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Abstract

In this paper, we consider the joint design of source precoding matrix and the relay precoding matrix in a two-hop
multiple-input multiple-output relay network. The goal is to find a pair of matrices in order to minimize the power
consumption and at the same time meet pre-selected quality of service constraints that are defined as the mean
square error of each data stream. Using majorization theory, we simplify the matrix-valued optimization problem into
a scalar-valued one. We then propose a lower bound and an upper bound of the original problem, both in convex
forms. Specifically, the latter is solved by a multi-level water-filling algorithm that is much efficient than directly
applying the interior point method. Numerical examples corroborate the proposed studies and also demonstrate the
tightness of both bounds to the original problem.
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1 Introduction
Relay networks have recently attracted much attention
because of their promising capability in achieving reliable
communication and wide coverage for the next genera-
tion of wireless systems [1,2]. Different types of relaying
strategies, e.g., amplify and forward (AF), decode and
forward (DF), and compress and forward (CF) were intro-
duced in [3-5], respectively. DF and CF decode data before
retransmission and are, thus, also known as regenera-
tive strategies; AF relay amplifies the received data only
and is known as non-regenerative strategy. The computa-
tional simplicity in AF relay makes it highly attractive and
a strong candidate for the real-time application. On the
other side, multi-input multi-output (MIMO) technique
[6] can enhance the data transmission rate by introducing
the spatial diversity gain. Therefore, combining relaying
and MIMO becomes a natural way to further advance the
future wireless communication systems.
Most of the existing works focus on the AFMIMO relay

networks, where a certain performance criterion is opti-
mized subject to power constraints at both source and
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relay. For example, the mutual information and the total
mean square error (MSE) criteria are selected as objec-
tive functions in [7,8], respectively. The authors in [9]
investigated the diversity multiplexing tradeoff for MIMO
relays. Moreover, there are some works on beamforming
design for special types of AF MIMO relays; for instance,
the authors in [10] considered codebook design for half-
duplex AF MIMO relays, while the author in [11] consid-
ered beamforming design for rather vast types of MIMO
relays. Applying the majorization theory [12], the authors
in [13] proposed a unified framework for most perfor-
mance criteria. The extension of [13] to the multiple relay
case was introduced in [14].
All of the mentioned methods above considered

enhancing the system performance by maximizing or
minimizing a certain objective function constraint on
power consumption at some or all nodes. Although this
model improves the system performance, it does not guar-
antee a certain quality of service (QoS) requirement for
an individual user. The importance of considering QoS
becomes more obvious in practical applications support-
ing several types of service each with a different reliability
requirement. One of the pioneering works considering
QoS in MIMO point-to-point systems is [15], where the
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authors optimized the transmission power subject to pre-
defined sets of QoS, e.g., individual MSE, signal-to-noise
ratio (SNR), and bit error rate. In [16], the authors inves-
tigated the optimization of source beamforming and relay
weighting matrix in order to minimize the total power
subject to a given set of QoS for multi-input single-
output broadcast channel. On the aspect of relay net-
work, AF MIMO relay network with QoS constraints has
been investigated in [17]. Applying majorization theory,
the author in [17] proposed a unified framework for the
design of the optimal structure of the source precod-
ing and relay amplifying matrices. The author applied
a successive geometric programming method to obtain
the optimal power loading among data streams. Unfor-
tunately, the computational complexity of the proposed
solution in [17] compromises its suitability for practical
implementation. With similar assumptions, the authors
in [18] considered a simplified version of the problem
in which only the relay power is minimized. Then, the
minimization is executed over a convex lower bound of
the objective function. In a rather more general setup,
the authors in [19] studied the joint relay and source
power minimization and applied the majorization theory
to reduce the problem to a scalar one. Then, using QoS
convex relaxation, an upper bound and a lower bound on
the optimal results are presented.
In this paper, building upon the results in [19], we take

a specific look into a dual-hopa AF MIMO relay network.
We first jointly design the source and the relay precoding
matrices such that the overall transmission power is min-
imized subject to a given set of QoS constraints. Applying
the majorization theory, we reduce the original matrix-
valued problem to a scalar-valued one and then propose
two new convex optimization problems whose objective
values serve as the lower bound and the upper bound of
the original problem. While both new problems can be
handled by the existing convex optimization tools, e.g.,
CVX [20], we specifically design a multi-level water-filling
(MLWF) algorithm to solve the upper bound problem
that can further reduce the computational complexity.
Compared with the successive geometric programming
approach developed in [17], the MLWF algorithm does
not require any optimization tool and thus is easier to
implement for practical relay systems. Numerical results
corroborate the proposed studies and clearly demonstrate
the tightness of the proposed lower bound and upper
bound, especially over low MSE region.
The rest of this paper is arranged as follows: Section 2

presents the system model and formulates the optimiza-
tion problem in matrix form. In Section 3, the opti-
mization is simplified to a scalar-valued problem from
the majorization theory. Two suboptimal problems whose
objectives serve as the upper bound and the lower bound
of the original problems are derived in the same section.

