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Abstract

LBlock is a 64-bit lightweight block cipher which can be implemented in both constrained hardware environments,
such as wireless sensor network, and software platforms. In this paper, we study the security of LBlock against a
differential fault analysis. Based on a random nibble fault model, we propose two versions of the attack on LBlock. In
the first attack, we inject random nibble faults to the input register of round 29. As a result, it can recover the secret
key of LBlock using an exhaustive search of 225 and five random nibble fault injections on average. This attack can be
simulated on a general PC within a few seconds. In the case of second attack, random nibble faults are induced to the
input register of round 30. This attack can recover the secret key of LBlock using an exhaustive search of 230 and seven
random nibble fault injection on average. This attack can be simulated on a general PC within 1 h. These results are
superior to known differential fault analytic result on LBlock.

Introduction
Differential fault analysis (DFA), one of the side channel
attacks, was first proposed by Biham and Shamir on DES
in 1997 [1]. This attack exploits faults within the compu-
tation of a cryptographic algorithm to reveal the secret
information. So far, DFAs on many block ciphers such
as DES, Piccolo, LED, SEED, and ARIA have been pro-
posed [2-7]. It means that DFA poses a major threat to the
security on block ciphers.
LBlock [8] proposed in ACNS 2011 is a 64-bit

lightweight block cipher suitable for both constrained
hardware environments such as wireless sensor network
and software platforms. It is based on the 32-round
variant Feistel structure with 64-bit block size and 80-
bit key size. There were several cryptanalytic results on
LBlock. For example, the proposers of LBlock explored the
strength of LBlock against some attacks such as differen-
tial cryptanalysis, integral attack, and related-key attack
[8]. Also, Karakoc et al. [9] and Liu et al. [10] proposed
impossible differential cryptanalysis on a reduced version
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of LBlock, respectively. On the other hand, in [11], a differ-
ential fault analysis on LBlock was proposed. Based on a
random bit fault model, the proposed attack needs at least
7 fault injections.
In this paper, we propose a differential fault analysis on

LBlock. Based on the random nibble fault model, we con-
sider two fault assumptions. In the first attack (Attack
1), it is assumed that several random nibble faults are
injected to the input register of round 29.We can compute
the exact fault position by checking the corresponding
ciphertext differences. Based on the simulation results,
this attack requires an exhaustive search of 225 and five
random nibble faults on average, and can recover the 80-
bit secret key of LBlock within a few seconds on a general
PC. In the case of second attack (Attack 2), to recover the
80-bit secret key of LBlock, we inject several random nib-
ble faults to the input register of round 30. This attack
requires an exhaustive search of 230 and seven random
nibble faults on average. It can also recover the 80-bit
secret key of LBlock within 1 h on a general PC. Consider-
ing that the proposed attack in [11] requires at least 7 fault
injections, our results are superior to it (see Table 1).
This paper is organized as follows. In the ‘Description

of LBlock’ section, we briefly introduce the structure of
LBlock. In the ‘Attack 1 - fault position: round 29’ and
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Table 1 Comparison between DFA results on LBlock

Reference Fault Fault Number of Exhaustive

assumption position fault injection search

[11] Random bit Round 25 to 31 7 -

This paper Random nibble Round 29 5 225

(Attack 1)

This paper Random nibble Round 30 7 230

(Attack 2)

‘Attack 2 - fault position: round 30’ sections, our attacks
on LBlock are presented. Finally, in the last section, we
give our conclusion.

Description of LBlock
In this section, we introduce the structure of LBlock
briefly. The notations used in this paper are as follows.
Here, a 32-bit value X = (X7,X6, · · · ,X0), where Xi is a
nibble value.

• P = (PL,PR): a 64-bit plaintext.
• C = (CL,CR): a 64-bit ciphertext.
• Ir = (ILr , IRr ): a 64-bit input value of round r

(r = 1, 2, · · · , 32).
• Kr = (Kr,7,Kr,6, · · · ,Kr,0): a 64-bit round key of

round r.

LBlock is a 64-bit block cipher and supports the 80-bit
secret key. As shown in Figure 1, the structure of LBlock is
a 32-round iterative structure which is a variant of Feistel
network. To generate a 64-bit ciphertext C = (CL,CR)
from a 64-bit plaintext P = (PL,PR), LBlock executes the
following procedure. Here,≪ is a left circular rotation.

