduce power consumption. Since
the received signal samples are correlated, the missing
samples can be estimated.We propose to use expectation-
maximization (EM) technique [18,19] to estimate these
samples. It is shown that the combined sub-Nyquist sam-
pler and EM algorithm consume much less power than
Nyquist rate A/D converter making the proposed algo-
rithm a viable low-power solution for spectrum sensing
and thus extending the battery life of the CR.

Systemmodel
The compressed sampling procedure can be expressed in
matrix format as

xc = β · x, (1)

where xc is the compressed sampling received signal vec-
tor of size P × 1, x is the Nyquist rate sampled received
signal vector of size N × 1 (P � N), and β is the com-
pressive sampling matrix of size P × N . When β = IN
(IN is the identity matrix of size N), the Nyquist sampling
rate is achieved. If β = DN (DN is the DFT matrix of size
N), the frequency domain sampling is obtained. For com-
pressive sensing purposes, we can simply eliminate some

Figure 1 Frequency subbands with piecewise smooth PSD.
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rows of the identity matrix to achieve the matrix β of the
compressed dimension. This elimination may be done on
a random basis as is done in [17]. For example, for a 4 × 4
identity matrix with compression ratio of 0.75, we have

β3×4 =
⎛
⎝ 1 0 0 0

0 1 0 0
0 0 0 1

⎞
⎠ , (2)

in which the third row of identity matrix is deleted.

Spectrum sensing
In Welch’s method, the received signal samples are seg-
mented into M segments of length N. The estimated PSD
(S) is achieved by linearly averaging the periodograms of
all segments as

S = 1
M

∑
m

Sm, (3)

where Sm is themth segment’s periodogram.
The periodogram of each segment is given by

Sm = |Xm|2
N

, (4)

where Xm is the DFT sequence of the mth segment
defined as

Xm = [Xm1,Xm2, . . . ,XmN ] (5)

and we have

|Xm|2 = [|Xm1|2, |Xm2|2, . . . , |XmN |2] . (6)

The estimation error variance of Welch’s method is
inversely proportional to the number of segments (M)
involved in the averaging process. We have [6]

σ 2
S � σS2m

M
, (7)

in which σ 2
S represents the estimation variance of Welch’s

method and σ 2
Sm is the one for the mth segment’s peri-

odogram.
After PSD estimation, the edges are detected. Different

methods of edge detection for wideband spectrum sensing
are developed in [10]. A modified version of window-
averaging based edge detection technique proposed in
[10] has been applied in this article. The proposed algo-
rithm can be summarized as follows

(1) The estimated PSD (in dB scale) is averaged over
consecutive non-overlapping windows.

(2) The integer part of the window-averaged PSD is
calculated.

(3) Based on the low spectrum occupancy assumption
in CR, the most frequent integer of window-
averaged PSD (the mode) is assumed to be the most
probable noise level. The edges are located in the
cross section of the noise level and the PSD curve.

(4) The area under the PSD curve (the integral of the
PSD) between two consecutive edges (detected in
the previous step) gives the energy level of that
subband.

(5) A subband with energy level above the noise level
determined in the previous step is assumed to be an
occupied subband. Therefore their edges are rough
estimates of the edges of the PSD.

(6) The exact edge location can be detected by locating
the extremum of the first derivative of the PSD
within that specified window.

Steps 4 and 5 in the above algorithm are modifications
to the window-averaging based edge detection algorithm
presented in [10].

EM algorithm
The EM algorithm is an algorithm implementing max-
imum likelihood estimation. It can be applied to a set
of data when their stochastic model is known, although
the parameters of the model might be unknown [19].
The EM is an iterative algorithm which works as follows
[19]:

(1) Calculate the expected value of the log-likelihood
function of the conditional probability distribution
of the missing variables given the observed ones.
This expected value is considered to be the current
estimate of the missing points.

(2) Maximize the above-mentioned distribution with
respect to the parameters of the estimation such as
mean, variance and covariance of the log-likelihood
function. The parameters maximizing the
distribution are used for the next expectation step.

(3) Iterate the above-mentioned steps until
convergence.

(4) The maximum likelihood estimation of the missing
variables is obtained after convergence.

Estimation of missing samples in compressive
sensing for CR
In this article, we propose to estimate the missing points
of the sub-Nyquist sampled received signal in the time
domain by applying the EM algorithm. A non-uniform
sub-Nyquist rate sampler is applied to the received signal
ofM×N matrix (recall thatM is the number of segments
and N is the number of points in each segment.).