In Section 4, the upper bound problem is solved from a
multi-level water-filling algorithm coupled with decom-
position methods. The simulation results are presented in
Section 5, and conclusions are drawn in Section 6.

1.1 Notations
Vectors andmatrices are boldface small and capital letters,
respectively; the transpose, complex conjugate, Hermi-
tian, inverse, and pseudo-inverse of A are denoted by
AT , A∗, AH , A−1, and A†, respectively; ‖a‖ denotes the
Euclidean norm of the vector a; diag{a} is the diagonal
matrix with diagonal elements given by a, while diag{A}
is a vector with entries taken from the diagonal elements
of A ; I is the identity matrix; and E{·} is the statistical
expectation. Moreover, basic notations and definitions of
majorization theory can be found in Appendix 1.

2 Systemmodel
As shown in Figure 1, we consider a three-node multi-
antenna relay network that consists of a source node, a
relay node, and a destination node, equipped with M, N,
and P antennas, respectively. We assume that the direct
link between the source and the destination is weak and,
therefore, can be neglected. Denote the baseband MIMO
channels between the source and relay as theN×Mmatrix
Hs, while that between the relay and destination as the
P × N matrix Hr . We further assume that the channel
state information is perfectly known at all nodes. Sup-
pose that L data streams, denoted by x, are precoded by
an M × L precoding matrix B at source node. We require
L ≤ min{M,N ,P} so that the data streams can be detected
with linear method at the destination. With anN ×N pre-
coding matrix F at relay, the received signal at destination
is as follows:

z = HrFHsBx + HrFvr + vd , (1)

where vr and vd are additive white complex Gaussian
noise at relay and destination, respectively, i.e., vr ∈
CN (0, σ 2

r IN ) and vd ∈ CN (0, σ 2
d IN ). Without loss of gen-

erality, we set σ 2
d = σ 2

r = 1. Since the correlation and
power can be designed through B, the data streams from
the source can be assumed independent from each other,
i.e., E{xxH} = I.
We consider the minimum mean square error detec-

tion at destination with a P × L decoding matrix T. The
estimated data can be expressed as follows:

x̂ = THz, (2)

with the error matrix

C = E{(x̂ − x)(x̂ − x)H}. (3)
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Figure 1 Systemmodel for a three-node AF MIMO relay network.

The MSE is defined as tr(C). For the given B and F, one
can easily find the optimal T from the standard approach
[21]:b

T = (
HrFHsB(HrFHsB)H + HrF(HrF)H + I

)−1HrFHsB,
(4)

and the corresponding error matrix is

C = [
I + (HrFHsB)H(HrF(HrF)H + I)−1HrFHsB

]−1.
(5)

As in [15], the QoSmeasurement here is taken as theMSE
of each individual data stream. Let us denote the QoS
vector as ρ =[ ρ1, . . . , ρL]T , i.e., the MSE of the ith data
stream is required to be smaller than ρi. Note that ρi < 1
is necessary to avoid trivial solutions.
From (5), the QoS constraints are stated as follows:

Cii ≤ ρi or diag{C} ≤ ρ, (6)

where ‘≤’ denotes the element-wise operation if used
between vectors.
The average power consumed by the source is computed

from

E{tr(BxxHBH)} = tr(BBH), (7)

while that spent by the relay is

E{tr((FHsBx + Fvr)(FHsBx + Fvr)H)}
= tr(F(HsBBHHH

s + I)FH).

3 Optimization problem
The goal is to find the optimal B and F to minimize the
overall power spent by the source and relay and at the
same time meet the QoS requirements.
Define

M = HrFHsB, (8)

R = ((HrF)(HrF)H + I)−1. (9)

The optimization problem is then expressed as follows:

(P1): min
B,F

tr(BBH) + tr(F(HsBBHHH
s + I)FH)

(10)
subject to diag{(I + MHRM)−1} ≤ ρ.

Unfortunately, the problem is non-convex and cannot be
solved in an efficient way.

3.1 Equivalent problem
Let us define a new optimization:

(P2) : min
B̃,F

tr(B̃B̃H) + tr(F(HsB̃B̃HHH
s + I)FH)

(11)
subject to diag{(I + M̃HRM̃)−1} �w ρ

M̃ = HrFHsB̃
M̃HRM̃ is diagonal,

where �w means weak majorization, and the details can
be found in Appendix 1.

Theorem 1. Problems (P1) and (P2) are equivalent.