(1) I1 = (IL1 , I1r ) ← (PL,PR).
(2) For r = 1, 2, · · · , 32, do the following:

Ir+1 = (ILr+1, I
R
r+1) = (

F(ILr ,Kr) ⊕ (IRr ≪ 8), ILr
)
.

(3) (CL,CR) ← (IR33, I
L
33).

(4) Output C = (CL,CR) as a 64-bit ciphertext.

The round function F is defined as follows (see Figure 2).
Here, S and P denote the confusion and diffusion func-
tions.

F : {0, 1}32 × {0, 1}32 −→ {0, 1}32
(X,Kr) �−→ U = P(S(X ⊕ Kr))

The confusion function S denotes the nonlinear layer of
round function F. It consists of eight 4 × 4 S-boxes Si in

parallel (i = 1, 2, · · · , 8). The contents of these S-boxes
are listed in Table 2.

S : {0, 1}32 −→ {0, 1}32
Y = (Y7,Y6, · · · ,Y0) �−→ Z = (Z7,Z6, · · · ,Z0)

Z7 = S7(Y7), Z6 = S6(Y6), Z5 = S5(Y5), Z4 = S4(Y4)
Z3 = S3(Y3), Z2 = S2(Y2), Z1 = S1(Y1), Z0 = S0(Y0).

The diffusion function P is defined as a permutation
of eight nibble words, and it can be expressed as the
following equations:

P : {0, 1}32 −→ {0, 1}32
Z = (Z7,Z6, · · · ,Z0) �−→ U = (U7,U6, · · · ,U0)

U7 = Z6, U6 = Z4, U5 = Z7, U4 = Z5

U3 = Z2, U2 = Z0, U1 = Z3, U0 = Z1.

The 80-bit secret key K is stored in a key register and
denoted as K = (k79, k78, k77, k76, · · · , k1, k0). Output the
leftmost 32 bits of current content of register K as round
subkey K1, and then operate as follows:
For i = 1, 2, · · · , 31, update the key registerK as follows:

(1) K ← (K ≪ 29).
(2) (k79, k78, k77, k76) = S9 ((k79, k78, k77, k76)).
(3) (k75, k74, k73, k72) = S9 ((k75, k74, k73, k72)).
(4) (k50, k49, k48, k47, k46) ← ((k50, k49, k48, k47, k46) ⊕ i).
(5) Output the leftmost 32 bits of current content of

register K as a round key Ki+1 of round i + 1.

Table 3 presents the partial secret keys used in each
round key of LBlock. For example, a round key K29 of
round 29 includes a 32-bit partial secret key (k67, k66, · · · ,
k37, k36).

Attack 1 - fault position: round 29
In this section, we propose DFA on LBlock, where the
fault position is the input register of round 29. Our fault
assumption includes the following assumptions:
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Figure 1 The structure of LBlock.

(1) The attacker has the capability to choose one
plaintext to encrypt and obtain the corresponding
right/faulty ciphertexts.

(2) The attacker can induce random byte faults to the
input register of round 29.

(3) The location and value of faults are both unknown.

From the above assumptions, a random nibble fault can
be induced to the input byte register IL29,i of round 29
(i = 0, 1, · · · , 7). Note that in Attack 1, we do not con-
sider events injecting random nibble faults to IR29,i. They
are considered in Attack 2, where random nibble faults
are injected to IL30,i. Thus, the number of all possible fault
positions is 8. For the simplicity of notations, we denote
each case by EL29,i. For example, EL29,7 means an event that
a random nibble fault is injected to IL29,7.

Computation of the exact fault position
First, we assume that a random nibble fault was injected to
IL29,7, that, is an event EL29,7 was occurred. Figure 3 presents
the differential propagation under this assumption.
According to our fault assumption, the input difference

�I29 of I29 has the following pattern. Here, a �= 0.

�I29 = [
�IL29,�IR29

] = [(a, 0, 0, 0, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 0, 0)] .

Then, as shown in Figure 3, the output difference of
round function F of round 29 is computed as follows.
Here, b is an output difference of S-box S7 taking a as an
input difference (b = S7(a)). Thus, the input difference of
round 30 has the following pattern:

�I30 = [
�IL30,�IR30

] = [(0, 0, b, 0, 0, 0, 0, 0),
(a, 0, 0, 0, 0, 0, 0, 0)] .

