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Abstract

The ordered statistics-based list decoding techniques for linear binary block codes of small to medium block length
are investigated. The construction of a list of the test error patterns is considered. The original ordered-statistics
decoding (OSD) is generalized by assuming segmentation of the most reliable independent positions (MRIPs) of the
received bits. The segmentation is shown to overcome several drawbacks of the original OSD. The complexity of the
ordered statistics-based decoding is further reduced by assuming a partial ordering of the received bits in order to
avoid the complex Gauss elimination. The probability of the test error patterns in the decoding list is derived. The bit
error rate performance and the decoding complexity trade-off of the proposed decoding algorithms is studied by
computer simulations. Numerical examples show that, in some cases, the proposed decoding schemes are superior to
the original OSD in terms of both the bit error rate performance as well as the decoding complexity.
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Introduction
A major difficulty in employing forward error correction
(FEC) coding is the implementation complexity especially
of the decoding at the receiver, and the associated decod-
ing latency for long codewords. Correspondingly, the FEC
coding is often designed to trade-off the bit error rate
(BER) with the decoding complexity and latency [1], and
even with the energy efficiency [2]. Many universal decod-
ing algorithms have been proposed for the decoding of
linear binary block codes [3]. The decoding algorithms
in [4,5] are based on the testing and re-encoding of the
information bits as initially considered by Dorsch [6]. In
particular, a list of the likely transmitted codewords is gen-
erated using the reliabilities of the received bits, and then,
the most likely codeword is selected from this list. The list
of the likely transmitted codewords can be constructed
from a set of the test error patterns. The test error pat-
terns can be predefined as in [4,7], and as assumed also
in this article, predefined and optimized for the channel
statistics as in [8], or defined adaptively for a particular
received sequence as suggested in [9]. The complexity of
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the list decoding can be further reduced by the skipping
and stopping rules as shown, for example, in [4,7].
Among numerous variants of the list decoding tech-

niques, the ordered-statistics decoding (OSD) is well
known [4,7]. The structural properties of the FEC code
are utilized to reduce the OSD complexity in [10]. The
achievable coding gain of the OSD is improved by con-
sidering the multiple information sets in [11]. The decod-
ing proposed in [12] exploits randomly generated biases
to present the decoder with the multiple received soft-
decision values. The sort and match decoding of [13]
divides the received sequence into two disjoint segments.
The list decoding is then performed for each of the two
segments independently, and the two generated lists are
combined using a sort and match algorithm to decide
on the most likely transmitted codeword. The box and
match decoding strategy is developed in [5]. An alter-
native approach to the soft-decision decoding of linear
binary block codes relies on the sphere decoding tech-
niques [14,15]. For example, the input sphere decoder
(ISD) considered in this article can be considered to be a
trivial sphere decoding algorithm. Furthermore, the struc-
ture of the channel code can be exploited to design the
channel code-specific list decoding [16].
In this article, we investigate the OSD-based decod-

ing strategies for linear binary block codes. Our aim is
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to obtain low-complexity decoding schemes that pro-
vide sufficiently large or valuable coding gains, and more
importantly, that are also well suited for implementa-
tion in the communication systems with limited hardware
resources, e.g., at the nodes of wireless sensor networks
[17]. We modify the original OSD by considering dis-
joint segments of the MRIPs [18]. Such segmentation
of the MRIPs creates flexibility that can be exploited to
fine-tune a trade-off between the BER performance and
the decoding complexity. Thus, the original OSD can
be considered to be a special case of the segmentation-
based OSD having only one segment corresponding to
the MRIPs. Furthermore, since the complexity of obtain-
ing a row echelon form of the generator matrix for every
received codeword represents a significant part of the
overall decoding complexity, we examine a partial OSD
(POSD) when only the systematic part of the received
codeword is ordered. Finally, the simulation results pre-
sented in [18] are extended with the rigorous analysis of
the probability of error for the OSD schemes which also
includes the analysis how to select the optimum decoding
list.
The rest of this article is organized as follows. System

model is described in “System model’’ section. Construc-
tion of the list of the test error patterns is investigated in
“List selection” section. The list decoding algorithms are
developed in “List decoding algorithms” section. The per-
formance analysis is considered in “Performance analysis”
section. Numerical examples to compare the BER per-
formance and the decoding complexity of the proposed
decoding schemes are presented in “Numerical examples”
section. Finally, conclusions are given in “Conclusions”
section.

Systemmodel
Consider the transmission of codewords of a linear binary
block code C over a Rayleigh fading channel with addi-
tive white Gaussian noise (AWGN). The code C, denoted
as (N ,K , dmin), has block length N , dimension K , and
the minimum Hamming distance between any two code-
words dmin. Binary codewords c ∈ Z

N
2 where Z2 = {0, 1}

are generated from the vector of information bits u ∈ Z
K
2

using the generator matrixG ∈ Z
K×N
2 , i.e., c = uG, and all

binary operations are considered over a Galois field GF(2).
If the code C is systematic, the generator matrix has the
form, G =[ I P], where I is the K × K identity matrix, and
P ∈ Z

K×(N−K)
2 is the matrix of parity checks. The code-

word c is mapped to a binary phase shift keying (BPSK)
sequence x ∈ {+1,−1}N before the transmission. Assum-
ing themapping, xi = M (ci) = (−1)ci , for i = 1, 2, . . . ,N ,
we have the property,