Proof. The idea is to prove that for each feasible point
of (P1), there is a corresponding feasible point in (P2) that
yields the same objective value and vice versa.
(P1)−→(P2): For any feasible B in (P1), construct a new

matrix B̃ = BQ, where Q is the unitary eigenmatrix of
MHRM. Then, M̃HRM̃ is a diagonalmatrix. It can be read-
ily checked that the objective value of (P2) with (B̃,F)

is the same as the objective value of (P1) with (B,F).
Moreover, since I + M̃HRM̃ is a diagonal matrix, there is

diag{(I + M̃HRM̃)−1} = λ{(I + M̃HRM̃)−1}
= λ{(I + MHRM)−1} = λ{Z},

(12)

where Z � (I + MHRM)−1. From Zii ≤ ρi, one can con-
clude that diag{Z} �w ρ. We further know from Lemma 2
in Appendix 1 that λ{Z} �w diag{Z}. Therefore, λ{Z} �w
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ρ and we achieve the conclusion that for any feasible point
(B,F) in (P1), there is always a corresponding feasible
point (B̃,F) in (P2) that gives the same objective value.
(P2)−→(P1): Define Z̃ = (I + M̃HRM̃)−1 and assume

that (B̃,F) is a feasible point of (P2). From (P2), we know
that diag{Z̃} = λ{Z̃} �w ρ holds. From Lemma 3 in
Appendix 1, we know that there exists a vector c satisfying
both λ{Z̃} � c and c ≤ ρ. From Lemma 2, we know that
for each c ≺ λ{Z̃}, there exists amatrixWwith diag{W} =
c and λ{W} = λ{Z̃}. LetW = QH Z̃Q and define B = B̃Q.
Then, diag{(I + MHRM)−1} = diag{W} ≤ ρ. Moreover,
the objective function of (P1) with (B,F) is the same as the
objective function of (P2).

3.2 Processing matrix variables
Based on Theorem 1, we can solve (P2) instead of (P1).
Define two new positive semi-definite matrices as well

as their singular value decomposition (SVD) as follows:

X = HsB̃B̃HHH
s = UX�XUH

X , (13)

Y = HrF(X + I)FHHH
r = UY�YUH

Y , (14)

where UX and UY are the N × L and P × L orthonormal
matrices, respectively. Throughout this paper, we always
sort the singular values and eigenvalues in an increasing
order. Note that it is still possible that �X or �Y contains
some zero entries.
The matrices HsB̃ and HrF can be represented as fol-

lows:

HsB̃ = UX�
1
2
XV

H
X , (15)

HrF = UY�
1
2
YV

H
Y (X + I)−

1
2 , (16)

where VX can be any L× L unitary matrix, and VY can be
any N × L orthonormal matrices. These two matrices will
be designed later to fulfill the optimality requirement.
Let

Hs = Us�sVH
s and Hr = Ur�rVH

r (17)

be the SVD of Hs and Hr respectively. We further express
the singular matrices as Us �[Us,2,Us,1] and Ur �
[Ur,2,Ur,1], in whichUs,1 andUr,1 contain L first columns.
One can rewrite (15) and (16) as follows:[

�s 0L×(M−L)

0(N−L)×L 0(N−L)×(M−L)

]
VH
s B̃ = UH

s UX�
1
2
XV

H
X , (18)

[
�r 0L×(N−L)

0(P−L)×L 0(P−L)×(N−L)

]
VH
r F = UH

r UY�
1
2
YV

H
Y (X + I)−

1
2 .

There are three cases to be discussed:

• If N = M = L, then B̃ can be re-expressed from (18)
as

B̃ = Vs�
−1
s UH

s,1UX�
1
2
XV

H
X . (19)

• IfM > N = L, (18) can be simplified as[
�−1

s 0L×(M−L)

]
VH
s B̃ = UH

s,1UX�
1
2
XV

H
X . (20)

The solution for B̃ is not unique, and the one which
minimizes the objective function should be chosen.
Basically, we need to solve

min
B̃

tr(B̃B̃H) (21)

subject to
[
�−1

s 0L×(M−L)

]
VH
s B̃=UH

s,1UX�
1
2
XV

H
X .

Note that the second term in the objective function is
not included in (21) since it will be taken cared by F.
From Lemma 9 in [14], the optimal structure of B̃ is
as follows:

B̃ = Vs
[
�−1

s 0L×(M−L)

]T UH
s,1UX�

1
2
XV

H
X . (22)

• IfM > L and N > L, then (20) holds if and only if
UH
s,2UX = 0((N−L)×N). In this case, (22) is still the

optimal structure for B̃. Please refer to [14] for the
detailed derivation.