Miar et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:281 Page 4 of 12
http://jwcn.eurasipjournals.com/content/2012/1/281

As is shown in Figure 2, the non-uniform sampler works
as follows:

(1) The sampler provides all samples in the first
segment of a set ofM1 segments.

(2) For the next (M1 − 1) segments, the sampler
samples only the first N1 points of each segment
and is turned off for the rest of this segment.

(3) For the (M1 + 1)th segment, we restart the process
by repeating steps 1 and 2.

The fully sampled first segment and the N1 points in
each subsequent segment are used along with the EM
algorithm to estimate the missing samples.
Equivalently, for the (m, n)th element of the received sig-

nal matrix, the A/D converter is switched on when either
Rem (m/M1) = 1 or Fix ((n − 1) /N1) = 0 in which
Rem (.) takes the remainder of a division and Fix (.) gives
the quotient of a division.
Since the received signal samples aremixedwith aGaus-

sian noise, it is assumed that each segment has a Gaussian
distribution. Since the received signal samples are corre-
lated, it is assumed that all segments construct a bi-variate
Gaussian distribution with the adjacent segments.

EM algorithm for bi-variate Gaussian distribution
Let x1 be the first segment (the known segment) and xm be
the mth segment of the received signal samples. The first
parts of each segment are known and the other parts are
unknown and to be estimated by EM algorithm. The esti-
mated missing points converge to their actual value after
some iterations in EM algorithm [19].
Since, the received signal samples over consecutive win-

dows are assumed to construct a bi-variate Gaussian
distribution, the conditional distribution of missing vari-
ables given the observed ones has normal distribution
with mean [19] (representing the expected value of miss-
ing points of xm+1 in expectation step of EM) given by:

E (xm+1(n)) = μm+1 + σ 2
m,(m+1)

σ 2
m,m.m−1

(xm(n) − μm) ,

n = {N1 + 1 : N},
m = {2 : M1,M1 + 2 : 2M1, . . . ,M − 1},

(8)

whereμm is themean of themth segment at each iteration
given by

μm = 1
N

∑
n

xm(n), (9)

σ 2
m,(m+1) is the covariance of the mth segment and its

consecutive segment given by

σ 2
m,(m+1) = 1

N

(∑
n

xm(n)xm+1(n)

)
− μmμm+1, (10)

The variance of the conditional distribution of missing
variables in the mth segment given the observed ones in
the (m − 1)th segment (σ 2

m,m.m−1) is given by [19]

σ 2
m,m.m−1 = σ 2

m,m − σ 4
m−1,m/σ 2

m−1,m−1, (11)

in which σ 2
m,m is given by

σ 2
m,m = 1

N

(∑
n

x2m(n)

)
− μ2

m. (12)

The above-mentioned procedure to estimate the means,
variances and covariances of different segments is the
maximization step of EM algorithm.
After a few iterations, the unknown elements of each

segment are estimated. Each segment is built based on
its preceding segment. The preceding segment is either
fully known or partially estimated by the EM algorithm.
Therefore, it is not required to wait for all segments to
be received. This makes the proposed algorithm suitable
for real time applications as it does not require a large
buffer or long processing time. The required processing
time depends on the processor speed.
After estimating the missing samples, Welch’s method is

applied to estimate the PSD and the edges.

Analysis of applying EM to spectrum sensing
The frequency bin values of each segment using DFT
transformation are given by

Xm+1(k) =
N−1∑
n=0

xm+1(n)e−2π jkn/N . (13)

From Equations (13) and (8), we have (∀k)

E (Xm+1(k)) =
N−1∑
n=0

e−2π jkn/N

×
[

σ 2
m,(m+1)

σ 2
m,m.m−1

xm(n)+μm+1−
σ 2
m,(m+1)

σ 2
m,m.m−1

μm

]
.

(14)

Since
∑N−1

n=0 e−2π jkn/N = 0 and by applying
Equation (13) into (14), Equation (14) can be re-written as

E (Xm+1(k)) = σ 2
m,(m+1)

σ 2
m,m.m−1

Xm(k) ∀k (15)

In the EM algorithm, the expected value of the variable
is chosen as its final value (E (Xm+1(k)) = Xm+1(k)). Thus
we have

Xm+1(k) = σ 2
m,(m+1)

σ 2
m,m.m−1

Xm(k) ∀k. (16)
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Figure 2 Non-uniform sampling pattern.