M
(
ci ⊕ cj

) = M (ci)M
(
cj
)

(1)

for any encoded bits ci and cj, and⊕ denotes the modulo 2
addition. Then, the encoded bit ci can be recovered from
the symbol xi using the inverse mapping, ci = M−1 (xi) =
(1 − xi)/2. For brevity, we also use the notation, x =
M (c) and c = M−1 (x), to denote the component-
wise modulation mapping and de-mapping, respectively.
The codewords of code C are assumed to have equally
probable values of the encoded bits, i.e., the probability,
Pr{ci = 0} = Pr{ci = 1} = 1/2, for i = 1, 2, . . . ,N . Con-
sequently, all codewords are transmitted with the equal
probability, i.e., one has the a priori probability, Pr{c} =
2−K for ∀c ∈ C.
The signal at the output of the matched filter (i.e., at the

input to the decoder) at the receiver can be written as

yi = hixi + wi

where the frequency non-selective channel fading coeffi-
cients hi as well as the AWGN samples wi are mutually
uncorrelated zero-mean circularly symmetric complex
Gaussian random variables. The variance of hi is unity, i.e.,
E
[|hi|2] = 1 where E [ ·] is expectation, and | · | denotes

the absolute value. The samples wi have the variance,
E
[|wi|2

] = (Rγc)−1, where R = K/N is the encoding rate
of C, and γc is the signal-to-noise ratio (SNR) per transmit-
ted encoded binary symbol. The covariance, E

[
hih∗

j

]
= 0

for i �= j, where (·)∗ denotes the complex conjugate, cor-
responds to the case of fast fading channel with the ideal
interleaving and deinterleaving. On the other hand, for
slowly block-fading channel, the covariance E

[
hih∗

j

]
= 1

for ∀i, j = 1, 2, . . . ,N , whereas the fading coefficients are
assumed to be uncorrelated between the transmissions of
adjacent codewords.
In general, denote as f (·) the probability density func-

tion (PDF) of a random variable. The reliability ri of the
received signal yi is given by the ratio of the conditional
PDFs of yi [19], i.e.,

f (yi|xi = +1, hi)
f (yi|xi = −1, hi)

∝ Re
{
h∗
i yi

} = ri

since the PDF f (yi|xi, hi), for xi = {+1,−1}, is the con-
ditionally Gaussian distribution. Since xi are real-valued
symbols, the reliability ri can be written as

ri = Re{hi}Re
{
yi

} + Im{hi} Im
{
yi

} = |hi|2xi + |hi|wi.

The bit-by-bit binary-quantized (i.e., hard) decisions are
then defined as

ĉi = M−1 (
sign(ri)

)
where sign (·) denotes the sign of a real number.
More importantly, even though the primary metric of

our interest is the BER performance of the code C, it is
mathematically more convenient to design and analyze
the list decoding algorithms assuming the probability of
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codeword error. Thus, we can assume that the decod-
ing algorithm designed using the probability of codeword
error also achieves a good BER performance [19].
The maximum likelihood (ML) decoder minimizing the

probability of codeword error provides the decision ĉML
on the most likely transmitted codeword, i.e.,

ĉML = argminc∈C: x=M(c)
∥∥y − h � x

∥∥2

= argmaxc∈C
N∑
i=1

Re
{
yih∗

i x∗
i
}

BPSK= argmaxc∈C: x=M(c) r · x (2)

where y, h, x, and r denote the N-dimensional row vec-
tors of the received signals yi, the channel coefficients hi,
the transmitted symbols xi, and the reliabilities ri within
one codeword, respectively, ‖·‖ is the Euclidean norm of
a vector, � is the component-wise (Hadamard) product of
vectors, and the binary operator ‘·’ is used to denote the
dot-product of vectors. The codewords c ∈ C used in (2)
to search for the maximum or minimum value of the ML
metric are often referred to as the test codewords. In the
following section, we investigate the soft-decision decod-
ing algorithms with small implementation complexity to
replace the computationally demanding ML decoding
in (2).

List decoding
We investigate the list-based decoding algorithms. For
simplicity, we assume binary block codes that are linear
and systematic [20]. We note that whereas the extension
of the list-based decoding algorithms to non-systematic
codes is straightforward, the list-based decoding of non-
linear codes is complicated by the fact that the list of the
test codewords is, in general, dependent on the received
sequence. More importantly, we define and measure the
decoding (time) complexity O of the list decoding algo-
rithms as the size of the list given by the number of the
test codewords that are examined in the decoding process.
Hence, the ML decoding (2) has the complexity, OML =
2K , which is prohibitive for larger values of K . Among the
practical list-based decoding algorithms with the accept-
able decoding complexity, we investigate the OSD-based
list decoding algorithms [4] for the soft-decision decoding
of linear binary block codes.
The OSD decoding resumes by reordering the received

sequence of reliabilities ri, i = 1, 2, . . . ,N . Thus, let,

|r̃′1| ≥ |r̃′2| ≥ · · · |r̃′N | (3)

so that the ordering of reliabilities can be described by the
permutation, λ′, i.e.,

r̃′ = (r̃′1, . . . , r̃′N ) = λ′[r] .