Following the same procedure, the optimal structure of F
can be computed as follows:

F = Vr
[
�−1

r 0L×(N−L)

]T UH
r,1UY�

1
2
YV

H
Y (X + I)−

1
2 .
(23)

We then proceed to the optimization over new variables
UX , VX , UY , VY , �X , and �Y . Substituting (22) and (23)
into (P2) yields the new objective function

tr(�†
sUH

s,1UX�XUH
XUs,1�

†
s ) + tr(�†

rUH
r,1UY�YUH

YUr,1�
†
r ),

(24)

where the pseudo-inverses of �†
s and �†

r are
[
�−1

s
0L×(N−L)

]T and
[
�−1

r 0L×(M−L)

]T , respectively.
We apply the inversion lemma [22],

(A1 + A2A3A4)
−1 = A−1

1 − A−1
1 A2(A−1

3 + A4A−1
1 A2)

−1

× A4A−1
1 , (25)

for the constraint and obtain

(I + M̃HRM̃)−1 = I − M̃H(R−1 + M̃M̃H)−1M̃︸ ︷︷ ︸
G

, (26)

where G is defined as the corresponding term. Substitut-
ing (22) and (23) into G yields

G = VX�
1
2
X(�X + I)−

1
2UH

XVY�
1
2
Y [�Y + I]−1 �

1
2
YV

H
YUX

× (�X + I)−
1
2 �

1
2
XV

H
X . (27)

Remark 1. Representing the problem in terms of these
new variables decreases the dependency between the
objective function and constraints and thus facilitates the
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optimization procedure. For example, UY is only involved
in objective function, but not in the constraints. Hence,
we can adjust UY to change the objective without affect-
ing the constraint. Reversely, VX and VY only affect the
constraint, but not the objective function.

Remark 2. On the other hand, the diagonality constraint
in (P2) can be satisfied by only adjusting VX so that the
other constraint and the objective functions will not be
affected.

3.3 Simplification
In the following subsections, we derive the optimum
structures for VX ,VY , UX , and UY , respectively.

3.3.1 OptimalVX andVY
The functionality of the optimal VX is to make G diago-
nal. Moreover, if there is a VY such that all components in
diag{I − G} are minimized simultaneously, then this VY
must be optimal because it provides the largest possible
freedom to optimize over the rest variables, i.e., UX , UY ,
�X , and �Y . Applying (9.H.2 in [12]) on G, we obtain

λ{G} ≺w diag{Ĝ} , (28)

where

Ĝ = �
1
2
X(�X + I)−

1
2 �

1
2
Y [�Y + I]−1 �

1
2
Y (�X + I)−

1
2 �

1
2
X
(29)

is the multiplication of the diagonal matrices in (27).
According to the definition of submajorization and super-
majorization in Appendix 1, (28) can also be written as
follows:

−λ{G} ≺w −diag{Ĝ} (30)

and is equivalent to

1 − λ{G} ≺w 1 − diag{Ĝ}, (31)

where 1 is an all one vector. Moreover, (31) can be re-
expressed as follows:

λ{I − G} ≺w diag{I − Ĝ}. (32)

Since one can always findVX that makesG diagonal, there
is λ{I − G} = diag{I − G}. Moreover, from Lemma 2, we
can rewrite (32) as follows:

diag{I − G} ≺w diag{I − Ĝ}, (33)

which indicates that diag{I − Ĝ} is a simultaneous lower
bound for all the elements in diag{I − G}. Therefore, G =
Ĝmust hold at the optimal point, and this can be achieved
if VY = UX and VX = I.

3.3.2 OptimalUX andUY
With the optimal VY , the constraint is independent from
both UY and UX . Therefore, one can find the optimal
structure of UX and UY purely from

min
UX ,UY

tr(�†
sUH

s,1UX�XUH
XUs,1�

†
s )

+ tr(�†
rUH

r,1UY�YUH
YUr,1�

†
r ). (34)

We need the following matrix inequality (9.H.1.h in
[12]) to proceed: Given two L × L positive semi-definite
matrices A1 and A2 with eigenvalues λl(A1) and λl(A2)
arranged in the increasing order, there is

L∑
l=1

λl(A1)λL−l+1(A2) ≤ tr(A1A2) ≤
L∑

l=1
λl(A1)λl(A2).