The input difference �I31 of round 31 is computed as
follows. Here, c is an output difference of S-box S5 taking b
as an input difference (c = S5(b)). Note that, in round 30,
a was moved from �IR30,7 to �IL31,1 by an 8-bit left circular
rotation.

�I31 = [
�IL31,�IR31

] = [(0, 0, 0, c, 0, 0, a, 0),
(0, 0, b, 0, 0, 0, 0, 0)] .

Similarly, the input difference �I32 of round 32 has the
following pattern. Here, d = S4(a) and e = S1(a).

�I32 = [
�IL32,�IR32

] = [(b, d, 0, 0, 0, 0, 0, e),
(0, 0, 0, c, 0, 0, a, 0)] .

Hence, when a random nibble fault was injected to IL29,7,
that is an event EL29,7, the ciphertext difference has the
following pattern.
Here, f = S6(d), g = S7(b), and h = S0(e).

�C = [
(b, d, 0, 0, 0, 0, 0, e), (f , c, g, 0, a, h, 0, 0)

]
.

Other events EL29,i can be explained in a similar fashion
(i = 0, 1, · · · , 6). Table 4 shows the patterns of ciphertext
differences for the positions of fault injections. Here, ‘?’
means a nonzero value. From this table, we can check that
the patterns of the ciphertext differences for each event
are different from each other. Thus, we can compute the
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Figure 2 Round function F of LBlock.

exact fault position from the patterns of the ciphertext
differences.

Computation of round keys for each fault position
We assume that an event EL29,7 has occurred. That is, it is
assumed that a random nibble fault was induced to IL29,7.
In this case, we can compute 228 candidates of the 56-bit
round key by executing the following procedure:

(1) K32,7. Guess 4-bit K32,7 and compute the output
difference of S-box S7 in round 32 (see red lines in
Figure 3). Then, check that this value is equal to
�CR

5 . The probability passing this test is 2−4. Thus,
we can expect that only the right K32,7 has survived.

(2) K32,6. Guess 4-bit K32,6 and compute the output
difference of S-box S6 in round 32 (see red lines in
Figure 3). Then, check that this value is equal to
�CR

7 . Since the filtering probability is 2−4, we can
compute the right K32,6.

(3) K32,0. Guess 4-bit K32,0 and compute the output
difference of S-box S0 in round 32 (see red lines in
Figure 3). Then, check that this value is equal to
�CR

2 . The probability passing this test is 2−4. Thus,
we can expect that only the right K32,0 has survived.

Table 2 Contents of S-boxes used in LBlock

S-box Contents

S0 14, 9, 15, 0, 13, 4, 10, 11, 1, 2, 8, 3, 7, 6, 12, 5

S1 4, 11, 14, 9, 15, 13, 0, 10, 7, 12, 5, 6, 2, 8, 1, 3

S2 1, 14, 7, 12, 15, 13, 0, 6, 11, 5, 9, 3, 2, 4, 8, 10

S3 7, 6, 8, 11, 0, 15, 3, 14, 9, 10, 12, 13, 5, 2, 4, 1

S4 14, 5, 15, 0, 7, 2, 12, 13, 1, 8, 4, 9, 11, 10, 6, 3

S5 2, 13, 11, 12, 15, 14, 0, 9, 7, 10, 6, 3, 1, 8, 4, 5

S6 11, 9, 4, 14, 0, 15, 10, 13, 6, 12, 5, 7, 3, 8, 1, 2

S7 13, 10, 15, 0, 14, 4, 9, 11, 2, 1, 8, 3, 7, 5, 12, 6

S8 14, 9, 15, 0, 13, 4, 10, 11, 1, 2, 8, 3, 7, 6, 12, 5

S9 4, 11, 14, 9, 15, 13, 0, 10, 7, 12, 5, 6, 2, 8, 1, 3

(4) (K31,4,K32,4). Guess 8-bit (K31,4,K32,4) and compute
the output difference of S-box S4 in round 31 (see
blue lines in Figure 3). Then, check that this value is
equal to �CL

6 . Since the filtering probability is 2−4,
we can get 24 candidates of (K31,4,K32,4).

