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Abstract

We investigate the estimation of the time of arrival (ToA) of a radio signal transmitted over a flat-fading channel. The
path attenuation is assumed to depend only on the transmitter-receiver distance and the path loss exponent (PLE)
which, in turn, depends on the physical environment. All previous approaches to the problem either assume that the
PLE is perfectly known or rely on estimators of the ToA which do not depend on the PLE. In this paper, we introduce a
novel analysis of the performance of the maximum likelihood (ML) estimator of the ToA under an imperfect
knowledge of the PLE. Specifically, we carry out a Taylor series expansion that approximates the bias and the root
mean square error of the ML estimator in closed form as a function of the PLE error. The analysis is first carried out for a
path loss model in which the received signal gain depends only on the PLE and the transmitter-receiver distance.
Then, we extend the obtained results to account also for shadow fading scenarios. Our computer simulations show
that this approximate analysis is accurate when the signal-to-noise ratio (SNR) of the received signal is medium to
high. A simple Monte Carlo method based on the analysis is also proposed. This technique is computationally efficient
and yields a better approximation of the ML estimator in the low SNR region. The obtained analytical (and Monte
Carlo) approximations can be useful at the design stage of wireless communication and localization systems.
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1 Introduction
The estimation of a signal time of arrival (ToA), also
called time delay, plays an important role in applied sig-
nal processing problems, e.g., synchronization [1], array
processing [2], tracking and positioning of mobile termi-
nals [3-8], or even bioengineering [9]. Let us focus on
the estimation of the ToA in wireless radio links. In [10],
two simple (and practically appealing) estimators of the
ToA are studied: the maximum correlation (MC) and the
maximum likelihood (ML) estimators. The MC estimator
of the ToA depends only on the correlation between the
transmitted and the received signals. TheML estimator of
the ToA, on the other hand, takes also into account the
path attenuation, which depends on the distance between
the transmitter and the receiver, and the path loss expo-
nent (PLE) of the environment. The performances of both
estimators in mobile positioning applications are analyzed
in [8], where it is shown that the ML estimator attains a
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better accuracy when the PLE is perfectly known a priori.
However, the latter assumption is often unrealistic for a
practical scenario, because the PLE may change accord-
ing to variations in the environment and thus may need
to be estimated. Tracking the fluctuations of the PLE is
specially important in problems that involve the localiza-
tion of mobile terminals, since the existing positioning
techniques based on the ToA estimation are extremely
sensitive to errors in the PLE [6].
The problem of dealing with unknown PLEs has been

addressed in several related works. In [7], a positioning
application with several receivers and one transmitter is
considered. The PLEs are assumed to be different and
random, with either uniform or normal distributions.
The availability of different PLEs for each link increases
the localization accuracy compared to the identical PLE
assumption. In [11,12], the PLE is estimated from the
measurements, whereas in [13-15], several algorithms for
the PLE estimation are proposed. The authors of [14]
describe three distributed algorithms for PLE estimation
in large wireless networks in the presence of node loca-
tion uncertainties, m-Nakagami fading and interference.
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In [13] and [15], the algorithms for the estimation of the
path loss inside a sensor network are designed using previ-
ous path loss measurements among sensors. Specifically,
in [15], the PLEs are estimated for each node applying
the ML criterion and using both ToA and received-signal-
strength measurements among the sensors. In [16], a
handover algorithm is presented using the least squares
estimate of the path loss parameters for each link from a
mobile station to a base station. In [17,18], the sensitivity
of the ML estimator of the direction of arrival (DoA) of a
received signal under model error, i.e., with a mismatch in
the PLE, is investigated. To our best knowledge, the prob-
lem of estimating the ToA with both the path attenuation
and the PLE unknown has not been tackled yet.
The goal of this paper is to investigate the performance

of the ML estimator of the ToA under an imperfect PLE.
Specifically, we aim at obtaining analytical or semianalyt-
ical approximations of the bias and the mean square error
(MSE) of the ML estimator, both given in terms of the
PLE error and the signal-to-noise ratio (SNR) of the com-
munication channel. Such approximations are intended to
be useful in the design and setup of the communication
and localization wireless systems, as they may consider-
ably alleviate the need for a lengthy and computationally
expensive simulation of the whole system.
This article is organized as follows. We first describes