The permutation λ′ corresponds to the generatormatrix
G̃′ = λ′[G] having the reordered columns. In order to
obtain the MRIPs for the first K bits in the codeword,
additional swapping of the columns of G̃′ may have to
be used which corresponds to the permutation λ′′, and
the generator matrix G̃′′ = λ′′

[
G̃′

]
. The matrix G̃′′ is

then guaranteed it can be manipulated into a row (or a
reduced row) echelon form using the Gauss (or the Gauss-
Jordan) elimination. To simplify the notation, let r̃ and G̃
denote the reordered sequence of the reliabilities r and the
reordered generator matrix G̃ in a row (or a reduced row)
echelon form, respectively, after employing the permuta-
tions λ′ and λ′′, that will be used to decode the received
sequence y. Thus, for i ≥ j, the reordered sequence r̃ has
elements, |r̃i| ≥ |r̃j|, for i, j ∈ {1, . . . ,K}, as well as for
i, j ∈ {K + 1, . . . ,N}.
The complexity of the full ML decoding (2) of the

received sequence y can be reduced by assuming a list of
the L test codewords, so that L � 2K . Denote such list
of the test codewords of cardinality L generated by the
matrix G̃ as, EL = {e0, e2, . . . , eL−1} ⊂ Z

N
2 , and let e0 = 0

be the all-zero codeword. Then, the list decoding of y is
defined as

ĉ = argmaxe∈EL: x=M(ĉ0⊕e)r̃ · x (4)

where the systematic part of the codeword ĉ0 is given by
the hard-decision decoded bits at the MRIPs. The decod-
ing step to obtain the decision ĉ0 is referred to as the 0th
order OSD reprocessing in [4]. In addition, due to linearity
of C, we have that (c0⊕e) ∈ C, and thus, the test error pat-
terns e ∈ EL can be also referred to as the test codewords
in the decoding (4). Using property (1), we can rewrite the
decoding (4) as

ĉ = argmaxe∈EL r̃ · x̂0 ·M (e) = argmaxe∈EL r̃0 ·M (e)
(5)

where we denoted x̂0 = M
(
ĉ0

)
, and r̃0 = r̃ � x̂0. The

systemmodel employing the list decoding (5) is illustrated
in Figure 1. Hence, as indicated in Figure 1, the system
model can be represented as an equivalent channel with
the binary vector input c and the vector soft-output r̃0.

List selection
The selection of the test error patterns e to be included in
the list EL as well as the list size L critically affect the prob-
ability of incorrect codeword decision in the list decoding.
Denote such probability of codeword error as Pe, and let
cTx be the codeword transmitted. In [14], the probability
Pe is expanded as

Pe = Pr
{
ĉ �= cTx|ĉML �= cTx

}
Pr

{
ĉML �= cTx

}
+Pr

{
ĉ �= cTx|ĉML = cTx

}
Pr

{
ĉML = cTx

}
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Figure 1 Equivalent systemmodel. The systemmodel and equivalent vector channel with the binary vector input c and the vector soft-output r̃0.

where the decision ĉ is obtained by the decoding (5), and
the condition, ĉML �= cTx, is satisfied provided that the
vectors ĉML and cTx differ in at least one component, i.e.,
ĉML = cTx if and only if all the components of these
vectors are equal. Since, for any list EL, the probability,
Pr

{
ĉ �= cTx|ĉML �= cTx

} = 1, and usually, the probabil-
ity, Pr

{
ĉML = cTx

}
is close to 1, the probability Pe can be

tightly upper-bounded as

Pe ≤ Pr
{
ĉML �= cTx

} + Pr
{
ĉ �= cTx|ĉML = cTx

}
. (6)

The bound (6) is useful to analyze the performance of
the list decoding (5). The first term on the right-hand
side of (6) is the codeword error probability of the ML
decoding, and the second term is the conditional code-
word error probability of the list decoding. Furthermore,
the probability Pr

{
ĉ �= cTx|ĉML = cTx

}
is decreasing with

the list size. In the limit of the maximum list size when
the list decoding becomes theML decoding, the bound (6)
becomes Pe = Pr

{
ĉML �= cTx

}
. However, in order to con-

struct the list of the test error patterns, we consider the
following alternative expansion of the probability Pe, i.e.,

Pe = Pr
{
ĉ �= cTx|(cTx ⊕ ĉ0) ∈ EL

}
Pr

{
(cTx ⊕ ĉ0) ∈ EL

}
+Pr

{
ĉ �= cTx|(cTx ⊕ ĉ0) �∈ EL

}
Pr

{
(cTx ⊕ ĉ0) �∈ EL

}
= 1−Pr

{
ĉ=cTx|(cTx ⊕ ĉ0) ∈ EL

}
︸ ︷︷ ︸

PI

Pr
{
(cTx ⊕ ĉ0)∈EL

}
︸ ︷︷ ︸

PII

.