(5) (K31,1,K32,2). Guess 8-bit (K31,1,K32,2) and compute
the output difference of S-box S1 in round 31 (see
blue lines in Figure 3). Then, check that this value is
equal to �CL

0 . Since the filtering probability is 2−4,
we can get 24 candidates of (K31,1,K32,2).

(6) (K30,5,K31,6,K32,1). Guess 12-bit (K30,5,K31,6,K32,1)
and compute the output difference of S-box S5 in
round 30 (see green lines in Figure 3). Then, check
that this value is equal to �CR

6 . Since the filtering
probability is 2−4, we can get 28 candidates of
(K30,5,K31,6,K32,1).

(7) (K29,7,K30,3,K31,7,K32,3). Guess 16-bit
(K29,7,K30,3,K31,7,K32,3) and compute the output
difference of S-box S7 in round 29 (see bold black
lines in Figure 3). Then, check that this value is equal
to �CL

7 . Since the filtering probability is 2−4, we can
obtain 212 candidates of (K29,7,K30,3,K31,7,K32,3).

According to the above procedure, we can obtain 228
candidates of the following 56-bit round key by using one
random nibble fault injected to IL29,7.

(1) Round 29: K29,7.
(2) Round 30: (K30,3,K30,5).

Table 3 Partial secret key used in round keys

Round Partial secret key

1 (k79, k78, · · · , k49, k48)
2 (k50, k49, · · · , k20, k19)
...

...

29 (k67, k66, · · · , k37, k36)
30 (k38, k37, · · · , k8, k7)
31 (k9, k8, · · · , k0, k79, k78, · · · , k58)
32 (k60, k59, · · · , k30, k29)
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Figure 3 Attack 1 - event EL
29,7.

Table 4 Attack 1 - ciphertext differences for the positions
of fault injections

Event Ciphertext difference

EL29,7 [(?, ?, 0, 0, 0, 0, 0, ?), (?, ?, ?, 0, ?, ?, 0, 0)]

EL29,6 [(0, 0, 0, ?, 0, ?, ?, 0), (?, ?, 0, 0, ?, ?, 0, ?)]

EL29,5 [(?, ?, ?, 0, 0, 0, 0, 0), (?, 0, ?, ?, 0, 0, ?, ?)]

EL29,4 [(?, 0, ?, 0, 0, 0, 0, ?), (0, 0, ?, ?, 0, ?, ?, ?)]

EL29,3 [(0, 0, 0, ?, ?, ?, 0, 0), (?, ?, 0, 0, ?, ?, ?, 0)]

EL29,2 [(0, ?, ?, 0, 0, 0, 0, ?), (?, ?, 0, ?, ?, ?, 0, 0)]

EL29,1 [(0, 0, 0, 0, ?, ?, ?, 0), (0, 0, ?, ?, ?, 0, ?, ?)]

EL29,0 [(0, 0, 0, ?, ?, 0, ?, 0), (0, ?, ?, ?, 0, 0, ?, ?)]

(3) Round 31: (K31,1,K31,4,K31,6,K31,7).
(4) Round 32: (K32,0,K32,1,K32,2,K32,3,K32,4,K32,6,K32,7).

Other events EL29,i can be explained in a similar fash-
ion (i = 0, 1, · · · , 6). In detail, in each event, we can get
228 candidates of the 56-bit round key from one random
nibble fault injection.

• EL29,6

– Round 29: K29,6.
– Round 30: (K30,1,K30,7).
– Round 31: (K31,0,K31,2,K31,3,K31,5).
– Round 32:

(K32,0,K32,1,K32,2,K32,4,K32,5,K32,6,K32,7).

• EL29,5
– Round 29: K29,5.
– Round 30: (K30,4,K30,6).
– Round 31: (K31,1,K31,4,K31,6,K31,7).
– Round 32:

(K32,1,K32,2,K32,3,K32,4,K32,5,K32,6,K32,7).

• EL29,4
– Round 29: K29,4.
– Round 30: (K30,4,K30,6).
– Round 31: (K31,1,K31,4,K31,6,K31,7).
– Round 32:

(K32,0,K32,1,K32,2,K32,3,K32,4,K32,5,K32,7).

• EL29,3
– Round 29: K29,3.
– Round 30: (K30,1,K30,7).
– Round 31: (K31,0,K31,2,K31,3,K31,5).
– Round 32:

(K32,0,K32,2,K32,3,K32,4,K32,5,K32,6,K32,7).