Based on Welch’s method, the PSD is obtained by

S(k) = 1
NM

M∑
m=1

|Xm(k)|2 ∀k. (17)

The estimation variance of the EM algorithm-based
Welch’s method equals that of Welch’s method [6]. We
have

σ 2
S � σ 2

Sm
M

, (18)

in which σ 2
S represents the estimation variance of Welch’s

method and σ 2
Sm is the one for the mth segment’s peri-

odogram.
By substituting Equation (16) into (17), we have (∀k)

S(k) = 1
NM

|X1(k)|2
⎡
⎣1 +

M−1∑
m′=1

∏m′
m=1 σ 4

m,(m+1)∏m′
m=1 σ 4

m,m.m−1

⎤
⎦ .

(19)

The term |X1(k)|2 is equivalent to its expected value
E

(|X1(k)|2
)
in the EM algorithm. Thus Equation (19) can

be re-written as (∀k)

S(k) = E
(|X1(k)|2

)
NM

⎡
⎣1 +

M−1∑
m′=1

∏m′
m=1 σ 4

m,(m+1)∏m′
m=1 σ 4

m,m.m−1

⎤
⎦ .

(20)

It can be seen from Equation (20) that the PSD obtained
by EM algorithm has a scaling factor (shown in brack-
ets) that is frequency-independent and therefore the PSD

shape obtained after the application of the EM algorithm
is not distorted compared to the one obtained by sampling
above the Nyquist rate.

Power consumption comparison
The idea behind intermittently switching off the A/D con-
verter is to reduce the power consumption and increase
the battery life. To compare the power consumption of
compressive and non-compressive methods, we calcu-
late the power consumption of the EM algorithm that is
additional to reduced power of the compressive sensing
algorithm.
The A/D power consumption is linearly proportional to

the sampling rate and thus to the number of received sam-
ples in each time frame [20]. Moreover for zero-crossing
based ADC, the static power consumption is zero [21].We
have,

Pc = Cr × Pnc + PEM, (21)

where Pc, Pnc and PEM are the power consumption of
compressive sensing method, non-compressive sensing
method and EM algorithm, respectively. Cr is the com-
pression ratio and is given by

Cr = 1
M1N

((M1 − 1)N1 + N) . (22)

FromEquations (8)–(11), the whole procedure to update
the missing points based on the EM algorithm requires
approximately of 6N × M additions and 4N × M
multiplications, a total of 10N × M operations (either
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addition or multiplications) for each iteration. Therefore,
power consumption of EM algorithm is given by

PEM = Pi × O × I, (23)

where Pi is the power consumption per instruction, O is
the number of operations, and I is the number of itera-
tions. The power efficiency (η) of the system is defined by

η = Pnc
Pc

. (24)

The system is efficient when η > 1.

Reduced power A/D converter system design example
Power consumption of two cases of compressive and non-
compressive sensing is subject to proper design of the
system, especially proper selection of ADC and processor.
The proposed system is efficient only if Pc is much lower
than Pnc (η > 1) with the proper design of the system.
An example is given in this subsection that is one possible
design of the system.
Assume we have an A/D converter working at the rate

of 100Msamples/sec. Assume the received signal consists
of M = 100 segments of N = 1, 024 points. With this
A/D converter, it takes about 1ms to sense M × N �
100, 000 samples of the received signal. With I = 15 itera-
tions and 10N ×M operations, the EM algorithm requires
15 × 10 × 100, 000 = 15 million operations per 1 ms
which is equivalent to 15 GOPS (Giga operations per sec-
ond). A processor with power efficiency of x GOPS/mW,
is chosen. We have

PEM = 15GOPS
xGOPS/mW

= 15
x

mW. (25)

For a system with a compression ratio of Cr = 0.1 and
power efficiency of (η > 1), we have:

η = Pnc
Pc

= Pnc
Cr × Pnc + PEM

= Pnc
0.1 × Pnc + 15

x
> 1.

(26)

Equivalently, we have

x >
16.6667
Pnc

GOPS/mW. (27)

This will give us the boundary limit on the combination
of ADC and processor that a designer can choose.
For example, if we select a 1.2V 250mW 14b 100MS/s

digitally calibrated pipeline ADC in 90 nm CMOS which
consumes Pnc = 250mW [22], then from (27), we require

Table 1 Complexity comparison table of non-compressive
and em-based compressive sensingmethods

Method Complexity order For the given

example

Non-compressive O(N3) O(109)

EM-based compressive O(N3) + 10INM 109 + 1.5 × 107

≈ O(N3) ≈ O(109)

a processor with an efficiency of x = 0.4GOPS/mW in
order to achieve a power savings of a factor of 4 (η = 4).
From [23], it is shown that processors can have efficiencies
up to 17.3 GOPS/mW, therefore the above power savings
is achievable with readily available processors.
To verify the applicability of the proposed method,

simulation results for the above-mentioned case are pre-
sented in the upcoming section.