Using (4) and (5), the probability PI that the list decoding
(5) selects the transmitted codeword provided that such
codeword is in the list (more precisely, provided that the
error pattern cTx ⊕ ĉ0 is in the list) can be expressed as

PI = Pr
{
r̃ · M (

cTx ⊕ ĉ0
) ≥ r̃0 · M (e) ,∀e ∈ EL

}
. (7)

The probability (7) decreases with the list size, and, in
the limit of the maximum list size L = 2K , PI = 1 − Pe.
On the other hand, the probability PII that the transmitted
codeword is in the decoding list increases with the list size,
and PII = 1, for L = 2K .
Since the coding C as well as the communication chan-

nel are linear, then, without loss of generality, we can
assume that the all-zero codeword, cTx = 0, is trans-
mitted. Consequently, given the list decoding complexity
L, the optimum list E∗

L minimizing the probability Pe is
constructed as

E∗
L = argmaxE : |E|=LPr

{
ĉ = 0|ĉ0 ∈ E

}
Pr

{
ĉ0 ∈ E

}
(8)

where |E | is the cardinality of the list E , and the hard-
decision codeword ĉ0 ∈ C represents the error pattern
observed at the receiver after the transmission of the
codeword cTx = 0. For given list of the test error pat-
terns E in (8), and assuming the system model in “System
model” section with asymptotically large SNR, the prob-
ability PI = Pr

{
ĉ = 0|ĉ0 ∈ E

}
is dominated by the error

events corresponding to the error patterns with the small-
est Hamming distances. Since the error patterns in the
list are also codewords of C, the smallest Hamming dis-
tance between any two error patterns in the list E is at
least dmin. Furthermore, assuming that the search in (8) is
constrained to the lists E having the minimum Hamming
distance between any of the two error patterns exactly
equal to dmin, the probability PI is approximately constant
for all these lists E . Consequently, we can consider the
sub-optimum list construction

EL = argmaxE : |E|=LPr
{
ĉ0 ∈ E

}
. (9)

The list construction (9) is recursive in its nature, since
the list E maximizing (9) consists of the L most prob-
able error patterns. However, in order to achieve the
small probability of decoding error Pe and approach the
probability of decoding error, Pr

{
ĉML �= cTx

}
, of the ML

decoding, the list size L must be large. Hence, we can
obtain a practical list construction by assuming the L suf-
ficiently probable error patterns rather than assuming the
Lmost likely error patterns. We restate Theorems 1 and 2
in [4] to obtain the likely error patterns and to define the
practical list decoding algorithms.
Denote as P(i1, i2, . . . , in) the nth-order joint probability

of bit errors at the bit positions 1 ≤ i1 < i2 < . . . < in ≤
N in the received codeword after the ordering λ′ and λ′′,
and before the decoding. Since the test error pattern e is a
codeword of C, the probability P(i1, i2, . . . , in), for in ≤ K ,
is equal to the probability Pr

{
e = ĉ0

}
assuming that n bit

errors occurred during the transmission corresponding to
the positions (after the ordering) i1, i2, . . . , in. We have the
following lemma.

Lemma 1. For any bit positions I1 ⊆ I ⊆ {1, 2, . . . ,N},

P(I) ≤ P(I1).

Proof. The lemma is proved by conditioning, i.e., note
that, P(I) = P(I1, I\I1) = P(I\I1|I1)P(I1) ≤
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≤ min{P(I1), P(I\I1|I1)} ≤ P(I1) where I\I1 denotes
the difference of the two sets.

Using Lemma 1, we can show, for example, that P(i, j) ≤
P(i), and P(i, j) ≤ P(j). We can now restate Theorems 1
and 2 in [4] as follows.

Theorem 1. Assume bit positions 1 ≤ i < j < k ≤ N,
and let the corresponding reliabilities be |r̃i| ≥ |r̃j| ≥ |r̃k |.
Then, the bit error probabilities

P(i) ≤ P(j)
P(i, j) ≤ P(i, k).

Proof. Without loss of generality, we assume that the
symbols xi = −1, xj = −1, and xk = −1 have been trans-
mitted. Then, before the decoding, the received bits would
be decided erroneously if the reliabilities r̃i > 0, r̃j > 0,
and r̃k > 0. Conditioned on the particular transmitted
symbols xi, xj, and xk , let f (·) denote the conditional PDF
of the ordered reliabilities r̃i, r̃j, and r̃k .
Consider first the inequality P(i) ≤ P(j). Since, for r̃i >

0, f (r̃i) < f (−r̃i), using f (r̃i, r̃j) = f (r̃i|r̃j)f (r̃j), we can
show that, for r̃i > 0 and any r̃j, f (r̃i, r̃j) < f (−r̃i, r̃j). Simi-
larly, using f (−r̃i, r̃j) = f (r̃j|− r̃i)f (−r̃i), we can show that,
for r̃j > 0 and any r̃i, f (−r̃i, r̃j) < f (−r̃i,−r̃j). Then, the
probability of error for bits i and j, respectively, is

P(i) =
∫ ∞

0

∫ r̃i

−r̃i
f (r̃i, r̃j)dr̃jdr̃i

=
∫ ∞

0

∫ r̃i

0
f (r̃i, r̃j)dr̃jdr̃i +

∫ ∞

0

∫ 0

−r̃i
f (r̃i, r̃j)dr̃jdr̃i

P(j) =
∫ ∞

−∞

∫ |r̃i|

0
f (r̃i, r̃j)dr̃jdr̃i

=
∫ ∞

0

∫ r̃i

0
f (r̃i, r̃j)dr̃jdr̃i +

∫ ∞

0

∫ 0

−r̃i
f (−r̃i,−r̃j)dr̃jdr̃i

and thus, P(i) ≤ P(j).
The second inequality, P(i, j) ≤ P(i, k), can be proved

by assuming conditioning, P(i, j) = P(j|i)P(i), P(i, k) =
P(k|i)P(i), and f (r̃i, r̃j, r̃k) = f (r̃j, r̃k|r̃i)f (r̃i), and by using
inequality P(i) ≤ P(j), and following the steps in the first
part of this proof.