• EL29,2
– Round 29: K29,2.
– Round 30: (K30,3,K30,5).
– Round 31: (K31,1,K31,4,K31,6,K31,7).
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– Round 32:
(K32,0,K32,1,K32,2,K32,3,K32,4,K32,5,K32,6).

• EL29,1

– Round 29: K29,1.
– Round 30: (K30,0,K30,2).
– Round 31: (K31,0,K31,2,K31,3,K31,5).
– Round 32:

(K32,0,K32,1,K32,2,K32,3,K32,5,K32,6,K32,7).

• EL29,0

– Round 29: K29,0.
– Round 30: (K30,0,K30,2).
– Round 31: (K31,0,K31,2,K31,3,K31,5).
– Round 32:

(K32,0,K32,1,K32,3,K32,4,K32,5,K32,6,K32,7).

Recovery of the secret key from candidates of round keys
In the previous subsection, we presented the method to
obtain the candidates of round keys by injecting random
nibble faults to the input register of round 29. In this sub-
section, we explain the method to recover candidates of
the secret key of LBlock using candidates of round keys.
As shown in Table 3, the partial secret key used in

(K29,K30,K31,K32) is as follows:

• K29: (k67, k66, · · · , k37, k36).
• K30: (k38, k37, · · · , k8, k7).
• K31: (k9, k8, · · · , k0, k79, k78, · · · , k58).
• K32: (k60, k59, · · · , k30, k29).
From the above relation, (K29,K30,K31,K32) includes all

80-bit secret key information. Thus, from the keysched-
ule of LBlock, we can easily compute candidates of the
secret key of LBlock by using candidates of round keys
computed in the previous subsection. However, in the case
that the number of candidates of round keys is very large,
we require the exhaustive search with the large compu-
tational complexity. On the other hand, from the above
relation, we can check that each round key include the
common partial secret key information. Thus, if equations
are constructed by using this property, we can decrease
the number of candidates of the secret key of LBlock.
To decrease the number of candidates of the secret key,

we consider equations as shown in Table 5. The total filter-
ing probability is 2−41. Here, ‘&’ means ‘AND’ operation,
and S−1

9 and S−1
8 are the inverse functions of the S-boxes

S9 and S8, respectively.

DFA on LBlock (Attack 1)
Now, we are ready to propose a differential fault analysis
on LBlock under an assumption that random nibble faults
are injected to the input register of round 29. Our attack
procedure is as follows:

(1) Collection of right ciphertext. Choose a plaintext P
and obtain the corresponding right ciphertext
C = (CL,CR).

(2) Collection of faulty ciphertext. After inducing an i th
random nibble fault to IL29 = (IL29,7, IL29,6, · · · , IL29,0) of
round 29, get the corresponding faulty ciphertext Ci

(i = 1, · · · , n).
(3) Computation of fault positions. Compute �Ci by

using (C,Ci) and then compute the exact fault
positions from Table 4.

(4) Computation of the candidates of
(K29,K30,K31,K32). According to the fault positions
computed in step 3, compute the candidates of
(K29,K30,K31,K32) by using the method in
‘Computation of round keys for each fault position’
section.

(5) Recovery of the 80-bit secret key. Using the method
in ‘Recovery of the secret key from candidates of
round keys’ section, compute the candidates of the
secret key by using the candidates of
(K29,K30,K31,K32). Then, recover the 80-bit secret
key of LBlock by using one trial encryption.

We simulated our attack on a general PC 10, 000
times. Based on the simulation results, we can obtain
about 225 candidates of the secret key by using five
fault injections on average. Thus, we do an exhaustive
search for them. Since the filtering probability is 2−64,
the expected number of wrong secret keys passing our
attack algorithm is 2−39(= 225 · 2−64). It means that
the possibility that a wrong key can pass our attack
algorithm is very low. Based on the simulation results,
we can always recover the 80-bit secret key of LBlock
within a few seconds by using five fault injections on
average.

Attack 2 - fault position: round 30
In this section, we propose the second attack (Attack 2)
where random nibble faults are induced to the input reg-
ister of round 30. Since the attack procedure of Attack 2
is similar to that of Attack 1, we briefly discuss the attack
procedure of Attack 2.
Our fault assumption is as follows.