the signal model and then briefly reviews the expressions
of the MC and the ML estimators of the ToA with per-
fect knowledge of the PLE in Section 2, including formulas
for their MSE performances. In Section 3, we carry out
an approximate analysis of the bias and the MSE attained
by the ML estimator of the ToA under imperfect PLE. We
first apply the method in [18] to study the error between
the ML joint estimator of the PLE and the ToA, on one
hand, and the ML estimator of the ToA under an imper-
fect knowledge of the PLE, on the other hand. The diffi-
culty of this study is that the resulting error depends on
the ML joint estimates of the ToA and the PLE, which are
random variables related to the noise. In order to tackle
this limitation and provide an analytical (albeit approxi-
mate) expression for the error between the true and the
estimated ToA, we analyze the ML estimator of the ToA
with mismatched PLE in the second part of Section 3.
In particular, we propose a new method to analyze the
estimation error based on the Taylor series expansion. In
Section 4, we investigate the extension of these results
to shadow fading environments [19]. In particular, we
first show that the approximate bias is insensitive to the
shadow fading, whereas the MSE becomes a random vari-
able (the probability density function (pdf) of which is
obtained). Then, we provide a straightforward algorithm
to obtain a Monte Carlo estimate of the MSE by draw-
ing only from simple Gaussian distributions (instead of
simulating the whole transmission system). In Section 5,

we present illustrative computer simulation results based
on the transmission of an ultra-wideband (UWB) signal.
We have chosen UWB signaling to validate our analysis
because it provides an excellent means for wireless posi-
tioning due to its high resolution in the time domain [4].
Finally, Section 6 is devoted to the conclusions.

2 Signal model
2.1 Received signal
Consider a wireless transmission link with one single
transmitter and one single receiver. Following [20], the
received signal can be expressed as

r(t) = as(t − τ) + n(t), (1)

where r(t) is the received signal, s(t) is the transmitted sig-
nal, which is assumed deterministic and possibly complex-
valued, a ∈ R

+ and τ ≥ 0 are the path gain and the
propagation delay (commonly referred to as ToA) between
the transmitter and the receiver, and n(t) is the additive
noise at the receiver, assumed to be a circularly-symmetric
complex-valued zero-mean white Gaussian process with
double-sided power spectral density σ 2

n . In (1), τ is the
parameter to be estimated.
Assume that the received signal r(t) is observed in the

interval (0,To], and let Es = ∫ T0
0 |s(t)|2dt be the energy

of the transmitted signal in that period. Then, the relation
between the transmitted and the received signal energies
in terms of the path gain can be written as

Er = a2Es. (2)

In the literature, the path gain a is often modeled as a
deterministic parameter (see, e.g., [21-29]). However, it
can be elaborated in a more precise way to include the
propagation effect [8,10]. In this paper, we assume a com-
bined path loss and log-normal shadowing model. The
received power in dB is given by (see, e.g., [19], p. 45)

Pr (dB) = Pt+10 log10(κ)−10γ log10(d/d0)−ψdB, (3)

where Pt is the transmitted power in dB, d0 is the close-
in distance in the far-field region; d = cτ is the distance
between the transmitter and the receiver (c is the speed
of light), γ is the PLE at the base station, ψdB is a Gaus-
sian random variable with zero mean and variance σ 2

dB
which characterizes the shadow fading (see, e.g., [19], p. 45
and [30], p. 139), and κ is a unitless constant depending
on the antenna characteristics and the average channel
attenuation given by

κ = c2

16π2d20f
2
0
, (4)
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with f0 being the central frequency of the transmitted sig-
nal. If we convert the power in Equation (3) into natural
units, then the received energy can also be written as

Er = Es
κ

ψ

(
d0
d

)γ

, (5)

where the random factor ψ = 10
ψdB
10 is due to the shadow

fading. Substituting (2) into (5), we obtain an explicit
expression for the path gain a as

a =
√

κ

ψ

(
d0
cτ

) 1
2 γ

. (6)

Let us remark that, since the shadow fading term ψdB is
normally distributed, the path gain a of Equation (6) is a
random variable. For the sake of simplicity, in the analysis
of the ML estimator performance in Section 3, we ignore
the effect of the shadow fading by taking the expectation
with respect to (w.r.t.) ψ of Pr in (3). As a consequence,
the path gain becomes deterministic and reduces to

a = √
κ

(
d0
cτ

) 1
2 γ

, (7)

which coincides with the expression of the path gain
already used in [8,10]. The shadow fading effect is taken
explicitly into account in Section 4.