(35)

Then, the first part in (34) can be lower bounded by the
following:

tr(�†
s�X�†

s ) ≤ tr(�†
sUH

s,1UX�XUH
XUs,1�

†
s ). (36)

Obviously, the minimum value can be achieved when
UX = Us, since the diagonal elements of �s and �X are all
arranged in increasing order. Similar discussion holds for
the second term in (34), namely

tr(�†
r�Y�†

r ) ≤ tr(�†
rUH

r,1UY�YUH
YUr,1�

†
r ), (37)

and the minimum is achieved when UY = Ur,1.
Substituting the optimal UX , UY , VX , and VY into the

objective function and the constraints of (P2), we obtain
the following:

min
�X ,�Y

tr(�†
s�X�†

s ) + tr(�†
r�Y�†

r )

subject to I − �X�Y (�X + I)−1(�Y + I)−1 �w ρ.
(38)

Define ai and bi as the ith diagonal entries of (�†
s )

2 and
(�†

r )
2, respectively. Further, define xi and yi as the ith diag-

onal entries of �X and �Y , respectively. Then, problem
(P2) is converted to a scalar form:

(P3): min
xi,yi

L∑
i=1

aixi + biyi (39)

subject to
k∑

i=1

yi + xi + 1
yi + xi + yixi + 1

≤
k∑

i=1
ρi k=1, . . . , L,

(40)

xi ≥ 0, yi ≥ 0, ∀i.
Unfortunately, the constraint (40) is non-convex, and

the problem cannot be solved efficiently. We then propose
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Figure 2 Proposedmulti-level water-filling algorithm.

the following two convex bounds for each summand on
the left-hand side of (40):

yi + xi + 1
yi + xi + yixi + 1

≤ yi + xi + 2
yi + xi + yixi + 1

, (41)

yi + xi + 1
yi + xi + yixi + 1

≥ yi + xi
yi + xi + yixi

. (42)

Replacing the corresponding term in (40) by the right-
hand side (RHS) in (41) or (42) while keeping the
same objective function, we can obtain the upper or
the lower bound of the original problem, respectively.
Both the lower bound and the upper bound prob-
lems can be solved by the existing convex optimiza-
tion tools based on the interior point method, e.g.,
CVX, [20,23].
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Figure 3 Proposedmaster algorithm.

4 Algorithm for the upper bound problem
Power minimization is ensured by considering the mini-
mization of the upper bound of the objective value. There-
fore, we take a detailed look into the upper bound problem
and target at a more efficient solution. The upper bound
problem is restated as follows:

min
xi,yi

N∑
i=1

aixi + biyi (43)

subject to
k∑

i=1

1
xi + 1

+ 1
yi + 1

≤
k∑

i=1
ρi k = 1, . . . ,N ,

xi ≥ 0, yi ≥ 0, ∀i.
It is hard to obtain the closed form solution even with

the Karush-Kuhn-Tucker (KKT) conditions. Observing

the symmetry, we can apply the primal decomposition
method [23] to break down the problem into two simpler
subproblems.

4.1 The decomposition method
Problem (43) can be decomposed into two parallel sub-
problems together with a master problem connecting
as a bridge [23]. Defining a new auxiliary vector t =
[ t1, t2, . . . , tN ]T , the subproblems are as follows:

�x(t) : min
xi

N∑
i=1

aixi

subject to
k∑

i=1

1
xi + 1

≤ tk k = 1, . . . ,N ,

xi ≥ 0, ∀i
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�y(t) : min
yi

N∑
i=1

biyi

subject to
k∑

i=1

1
yi + 1

≤
k∑

i=1
ρi − tk k = 1, . . . ,N ,

yi ≥ 0, ∀i
and the master problem is

min
t

�x(t) + �y(t). (44)

In many cases, the subproblems do not have closed-
form solution. Therefore, searching the optimum t for the
master problem can be iteratively done from the subgradi-
entmethod. Note that the convergence of the decomposed
problem to the global optimal point can be guaranteed
since (43) is convex.

4.2 Solving the subproblems
The Lagrangian corresponding to �x(t) is as follows:

L =
N∑
k=1

akxk +
N∑
k=1

μk(
k∑

i=1

1
1 + xi

− tk) −
N∑
k=1

γkxk ,

(45)

and the corresponding KKT conditions are the following:

ak −
N∑
i=k

μi
1

(1 + xk)2
− γk = 0, (46)

μk(
k∑

i=1

1
1 + xi

− tk) = 0, (47)

k∑
i=1

1
1 + xi

− tk ≤ 0, (48)

γkxk = 0, (49)

xk ≥ 0, μk ≥ 0, γk ≥ 0. (50)

For simplicity, we define μ̃k = ∑N
i=k μi. Multiplying both

sides of (46) by xk and combining with (49) give the
following:

xkak = μ̃k
xk

(1 + xk)2
=⇒ xk(ak(1 + xk)2 − μ̃k) = 0.