• The attacker has the capability to choose one
plaintext to encrypt and obtain the corresponding
right/faulty ciphertexts.

• The attacker can induce random byte faults to the
input register of round 30.

• The location and value of faults are both unknown.

From the above assumptions, a random nibble fault can
be induced to the input byte register IL30,i of round 30 (i =
0, 1, · · · , 7). Note that, similarly to Attack 1, we do not also
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Table 5 Attack 1 - equations to decrease the number of candidates of the secret key

Related secret key Equation Filtering probability

(k58, k59, k60) {(S−1
9 [ K32,7] ) � 1} = (K32,0&0x7) 2−3

(k37, k38) (K32,2&0x3) = (K30,7 � 2) 2−2

(k35, k36) (K32,1 � 2) = (K30,7&0x3) 2−2

(k33, k34) (K32,1&0x3) = (K30,6 � 2) 2−2

(k31, k32) {(K32,0 � 2) ⊕ 0x1} = (K30,6&0x3) 2−2

(k29, k30) {(K32,0&0x3) ⊕ 0x3} = (K30,5 � 2) 2−2

(k7, k8, k9) {(S−1
9 [ K31,7] ) � 1} = (K30,0&0x7) 2−3

k60 [ {(S−1
9 [ K32,7] ) � 3} ⊕ 0x1]= (K29,6&0x1) 2−1

(k57, k58, k59) [ {(S−1
9 [ K32,7] )&0x7} ⊕ 0x7]= (K29,5 � 1) 2−3

k56 {(S−1
8 [ K32,6] ) � 3} = (K29,5&0x1) 2−1

(k53, k54, k55) {(S−1
8 [ K32,6] )&0x7} = (K29,4 � 3) 2−3

k52 (K32,5 � 3) = (K29,4&0x1) 2−1

(k49, k50, k51) (K32,5&0x7) = (K29,3 � 1) 2−3

k48 (K32,4 � 3) = (K29,3&0x1) 2−1

(k45, k46, k47) (K32,4&0x7) = (K29,2 � 1) 2−3

k44 (K32,3 � 3) = (K29,2&0x1) 2−1

(k41, k42, k43) (K32,3&0x7) = (K29,1 � 1) 2−3

k40 (K32,2 � 3) = (K29,1&0x1) 2−1

k39 {(K32,2 � 2)&0x1} = (K29,0 � 3) 2−1

(k36, k37, k38) {(S−1
9 [ K30,7] ) � 1} = (K29,0&0x7) 2−3

consider events injecting random nibble faults to IR30,i in
Attack 2. Thus, the number of all possible fault positions
is 8.
Table 6 shows the patterns of ciphertext differences for

the positions of fault injections in Attack 2. Here, ‘?’ means
a nonzero value. For example, the differential propagation
under an event EL30,7 is shown in Figure 4. From this table,
we can check that the patterns of the ciphertext differ-
ences for each event are different from each other. Thus,
in Attack 2, we can compute the exact fault position from
the patterns of ciphertext differences.

Table 6 Attack 2 - ciphertext differences for the positions
of fault injections

Event Ciphertext difference

EL30,7 [(0, 0, 0, ?, 0, 0, ?, 0), (?, ?, 0, 0, 0, 0, 0, ?)]

EL30,6 [(0, 0, ?, 0, 0, 0, 0, ?), (0, 0, 0, ?, 0, 0, ?, ?)]

EL30,5 [(?, ?, 0, 0, 0, 0, 0, 0), (?, ?, ?, 0, 0, 0, 0, 0)]

EL30,4 [(?, ?, 0, 0, 0, 0, 0, 0), (?, 0, ?, 0, 0, 0, 0, ?)]

EL30,3 [(0, 0, ?, 0, 0, 0, 0, ?), (0, 0, 0, ?, ?, ?, 0, 0)]

EL30,2 [(0, 0, 0, ?, 0, 0, ?, 0), (0, ?, ?, 0, 0, 0, 0, ?)]

EL30,1 [(0, 0, 0, 0, ?, ?, 0, 0), (0, 0, 0, 0, ?, ?, ?, 0)]

EL30,0 [(0, 0, 0, 0, ?, ?, 0, 0), (0, 0, 0, ?, ?, 0, ?, 0)]

Recall that, in Attack 1, we get 228 candidates of the 56-
bit round key from one random nibble fault injection. In
Attack 2, we obtain 212 candidates of the 28-bit round key
from one random nibble fault injection.