List decoding algorithms
Using Theorems 1 and 2 in [4], the original OSD assumes
the following list of the test error patterns,

EL = {eG : 0 ≤ wH[e] ≤ I, e ∈ Z
K
2 } (10)

where I is the so-called reprocessing order of theOSD, and
wH[e] is the Hamming weight of the vector e. Thus, the list
(10) uses aK-dimensional sphere of radius I defined about
the origin 0 = (0, . . . , 0) in Z

K
2 . The decoding complexity

for the list (10) is L = ∑I
l=0

(K
l
)
where l is referred to as

the phase of the order I reprocessing in [4]. Assuming an
AWGN channel, the recommended reprocessing order is
I = �dmin/4� � K where �·� is the ceiling function. Since
the OSD algorithm may become too complex for larger
values of I and K , a stopping criterion for searching the
list EL was developed in [10].
We can identify the following inefficiencies of the orig-

inal OSD algorithm. First, provided that no stopping or
skipping rules for searching the list of the test error pat-
terns are used, once the MRIPs are found, the ordering
of bits within the MRIPs according to their reliabili-
ties becomes irrelevant. Second, whereas the BER per-
formance of the OSD is modestly improving with the
reprocessing order I, the complexity of the OSD increases
rapidly with I [10]. Thus, for given K , the maximum value
of I is limited by the acceptable OSD complexity to achieve
a certain target BER.We can address these inefficiencies of
the original OSD by more carefully exploiting the proper-
ties of the joint probability of bit errors given by Lemma 1
and Theorem 1. Hence, our aim is to construct a well-
defined list of the test error patterns without considering
the stopping and skipping criteria to search this list.
Recall that the test error patterns are uniquely speci-

fied by bits within the MRIPs, whereas the bits outside
the MRIPs are obtained using the parity check matrix
of the code. In order to generate a list of the test error
patterns independently of the particular generator matrix
(i.e., independently of the particular code) as well as inde-
pendently of the particular received sequence, we consider
only the bit errors within the MRIPs. Hence, we assume
that, for all test error patterns, the bit errors outside the
MRIPs affect the value of the metric in (5) equally. More
importantly, in order to reduce the list decoding complex-
ity while improving the BER performance, we consider
partitioning of the MRIPs into disjoint segments. This
decoding strategy employing segments of the MRIPs is
investigated next.

Segmentation-based OSD
AssumingQ disjoint segments of theMRIPs, the test error
pattern e corresponding to the K MRIPs can be expressed
as a concatenation of theQ error patterns e(q) of length Kq
bits, q = 1, . . . ,Q, i.e.,

e = (e(1), . . . , e(Q)) ∈ Z
K
2

so that
∑Q

q=1 Kq = K , and wH[e] = wH
[
e(1)] + · · · +

wH
[
e(Q)

]
. As indicated by Lemma 1 and Theorem 1, more

likely error patterns have smaller Hamming weights, and
they correct the bit positions having smaller reliabilities.
In addition, the decoding complexity given by the total
number of the test error patterns in the list should grow
linearly with the number of segmentsQ. Consequently, for
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a small number of segments Q, it is expected that a good
decoding strategy is to decode each segment indepen-
dently, and then, the final decision is obtained by selecting
the best error (correcting) pattern from these segments
decodings. In this article, we refine this strategy for Q =
2 segments as a generalization of the conventional OSD
having only Q = 1 segment.
Assuming that the two segments of the MRIPs are

decoded independently, the list of the test error patterns
can be written as

EL = E (1)
L1 ∪ E (2)

L2 (11)

where E (1)
L1 and E (2)

L2 are the sublists of the test error
patterns corresponding to the list decoding of the first seg-
ment and of the second segment, respectively, and L =
L1 + L2. Obviously, fewer errors, and thus, fewer error
patterns can be assumed for shorter segments, and the
segments with larger reliabilities of the received bits. Sim-
ilar to the case of the conventional OSD having only one
segment, for Q = 2 segments of the MRIPs considered,
we assume all the test error patterns up to the maximum
Hamming weight Iq, q = 1, 2. Then, the sublists of the test
error patterns in (11) are defined as

E (1)
L1 = {(e, 0)G : 0 ≤ wH[e] ≤ I1, e ∈ Z

K1
2 }

E (2)
L2 = {(0, e)G : 0 ≤ wH[e] ≤ I2, e ∈ Z

K2
2 }.

(12)

Hence, the overall decoding complexity of the
segmentation-based OSD with the sublists in (12) is

L =
I1∑
l=0

(
K1
l

)
+

I2∑
l=0

(
K2
l

)

where K = K1 + K2, and we assume that, I1 � K1, and
I2 � K2.
Recall that the original OSD, denoted as OSD(I) or

OSD(I|K), has one segment of length K bits, and that the
maximum number of bit errors assumed in this segment is
I. The segmentation-based OSD is denoted as OSD(I1, I2)
or OSD(I1|K1, I2|K2), and it is parameterized by the seg-
ments length K1, and K2, and the maximum number of bit
errors in these segments I1 and I2, respectively. The seg-
ment sizes K1 and K2 are chosen empirically to minimize
the BER for a given decoding complexity L and the set
of codes under consideration. In particular, for systematic
block codes of block length N < 128 and rate R ≥ 1/2,
it was found that the best BER performance is achieved if
the length of the first segment is