Complexity comparison of compressive and
non-compressive sensing methods
Complexity of non-compressive and EM-based compres-
sive sensing methods are compared in Table 1. The com-
plexity order of Welch’s method is given by O(N3) [6] and
complexity order of EM algorithm is given by 10INM in
which I is the number of iterations. M is the number of
received signal segments and N is the number of samples
in each segment. For the given example, it can be seen that
the complexity of EM-based compressive sensing is of the
same order as of the non-compressive sensing technique.

Simulation results
For a wideband signal with 29% of spectrum occupancy,
the simulation results of obtaining the PSD using both
compressive and non-compressive sensing methods are
shown in Figure 3 where the actual frequency shaper fil-
ter is shown at the top subplot, the PSD obtained by both
compressive and non-compressive sensing methods are
shown at the bottom subplot. The SNR of the strongest
subbands in these simulations is SNR = 2 dB and the
other subband is 3 dB weaker. SNR is calculated individ-
ually over various subbands and is defined as the ratio
of the signal power in each subband to the noise power
in that subband. The simulation results are derived from
100 non-overlapping frames of 1024 samples each using
Welch’s method. For the compressive sensing method, the
whole first segment along with the first 128 points of
the other segments are sampled. For M1 = M = 100
segments and N1 = 128, the compression ratio is 13%.
The remaining unknown data are estimated using the EM
algorithm for 15 iterations. It can be seen from Figure 3
that although the PSD for the compressed data has lower
values than the non-compressive sensing one, the edges of
the PSD are maintained. The power consumption calcula-
tions for this case are given in the previous section.
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Figure 3 The PSD obtained by both compressive and non-compressive sensing methods.

For the signal whose PSD is shown in Figure 3, the sim-
ulation results of the root mean square error (RMSE) of
the edge frequency bins versus the number of iterations of
the EM algorithm (used in the new compressive sensing
method) is shown in Figure 4. Based on Figure 4, we use
15 iterations as a reasonable number after which the EM
algorithm can be considered to have converged.

For the case considered in Figure 3, the edge detec-
tion rate versus SNR curves of both compressive and
non-compressive sensing techniques along with the
periodogram-based PSD estimation technique, are shown
in Figure 5. In periodogram-based PSD estimation tech-
nique (whose detection rate is shown in the bottom curve
of Figure 5), only the first segment is involved in the PSD
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Figure 4 The RMSE of the edge frequency bins versus the number of iterations of the EM algorithm of the new compressive sensing
method.
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Figure 5 Edge detection rate versus SNR curves of both compressive and non-compressive sensing techniques along with the one with
only first segment involved in the PSD estimation.

estimation (one known segment). It can be seen that the
detection rate of the compressive sensing method with
13% of compression ratio, is comparable to that of the
non-compressive method and it is much better than the
periodogram-based spectrum sensing method making it a
viable alternative.

We now consider a more realistic PSD shaper filter
as shown in Figure 6. The edge detection rate versus
SNR curves of both compressive and non-compressive
sensing techniques along with the periodogram-based
PSD estimation technique are shown in Figure 7. The
SNR of the strongest subbands in these simulations is
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Figure 6 Amore realistic frequency shaper filter.
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Figure 7 Edge detection rate versus SNR curves of both compressive and non-compressive sensing techniques along with the
periodogram-based PSD estimation for a PSD with a Sinc square shape.

SNR = 10 dB and the other subband is 3 dB weaker. The
simulation results are derived from 100 non-overlapping
frames of 1,024 samples each using Welch’s method.
For the compressive sensing method, the whole first
segment along with the first 128 points of the other
segments are available. The compression ratio is 13%
for M1 = M = 100 segments and N1 = 128.
The remaining unknown data is estimated using the

EM algorithm for 15 iterations. Again, it can be seen
that the detection rate of the compressive sensing
method is comparable to that of the non-compressive
method and it is much better than the periodogram-
based spectrum sensing method making it a viable
alternative.
In order to examine the effects of roll-off factor of the

PSD shaper filter on the detection probability, raised-
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Figure 8 Edge detection rate versus PSD shaper filter roll-off factor curves of both compressive and non-compressive sensing techniques
SNR = 0dB.
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Figure 9 Edge detection rate versus PSD shaper filter roll-off factor curves of both compressive and non-compressive sensing techniques
SNR = 5dB.

cosine filter is used as the PSD shaper filter. For a low-pass
raised-cosine filter given by

H(k)=

⎧⎪⎨
⎪⎩
1 k ≤ (1 − β)k0
cos2

(
π

4βk0 (k−(1−β)k0)
)