(51)

After a straightforward calculation, we obtain the follow-
ing:

xk =
{

(μ̃
1/2
k a−1/2

k − 1)+ μ̃k ≥ ak
0 μ̃k < ak

. (52)

Based on (52), the KKT conditions are reduced to the
following:

xk =
{

(μ̃
1/2
k a−1/2

k − 1)+ μ̃k ≥ ak
0 μ̃k < ak ,

(53)

μ̃k ≤ μ̃k−1, (54)

k∑
i=1

1
1 + xi

− tk ≤ 0. (55)

Next, we propose an efficient algorithm that could find the
solution that satisfies (53), (54), and (55) simultaneously.

Algorithm 1Multi-level water-filling algorithm
Input: Number of all positive eigenvalues, all inverse
eigenvalues {ai}Ni , and a positive feasible initial vector
for t =[ t1, . . . , tN ]T .
Output: Allocated powers {xi}Ni and water levels
{μi}Ni .

1: Set N equal to the number of variables.
2: Set H = N and L = 1 as the higher and the lower

indices of the condition that we consider in the next
step.

3: Use standard water-filling algorithm to solve the
problem subjected to only one condition,∑H

l=L
1

xl+1 ≤ ∑H
l=L ρl, in which∑k

l=1 ρl = tk , k = 1, . . . , L. Denote the water level
from the standard water-filling algorithm at this step as
μ̃(L,H).

4: Check if for each k (L ≤ k ≤ H), the conditions (55)
are satisfied, starting from k = H to k = L.

5: If a condition in (55) is not satisfied for a certain l0
( L ≤ l0 ≤ H), set H = l0 then go to step 3. If (55) is
satisfied for all L ≤ k ≤ H , then μ̃(L,H) is the water
level for all these indices.

6: If H ≥ L, put H = N and L = H + 1 and go to step 3,
or else, finish the algorithm.

The standard water-filling algorithm embedded in step
3 can be found in Appendix 2. For an explicit demonstra-
tion, we present the algorithm in a diagram in Figure 2.
We next need to prove the optimality of the above

MLWF. Since the problem is convex, the output of the
algorithm is the optimal solution if and only if all of
the KKT conditions are satisfied. The conditions (55)
are simultaneously satisfied from the step 4 in the algo-
rithm. Condition (53) is itself satisfied by the nature of the
water-filling algorithm, that is the water levels are always
non-negative. The aboveMLWF algorithm satisfies (54) as
well, as seen from the following lemma.
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Lemma 1. Successive water levels achieved by the pro-
posed MLWF algorithm are ordered decreasingly.

Proof. The algorithm has two loops: one is the inner
loop ‘steps 3→ 4→ 5→ 3’ and the other is the outer loop
‘steps 3 → 4 → 5 → 6 → 3.’ Each time when the inner
loop finishes, one water level μ̃(L,H) will be achieved.
Then, we proceed to compute other water levels. In the
inner loop, we first adopt the water level given by stan-
dard water-filling algorithm. Our hypothesis is that the
aforementioned water level satisfies all of the conditions
(55). Then, we check our hypothesis by searching whether
there is a k = l0 for which the corresponding condition in
(55) is violated.
Assume l0 with 1 ≤ L < l0 < H ≤ N is the point

at which the inner loop finishes, i.e., μ̃(L, l0) satisfies all
the conditions from L to l0. At this point,

∑l0
i=L

1
xi+1 =∑l0

i=L ρi is true due to the fact that the constraint holds
with equality in the standard water-filling algorithm.
Moreover, μ̃(L,H) < μ̃(L, l0) holds since μ̃(L,H) is not
large enough to satisfy (55) with k = l0, though it satisfies
all of the conditions from k = H to k = l0 + 1. On the
other hand, we have

μ̃(L, l) < μ̃(L,H), l0 + 1 ≤ l ≤ H , (56)

since, based on our assumption, conditions (55) with
index greater than l0 are satisfied with the water level
introduced by μ̃(L,H). From (56) and μ̃(L,H) < μ̃(L, l0),
we conclude that

μ̃(L, l) < μ̃(L, l0), l0 + 1 ≤ l ≤ H . (57)

The search for the next water level (of course in the fol-
lowing inner loop), is between H = N and L = l0 + 1. We
then only need to prove μ̃(l, l0 + 1) < μ̃(1, l0), l0 + 1 ≤
l ≤ H . First, we know μ̃(L, l) satisfies

l∑
i=L

1
xi + 1

=
l∑

i=L
ρi. (58)

From the last inner loop, we know that applying μ̃(L, l) on
the condition

∑l0
i=L

1
xi+1 ≤ ∑l0

i=L ρi, does not work, i. e.,

l0∑
i=1

1
xi + 1

>

l0∑
i=1

ρi. (59)

Therefore, using μ̃(L, l) in both (58) and (59) yields∑l
i=l0+1

1
xi+1 <

∑l
i=l0+1 ρi. On the other hand, μ̃(l0+1, l)

gives
∑l

i=l0+1
1

xi+1 = ∑l
i=l0+1 ρi. Therefore, we infer

μ̃(l0 + 1, l) < μ̃(L, l). Together with (57), we conclude
μ̃(l0 + 1, l) < μ̃(L, l0).