K1 ≈ �0.35K�
so that the second segment length is K2 = K − K1. The
maximum number of bit errors I1 and I2 in the two seg-
ments are then selected empirically to fine-tune the BER
performance and the decoding complexity trade-off. For

instance, we can set the parameters of the segmentation-
based list decoding to have the BER performance as well
as the decoding complexity between those corresponding
to the original decoding schemes OSD(I) and OSD(I+1).
Finally, we note that it is straightforward to develop the

skipping criteria for efficient search of the list of the test
error patterns in the OSD-based decoding schemes. For
instance, one can consider the Hamming distances for one
ormore segments of theMRIPs between the received hard
decisions (before the decoding) and the temporary deci-
sions obtained using the test error patterns from the list.
If any or all of the Hamming distances are above given
thresholds, the test error pattern can be discarded with-
out re-encoding and calculating its Euclidean distance. For
the Q = 2 segments OSD being considered, our empir-
ical results indicate that the thresholds of the number of
bit errors in the first and the second segments should be
�0.35 dmin� and dmin, respectively.

POSD
The Gauss (or the Gauss-Jordan) elimination employed in
the OSD-based decoding algorithms represents a signifi-
cant portion of the overall implementation complexity. A
new row (or a reduced row) echelon form of the genera-
tor matrix must be obtained after every permutation λ′′
until the MRIPs are found. Hence, we can devise a POSD
that completely avoids the Gauss elimination, and thus,
it further reduces the decoding complexity of the OSD-
based decoding. The main idea of the POSD is to order
only the first K received bits according to their reliabili-
ties, so that the generator matrix remains in its systematic
form. It is clear that such decoding strategy can only pro-
vide the coding gain if more than one segment of the
information bits is considered. Thus, we assume Q = 2
segments, and denote this decoding as POSD(I1, I2) or
POSD(I1|K1, I2|K2). The parameters K1, K2, I1, and I2 can
be optimized empirically as in the case of OSD(I1, I2)
to fine-tune the BER performance versus the implemen-
tation complexity; it is recommended to use the same
parameters as for the OSD(I1, I2) decoding. Moreover,
even though the partial ordering of the first K out of N
received bits is irrelevant for the OSD decoding using one
segment only, we note that the POSD(I) decoding can be
referred to as the input-sphere decoding ISD(I).

Implementation complexity
We compare the number of binary operations (BOPS) and
the number of floating point operations (FLOPS) required
to execute the decoding algorithms proposed in this arti-
cle. Assuming a (N ,K , dmin) code, the complexity of the
OSD and the POSD are compared in Tables 1 and 2.
The implementation complexity expressions in Table 1 for
OSD(I) are from the reference [4]. For example, the OSD
decoding of the BCH code (128, 64, 22) requires at least
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Table 1 The implementation complexity of the OSD and
the POSD

Operation Complexity

OSD(I1) and OSD(I1, I2)

r 2N FLOPS

r̃′ N log2(N) FLOPS

Gauss el.G′ Nmin(K ,N − K)2 BOPS

r̃′′ K + K(N − K) BOPS

POSD(I1) ≡ ISD(I1)

r 2N FLOPS

r̃′ 0 BOPS

POSD(I1, I2)

r 2N FLOPS

r̃′ K log2(K) FLOPS

1, 152 FLOPS and 528, 448 BOPS to find theMRIPs and to
obtain the corresponding equivalent generator matrix in a
row echelon form. All this complexity can be completely
avoided by assuming the POSD decoding. The number of
the test error patterns is L = 2080 for OSD(2), and L =
1177 for OSD(2, 2) with K1 = 21 and K2 = 43 whereas
the coding gain of OSD(2) is only slightly better than
the coding gain of OSD(2, 2) (see Figure 2). Hence, the
overall complexity of the OSD-based schemes can be sub-
stantially reduced by avoiding the Gauss (Gauss-Jordan)
elimination.

Performance analysis
Recall that we assume a memoryless communication
channel as described in “Systemmodel’’ section.We derive
the probability Pr

{
ĉ0 ∈ EL

}
in (9) that the error pattern ĉ0

observed at the receiver after the transmission of the code-
word cTx = 0 is an element of the decoding list EL. The
derivation relies on the following generalization of Lemma
3 in [4].

Lemma 2. For any ordering of the N received bits, con-
sider the I bit positions I ⊆ {1, 2, . . . ,N}, and the

( I
I1
)

subsets I1 ⊆ I of I1 bit positions, such that I1 ≤ I ≤ N.
Then, the total probability of I1 bit errors within the I bits
can be calculated as

∑
I1: |I1|=I1

P(I1) =
(
I
I1

)
pI10

Table 2 The decoding list sizes for the OSD and the POSD

OSD(I)
∑I

l=0

(K
l

)
OSD(I1, I2)

∑I1
l=0

(K1
l

) + ∑I2
l=0

(K2
l

)
POSD(I) ≡ ISD(I)

∑I
l=0

(K
l

)
POSD(I1, I2)

∑I1
l=0

(K1
l

) + ∑I2
l=0

(K2
l

)

where p0 is the probability of bit error corresponding to the
bit positions I before the decoding.

Proof. The ordering of the chosen I bits in the given set
I is irrelevant since all subsets I1 of I1 errors within the I
bits I are considered. Consequently, the bit errors in the
set I can be considered to be independent with the equal
probability denoted as p0.