(1 − β)k0<k ≤ (1+β)k0
0 otherwise

(28)

in which k represents frequency bin, k0 represents the cut-
off frequency bin of the filter, and β is the roll-off factor
(0 ≤ β ≤ 1). The edge happens at frequency bin (1+β)k0.
For β = 0, the filter has rectangular-like shape and for
β = 1, it has a cosine function shape.
For a low-pass raised cosine shaper filter with cut-off

frequency bin k0 = 100, the edge detection rate versus
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Figure 10 Edge detection rate versus SNR curves of compressive sensing algorithm for three compressive sensing cases and the one for
non-compressive sensing method.
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PSD shaper filter roll-off factor curves of both compres-
sive and non-compressive sensing techniques are shown
in Figures 8 and 9 for SNR = 0 and SNR = 5 dB, respec-
tively. The simulation results are derived from 100 non-
overlapping frames of 1,024 samples each using Welch’s
method. For the compressive sensing method, the whole
first segment along with the first 128 points of the other
segments are available. The compression ratio is 13% for
M1 = M = 100 segments and N1 = 128. The remain-
ing unknown data is estimated using the EM algorithm
for 15 iterations. Again, it can be seen that the detection
rate of the compressive sensing method is comparable to
that of the non-compressive method. The detection rate
decreases by an increase in the roll-off factor of the PSD
shaper filter.
To understand the effects of different structures on the

performance, the detection rate of the following scenarios
are compared.

(1) Case 1:M1 = 100 and N1 = 128; i.e., starting from
the first segment, one segment is known in each set
ofM1 = 100 segments and the first N1 = 128
points of the other segments are known. Its
detection is shown in Figure 5. Cr = 13%.

(2) Case 2:M1 = 5 and N1 = 128. Cr = 30%.
(3) Case 3:M1 = 100 and N1 = 256. Cr = 26%.

The signal whose frequency shaper filter is shown at the
top subplot of Figure 3 is used for the simulations. The
simulation results are derived from 100 non-overlapping
frames of 1,024 samples each using Welch’s method. The
edge detection rate versus SNR curves of the proposed
compressive sensing algorithm for all compressive sensing
cases and the one for non-compressive sensing are shown
in Figure 10.
For above-mentioned cases, it can be seen in Figure 10

that the detection rate increases by both increasing the
number of known segments M1 (case 2) and the num-
ber of first known points in each segment N1 (case 3).
However, increasing N1 results in higher detection rate
compared to increasing M1 under the conditions of the
above-mentioned cases because a larger N1 results in
more accurate estimation of the covariance of the con-
secutive segments and thus results in a more accurate
estimation of the missing points.

Conclusion
In this article, we apply a sub-Nyquist non-uniform sam-
pler for spectrum sensing for use in CR. It is shown by
simulations and analysis that the proposed sub-Nyquist
rate non-uniform sampler is accurate enough to detect
the edges of PSD and consumes much less power than
the non-compressive sensing method. The proposed sam-
pler samples only some portions of the received signal and

switches off the A/D converter based on a predetermined
pattern to reduce power consumption. Since the received
signal samples in time domain are correlated, we estimate
the missing samples using the EM technique. The analy-
sis of applying EM technique to spectrum sensing shows
that the locations of PSD edges are maintained after esti-
mating the missing points of the received signal using EM
algorithm. In a design example, it is shown that the com-
bined sub-Nyquist sampling/ EM algorithm consumes
much less power than Nyquist-based A/D converter thus
making the proposed algorithm a viable low-power solu-
tion for spectrum sensing. It is shown that although the
estimated PSD using the proposed compressive sensing
method results in lower values than the non-compressive
sensing one, the edges of the PSD are maintained. Since
in CR, it is the location of the PSD edges that is impor-
tant rather than the exact shape of PSD, the proposed
compressive sensing method can be used as a low-power
solution for A/D conversion in wideband CR.

Methods
Simulations were run in MATLAB. To generate the
received data with a specified spectrum, a white Gaussian
noise process is passed through spectrum shaping fil-
ter. This constructs the frequency domain samples of the
cognitive radio received signal with a specified spectrum
shaping filter. The time domain samples can be obtained
by getting the inverse DFT of the frequency domain sam-
ples. Then noise is added to the constructed signal to
introduce a specific signal to noise ratio. The PSD can be
estimated using Welch’s method for both DFT and SDFT
techniques. The edges can be obtained based on the pro-
posed edge detection technique. The detection rate of the
proposed techniques can be obtained by comparing the
estimated edge locations to the actual ones. The simula-
tions were run several times to get an accurate detection
rate using Monte-Carlo simulation technique.
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