• EL30,7

– Round 30: K30,7.
– Round 31: (K31,3,K31,5).
– Round 32: (K32,1,K32,4,K32,5,K32,6).

• EL30,6

– Round 30: K30,6.
– Round 31: (K31,1,K31,7).
– Round 32: (K32,0,K32,2,K32,3,K32,5).

• EL30,5

– Round 30: K30,5.
– Round 31: (K31,4,K31,6).
– Round 32: (K32,1,K32,4,K32,6,K32,7).

• EL30,4

– Round 30: K30,4.
– Round 31: (K31,4,K31,6).
– Round 32: (K32,1,K32,4,K32,6,K32,7).
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Figure 4 Attack 2 - event EL
30,7.

• EL30,3

– Round 30: K30,3.
– Round 31: (K31,1,K31,5).
– Round 32: (K32,0,K32,2,K32,5,K32,6).

• EL30,2

– Round 30: K30,2.
– Round 31: (K31,3,K31,5).
– Round 32: (K32,1,K32,4,K32,6,K32,7).

• EL30,1

– Round 30: K30,1.
– Round 31: (K31,0,K31,2).
– Round 32: (K32,0,K32,2,K32,3,K32,5).

• EL30,0

– Round 30: K30,0.
– Round 31: (K31,0,K31,2).
– Round 32: (K32,0,K32,2,K32,3,K32,5).

Using the candidates of round keys, the method to com-
pute the candidates of the secret key of LBlock in Attack 2
is similar to that in Attack 1. Recall that the partial secret
key used in (K30,K31,K32) is as follows:

• K30: (k38, k37, · · · , k8, k7).
• K31: (k9, k8, · · · , k0, k79, k78, · · · , k58).
• K32: (k60, k59, · · · , k30, k29).

From the above relation, (K30,K31,K32) includes all
80-bit secret key information. Thus, from the keysched-
ule of LBlock, we can easily compute candidates of the
secret key of LBlock by using candidates of the round
keys. To decrease the number of candidates of the secret
key, we consider seven equations related to round 30 to
32 as shown in Table 5. The total filtering probability
is 2−16.
The attack procedure of Attack 2 is as follows:

(1) Collection of right ciphertext. Choose a plaintext P
and obtain the corresponding right ciphertext
C = (CL,CR).

(2) Collection of faulty ciphertext. After inducing an i th
random nibble fault to IL30 = (IL30,7, I

L
30,6, · · · , IL30,0) of

round 30, get the corresponding faulty ciphertext Ci

(i = 1, · · · , n).
(3) Computation of fault positions. Compute �Ci by

using (C,Ci) and then compute the exact fault
positions from Table 6.

(4) Computation of candidates of (K30,K31,K32).
According to the fault positions computed in step 3,
compute candidates of (K30,K31,K32).

(5) Recovery of the 80-bit secret key. Compute
candidates of the secret key by using the candidates
of (K30,K31,K32). Then, recover the 80-bit secret key
of LBlock by using one trial encryption.

We simulated our attack on a general PC 10, 000 times.
Based on the simulation results, we can obtain about
230 candidates of the secret key by using seven fault
injections on average. Recall that we obtain 212 candi-
dates of the 28-bit round key from one random nibble
fault injection under Attack 2. Thus, to get the small
number of candidates of the secret key, we need more
fault injections than Attack 1. We do an exhaustive
search for these candidates. Since the filtering probabil-
ity is 2−64, the expected number of wrong secret keys
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passing our attack algorithm is 2−34(= 230 · 2−64). It
means that the possibility that a wrong key can pass
our attack algorithm is very low. Based on the simula-
tion results, we can always recover the 80-bit secret key
of LBlock within 1 h by using seven fault injections on
average.

Conclusion
In this paper, we have presented DFA on LBlock suit-
able for wireless sensor networks. The proposed attack
has two versions, Attack 1 and Attack 2. To recover the
80-bit LBlock, Attack 1 requires an exhaustive search of
225 and five random nibble fault injections on average.
It is executed within a few seconds on a general PC.
In the case of Attack 2, this attack is executed within
1 h by using seven random nibble faults. These results
are superior to known differential fault analytic result on
LBlock.
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