Meanwhile, the subproblem �y(t) can be solved with
the same MLWF, which will not be restated here.

Algorithm 2 The master algorithm
Input: The number of all positive eigenvalues (N), all
inverted eigenvalues {ai}Ni=1 and {bi}Ni=1, and all
power {ρi}Ni=1.
Output: Allocated powers {xi}Ni=1 and {yi}Ni=1, and
water levels {μi,x}Ni=1 and {μi,y}Ni=1 obtained from
MLWF.

1: Choose a positive increasing vector for t, e.g.,
tk = 1

2
∑k

i=1 ρi. Set the initial objective value T (0) = 0;
2: Obtain the solution and water levels of �x(t) and �y(t)

from MLWF algorithm;
3: Calculate the objective function in the mth iteration as

T (m) = �x(t) + �y(t). If |T (m) − T (m−1)| < ε, then
terminate the algorithm; otherwise, go to the next step.

4: Use subgradient of �x(t) + �y(t) to update t as
t(m+1) = t(m) − α(m)(μ

(m)
y − μ

(m)
x ), where α(m) is the

step size of the mth iteration, while
μ

(m)
y =[μ1,y, . . . ,μN ,y]T and μ

(m)
x =[μ1,x, . . . ,μN ,x]T .

Go to step 2.

This algorithm is presented by a diagram in Figure 3.

5 Simulation results
In this section, we numerically examine the performance
of the proposed method. For all examples, we assume that
the channel matrices (Hr and Hs) have independent and
identically distributed Gaussian entries with zero mean
and variance 1. We consider 6 × 6 × 6 MIMO relay sys-
tem, and 1000 Monte-Carlo runs are taken for average.
The upper bound optimization will be solved both by the
proposed decomposition algorithms and by the CVX con-
vex optimization toolbox [20], while the lower-bounded
optimization will only be solved by CVX. Moreover, we
also compare the proposed solutions with a suboptimal
method and a trivial method listed in the following:

1. Diagonalization method. We reduce the problem
into a scalar problem using SVD of channel matrices.
If we consider the structure of B = Us�B and
F = Ur�FVH

s , we can reduce the problem into a
simple scalar problem. In this method we basically
choose the precoding matrices to match the channel
matrices. The optimization problem of (10) is
simplified to the following:

(P4): min
xi,yi

L∑
i=1

aixi + biyi (60)

subject to
yi + xi + 1

yi + xi + yixi + 1
≤ ρi ∀i

xi ≥ 0, yi ≥ 0, ∀i,
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Figure 4 Performance with equal QoS constraint.

where ai, bi, xi, and yi are the i th diagonal entries
of (�†

s )
2, (�†

r )
2, �B, and �F , respectively. Note

that the problem in (60) is a special case of (P3)
in (39).

2. Naive method. We consider a solution that satisfies
all of the constraints in (43) with equality. In this
method, x and y are given by the following:

x = y = 2/ρ − 1.

In the first example, we take equal QoS requirements
for all data streams. The total consumed powers versus
MSE are depicted in Figure 4 for the upper bound with

the proposed method, the upper bound with CVX, the
lower bound, and the suboptimal diagonalization method
with CVX, as well as the naive method. It can be observed
that the performance of the decomposition method is
exactly the same as the one obtained from CVX. We
can also observe that the lower and the upper bounds
are quite tight at high SNR when they meet each other.
The numerical results from the diagonalization method
depicts weaker performance than the proposed method
with roughly 2 dB more power consumption. The naive
method, on the other hand, has the poorest performance
and requires more power than the proposed method
(roughly 3 dB).
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Figure 5 Performance with unequal QoS constraint 3ρ1 = 2ρ2= 3
2ρ3 = 6

5ρ4 = ρ5 = ρ6.
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Table 1 Average time spent by each approach

Case Proposed decomposition (s) CVX (s)

Equal MSE 0.4377 3.2094

Unequal MSE 0.2237 2.6747

The performances with unequal QoS constraints are
presented in Figure 5, where the QoS vector is chosen as
ρ = ρ[ 1, 1.5, 2, 2.5, 3, 3]T . One may notice that all
curves are about 2 dB higher than those in Figure 4.
This is because the smallest QoS constraint drags down

the overall performance and thus demands for more
power. Once again, we find that the upper bound and the
lower bound are quite close to each other especially at
high SNR values. Meanwhile, the proposed method coin-
cides with the upper bound from the CVX. Moreover, the
advantage of the proposed method over the suboptimal
diagonalization method and the naive method is fairly
explicit.
We also measure the average running time for the pro-

posed method and the upper bound with CVX, measured
in MATLAB. The results are shown in Table 1.