Using Lemma 2, we observe that the lists of the test error
patterns (10) and (12) are constructed, so that the order-
ing of bits within the segments is irrelevant. Then, the bit
errors within the segments can be considered to be mutu-
ally independent. This observation is formulated as the
following corollary of Lemma 2.

Corollary 1. For the OSD(I) and the list of the test
error patterns (10), the bit errors in the MRIPs can be
considered as conditionally independent. Similarly, for the
POSD(I1, I2) and the list of the test error patterns (12),
the bit errors in the two segments can be considered to be
conditionally independent.

Thus, the bit errors in Corollary 1 are independent con-
ditioned on the particular segment considered as shown
next.
Let P0 be the bit error probability corresponding to the

MRIPs in the OSD(I) decoding. Similarly, let P1 and P2 be
the bit error probabilities in the first and the second seg-
ments in the OSD(I1, I2) decoding, respectively. Denote
the auxiliary variables, v1 = |r̃K1 |, v2 = |r̃K1+1|, and v3 =
|r̃K+1| of the ordered statistics (3), and let u ≡ |ri|, i =
1, 2, . . . ,K . Hence, always, v1 ≥ v2, and, for simplicity,
ignoring the second permutation λ′′, also, v2 ≥ v3. The
probability of bit error P0 corresponding to the MRIPs is
calculated as

P0 = Eu
[∫ u

0

fv3(v)
1 − Fu(v)

dv
]

where Eu [ ·] denotes expectation w.r.t. (with respect to) u,
fv3(v) is the PDF of the (K + 1)th-ordered statistic in (3),
and Fu(v) is the cumulative distribution function (CDF)
of the absolute value of the received reliability before the
ordering. Similarly, the probability of bit error P1 for the
first segment is calculated as

P1 = Eu
[∫ u

0

fv2(v)
1 − Fu(v)

dv
]

where fv2(v) is the PDF of the (K1 + 1)th-ordered statis-
tic in (3). The probability of bit error P2 for the second
segment is calculated as

P2 = Eu
[∫ u

0

∫ ∞

u

fv1(v)fv3(v′)
(Fu(v) − Fu(v′))(1 − Fv1(v′))

dvdv′
]
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Figure 2 BER: BCH (128, 64, 22), AWGN channel. The BER of the (128, 64, 22) BCH code over an AWGN channel.

where fv1(v) and Fv1(v′) are the PDF and the CDF of
the K1th-ordered statistic in (3), respectively. The values
of the probabilities P0, P1, and P2 have to be evaluated
numerically. Finally, we can substitute the probabilities P0,
P1, and P2 for p0 in Lemma 2 to calculate the probability
Pr

{
ĉ0 ∈ EL

}
of the test error patterns in the list EL.

Numerical examples
We use computer simulations to compare the BER perfor-
mances of the proposed soft-decision decoding schemes.
Recall that all block codes considered are linear and sys-
tematic.
The BER of the (128, 64, 22) BCH code over an AWGN

channel is shown in Figure 2 assuming OSD(1) and
OSD(2) with K = 64, and assuming OSD(2, 2) with
K1 = 21 and K2 = 43. The number of the test error pat-
terns for the OSD(1), OSD(2), and OSD(2, 2) decodings
are 64, 2, 081, and 1, 179, respectively. A truncated union
bound of the BER in Figure 2 is used to indicate the
ML performance [19, Ch. 10]. We observe that both
OSD(2) and OSD(2, 2) have the same BER performance
for the BER values larger than 10−3, and OSD(2) out-
performs OSD(2, 2) by at most 0.5 dB for small values
of the SNR. Our numerical results show that, in gen-
eral, the OSD(2, 2) decoding can achieve approximately
the same BER as OSD(2) for small to medium SNR val-
ues while using about 50% less test error patterns. Thus, a
slightly smaller coding gain (less than 0.5 dB) of OSD(2, 2)

in comparison with OSD(2) at larger values of the SNR is
well compensated for by the reduced decoding complex-
ity. More importantly, OSD(2, 2) can trade-off the BER
performance and the decoding complexity between those
provided by OSD(1) and OSD(2), especially at larger
values of the SNR.
The BER of the (31, 16, 7) BCH code over an AWGN

channel is shown in Figure 3 assuming ISD(2) and ISD(3)
with K = 16 having the 137 and 697 test error patterns,
respectively, and assuming POSD(1, 3) and POSD(2, 3)
with K1 = 6 and K2 = 10 having the 183 and 198 test
error patterns, respectively. We observe that POSD(1, 3)
achieves the same BER as ISD(3) while using much less
error patterns which represents the gain of ordering the
received information bits into two segments. At the BER
of 10−4, POSD(1, 3) outperforms ISD(2) by 1.1 dB using
approximately 50% more test error patterns. Thus, the
POSD(1, 3) decoding provides 2.3 dB coding gain, and has
a small implementation complexity at the expense of 2 dB
loss compared to the ML decoding.
Figure 4 shows the BER of the (63, 45, 14) BCH code

over an AWGN channel. The number of the test error
patterns for the ISD(2), ISD(3), POSD(1, 3), and OSD(2)
decodings are 1, 036, 15, 226, 5, 503, and 1, 036, respec-
tively. We observe from Figure 4 that ISD(3) has the same
BER as POSD(1, 3) with two segments of K1 = 13 and
K2 = 32 bits. However, especially for high rate codes (i.e.,
having rates greater than 1/2), one has to also consider
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the complexity of the Gauss elimination to obtain the row
echelon form of the generator matrix for the OSD. For
example, the Gauss elimination for the (63, 45, 14) code
requires approximately 20, 400 BOPS (cf. Table 1).
The BER of the (31, 16, 7) BCH code over a fast Rayleigh

fading channel is shown in Figure 5. We assume the
same decoding schemes as in Figure 3. The POSD(1, 3)
decoding with the 183 test error patterns achieves the
coding gain of 17 dB over an uncoded system, the coding
gain of 4 dB over ISD(2) with the 137 test error pat-
terns, while it has the same BER as OSD(3) with the
697 test error patterns. The BER of the high-rate BCH
code (64, 57, 4) over a fast Rayleigh channel is shown in
Figure 6. In this case, the number of the test error pat-
terns for the ISD(2), ISD(3), POSD(2, 3), and OSD(2)
decoding is 1, 654, 30, 914, 8, 685, and 1, 654, respec-
tively. We observe that, for small to medium SNR values,
POSD(2, 3) which does not require the Gauss elimination
(corresponding to approximately 3, 000 BOPS) outper-
formsOSD(2) by 1 dBwhereas, for large SNR values, these
two decoding schemes achieve approximately the same
BER performance.

Conclusions
The low-complexity soft-decision decoding techniques
employing the list of the test error patterns for linear
binary block codes of small to medium block length were

investigated. The optimum and sub-optimum construc-
tion of the list of the test error patterns was developed.
Several properties of the joint probability of bit errors
after the ordering were derived. The original OSD algo-
rithm was generalized by assuming segmentation of the
MRIPs. The segmentation of the MRIPs was shown to
overcome several drawbacks of the original OSD, and it
also enables flexibility to devise new decoding strategies.
The decoding complexity of the OSD-based decoding
algorithms was further reduced by avoiding the Gauss
(or the Gauss-Jordan) elimination using a partial ordering
of the received bits in the POSD decoding. The perfor-
mance analysis was concerned with the problem of finding
the probability of the test error patterns contained in
the decoding list. The BER performance and the decod-
ing complexity of the proposed decoding schemes were
compared by extensive computer simulations. Numer-
ical examples demonstrated excellent flexibility of the
proposed decoding schemes to trade-off the BER per-
formance and the decoding complexity. In some cases,
both the BER performance as well as the decoding com-
plexity of the segmentation-based OSD were found to be
improved compared to the original OSD.

Appendix
We derive the probabilities P0, P1, and P2 in “Performance
analysis” section. Without loss of generality, we assume

0 5 10 15 20

10
−4

10
−3

10
−2

10
−1

10
0

(E
b
/N

0
)[dB]

B
E

R

 

 
BPSK
ISD(2)
ISD(3)
POSD(1|6,3|10)
OSD(2)

Figure 5 BER: BCH (31, 16, 7), Rayleigh fading channel. The BER of the (31, 16, 7) BCH code over a Rayleigh fading channel.
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Figure 6 BER: BCH (64, 57, 4), Rayleigh fading channel. The BER of the (64, 57, 4) BCH coded over a Rayleigh fading channel.

that the all-ones codeword was transmitted, i.e., xi =
−1 for ∀i. Then, after the ordering, the ith received bit,
i = 1, 2, . . . ,N , is in error, provided that r̃i > 0. The
probability of bit error P0 for bits within the MRIPs is
calculated as

P0 =
∫ ∞

0

∫ ∞

0
fu(u|u ≥ v3)fv3(v3)dv3du

where the conditional PDF [21],

fu(u|u ≥ v3) =

⎧⎪⎨
⎪⎩

fu(u)

1 − Fu(v3)
u ≥ v3

0 u < v3

and fu(u) and Fu(v3) are the PDF and the CDF of the
reliabilities of the received bits, respectively, and thus,

P0 =
∫ ∞

0
fu(u)

∫ u

0

fv3(v3)
1 − Fu(v3)

dv3du.

Similarly, after the ordering, the probability of bit error
P1, for the received bits in the first segment, is calculated
as

P1 =
∫ ∞

0

∫ ∞

0
fu(u|u ≥ v2)fv2(v2)dv2du

=
∫ ∞

0
fu(u)

∫ u

0

fv2(v2)
1 − Fu(v2)

dv2du.

The probability of bit error P2 after the ordering, for the
received bits in the second segment, is calculated as

P2=
∫ ∞

0

∫ ∞

0

∫ ∞

0
fu(u|v1 ≥ u ≥ v3)fv1,v3(v1, v3)dv1dv3du

where the conditional PDF,

fu(u|v1 ≥ u ≥ v3) =

⎧⎪⎨
⎪⎩

fu(u)

Fu(v1) − Fu(v3)
v1 ≥ u ≥ v3

0 otherwise

and the joint PDF of the ordered statistics v1 ≥ v3 is

fv1,v3(v1, v3) =

⎧⎪⎨
⎪⎩

fv1(v1)
1 − Fv1(v3)

fv3(v3) v1 ≥ v3

0 v1 < v3
and thus,

P2=
∫ ∞

0
fu(u)

∫ u

0

∫ ∞

u

fv1(v)fv3(v′)
(Fu(v) − Fu(v′))(1 − Fv1(v′))

dvdv′du.
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