Remark 3. Note that resorting to simulation cannot
serve as a rigorous measurement of the complexity analy-
sis. Nevertheless, the large difference in the running time
fairly indicates the much higher efficiency of the pro-
posed decomposition method over the regular convex
optimization tool.

The effect of the number of antennas on each node is
also investigated here.We set the QoS requirements for all

data streams as 0.2 and vary the number of antennas from
2 to 9. The results are displayed in Figure 6.

6 Conclusion
In this paper, we considered the joint design of source pre-
coding matrix and relay precoding matrix in a two-hop
AF MIMO relay network. We minimized the power con-
sumption subject to a set of predefined QoS constraints of
each data stream. Using matrix calculus and majorization
theory, we simplified the original matrix-valued prob-
lem to a relatively simpler scalar one and proposed two
bounding problems that are convex and can be solved
efficiently. We specifically designed a primary decompo-
sition method to solve the upper bound problem that has
less complexity than directly applying the interior point
method. Numerical examples are provided to corroborate
the proposed studies.

Appendix 1
Basics of majorization theory
Here, we briefly introduce the basics of majorization the-
ory while the more comprehensive discussion can be
found in [12].

Definition 1. If for any vector x =[ x1, x2, . . . , xn]∈ IRn, let

x(1) ≤ . . . ≤ x(n)

represents the elements of x in an increasing order. Simi-
larly, assume

x[1] ≥ . . . ≥ x[n]

represents the elements of x in a decreasing order.
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Figure 6 Performance of the systemwith different number of antennas.With fixed identical QoS for all of the data streams ρ = 0.2.



Mohammadi et al. EURASIP Journal onWireless Communications and Networking 2013, 2013:108 Page 12 of 13
http://jwcn.eurasipjournals.com/content/2013/1/108

Definition 2. For any x, y ∈ IRn, x is majorized by y if
k∑

i=1
x(i) ≥

k∑
i=1

y(i), 1 ≤ k ≤ n − 1 (61)

n∑
i=1

x(i) =
n∑

i=1
y(i), (62)

and is denoted by x ≺ y or y � x.

Definition 3. [12] For any x, y ∈ IRn, x is weakly superma-
jorized by y if

k∑
i=1

x(i) ≥
k∑

i=1
y(i), 1 ≤ k ≤ n. (63)

We denote this with x ≺w y (or equivalently y �w x). Also,
x is weakly submajorized by y if

k∑
i=1

x[i] ≤
k∑

i=1
y[i], 1 ≤ k ≤ n. (64)

We denote this with x ≺w y (or equivalently y �w x).

Lemma 2. (9.B.1 in [12]) Let M be an n × n Hermi-
tian matrix with a vector diag{M} denoting its diagonal
elements and let vector λ{M} contain its eigenvalues. Then,

¯diag{M} ≺ diag{M} ≺ λ{M}
where ¯diag{M}i = mean(diag{M}).
Reversely, given vectors a and b with a ≺ b, then there

exists an n × n Hermitian matrix M whose diagonal
elements are a and eigenvalues are b.

Lemma 3. (5.A.9 in [12]) For any a and b satisfying a ≺w

b, there exists a vector x such that

x ≺ b, a ≥ x.

Appendix 2
Standard water-filling algorithm
A standard water-filling algorithmwill be used to solve the
following convex problem which appeared in our MLWF
algorithm:

min
xi

N∑
i=1

aixi (65)

subject to
N∑
i=1

1
xi + 1

≤ ρk , xi ≥ 0, ∀i.

The water-filling algorithm that yields the optimum xi’s is
given by the following:

Input: The number of all positive eigenvalues N, all
inverse eigenvalues {ai}Ni , and a positive feasible
initial vector for ρi.

Output: Allocated powers {xi}Ni and the optimum
water level {μ}.

1. Sort all of the eigenvalues in the increasing order and
aN+1 = ∞. Set L = N .

2. If aL = aL+1, then L = L − 1. Set μ = aN
3. If μ ≤

∑N
i=1 a

1/2
i

(ρ−(N−L))2
, then the optimum solution is

μ =
∑N

i=1 a
1/2
i

(ρ−(N−L))2
and xi = μ1/2a−1/2

i − 1, or else, go
to the next step.

4. Set L = L − 1 and μ = aL go back to step 3.

Endnotes
aDual-hop relay network is of particular importance and

has been the most frequently studied type in the past
decades.

bWe assume perfect channel knowledge in this paper,
while the channel estimation can be performed by the
method in [24].
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