2.2 MC andML estimators of the ToA
In this subsection, we briefly review the MC and ML esti-
mators of the ToA. In the literature, the PLE γ is assumed
known, and the effect of the shadow fading is ignored;
hence, the path gain is deterministic, known and given by
(7) [10].
Let us further use the notation �(·) and (·)∗ as the real

part and the conjugate of a complex number, respectively.
The MC and ML estimators of the ToA are given by [10]

τ̂MC = argmax
τ

ρ(τ ), (8a)

τ̂ML = argmin
τ

fML(τ ), (8b)

respectively, where ρ(τ) = ∫ To
0 �(r(t)s∗(t − τ)) dt is the

correlation between the transmitted and the received sig-
nals, and the function fML(τ ) = a2Es − 2aρ(τ) is the log-
likelihooda of τ given r(t) [10]. Note that a is a function
of the propagation delay, as shown in (7). For conciseness,
this dependence is left implicit throughout the paper.
In [10] the authors obtain approximate formulas for the

errors (the bias and the MSE) of the MC and the ML esti-
mators of the ToA, the latter under perfect knowledge of
the PLE. In particular, the values of the MSE for the MC

and the ML estimators can be approximated, respectively,
as [10]

MSEMC ≈ 1
8π2 S

N a2β̄2
, (9a)

MSEML ≈ 1
S
N a2

(
8π2β̄2 + γ 2

2τ 2

) , (9b)

where τ and γ are, respectively, the true values of
the propagation delay and the path gain; the path loss
exponent (β̄) is the effective bandwidth, and S

N = Es
σ 2
n

is the signal-to-noise ratio (see [10] for additional
details). Note that the expression in Equation (9b)
coincides with the Cramér-Rao bound (see, e.g.,
[23-29]) for the time delay estimation [10].

3 Performance analysis
In this section, we analyze the performance of ML estima-
tor of the ToA, τ , subject to a model error. In particular,
we assume that the knowledge of the PLE is not exact.
This is a common situation in practice, since different
phenomena, such as the movement of the transmitter (or
the receiver) and sudden changes in the weather, directly
cause changes in the PLE from one observation period to
the next. In order to model the uncertainty in the nominal
value of the PLE, γ , consider an additive perturbation

γ = γ0 + δγ , (10)

where γ0 is the (unknown) true value of the PLE, and δγ

is an (equally unknown) additive error. In this section, we
assume that the path gain has the form shown in (7); there-
fore, the following analysis is valid for environments with
no shadow fading.
The log-likelihood fML in (8b) implicitly depends on the

PLE, because the path gain a in (7) is a function of γ .
Since we assume a mismatch between the true value of
the PLE, γ0, and the value available at the receiver, γ , we
need to make this dependence explicit in order to ana-
lyze the estimator performance. Therefore, let us write the
log-likelihood fML as a function of two real variables, the
propagation delay τ and the nominal PLE γ

fML(τ , γ ) = a2Es − 2aρ(τ)

= κ

(
d0
cτ

)γ

Es − 2
√

κ

(
d0
cτ

) 1
2 γ

ρ(τ ),
(11)

where the second equality is obtained by expanding
the path gain a, as given in Equation (7) (see also
Equations (32) to (35) in [10] for further details on
the derivation of the log-likelihood function fML). Recall
that ρ(τ) = ∫ To

0 �(r(t)s∗(t − τ)) dt is the correlation
between the transmitted and the received signals, and
Es is the energy of the transmitted signal. Figure 1 illus-
trates the shape of the log-likelihood function fML. Note
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Figure 1 Sample realization of−f ML. Parameters are set to γ0 = 1.7, cτ0 = 4 m, SNR = 30 dB, β̄ = 3.1007 × 109 Hz, and sampling time of 0.01 ps.
The global maximum is located at the true values of the ToA and the PLE.

that this is just a sample realization of −fML, since
its actual form depends on the specific communica-
tion system and the received data. The resulting ML
estimator of the ToA τ as a function of the nominal
PLE γ is

τ̂ML(γ ) = argmin
τ

fML(τ , γ ). (12)

In former works, the sensitivity analysis of the ML esti-
mator under model error has been investigated for DoA
estimation (see, e.g., [17,18]). Similar ideas can be applied
to investigate the mis-modeled estimation problem in
(12), as shown in Section 3.1. This approach suffers from
several limitations, though. For this reason, we introduce
a novel approximate analysis based on a Taylor series
expansion in Section 3.2.

3.1 Friedlander’s method
In this subsection, we adapt the methodology proposed
in [18] to the problem of the ToA estimation. Note that,
while our objective in the present paper is the character-
ization of the ToA estimation error under an imperfect
PLE, in [18], the author addresses the DoA estimation for
a sensor array under the imperfect knowledge of the chan-
nel parameters. Therefore, the log-likelihood function is
different for each of the two estimation problems (DoA
and ToA).
Let τ̂ML and γ̂ML denote the ML estimates of the ToA

and the PLE, respectively, which jointly maximize the like-
lihood function, i.e., assume that ∂

∂τ
fML(τ , γ )

∣∣
τ=τ̂ML
γ=γ̂ML

= 0

and ∂
∂γ

fML(τ , γ )

∣∣∣τ=τ̂ML
γ=γ̂ML

= 0. Following [18], we approxi-

mate the error between τ̂ML and the ML estimate of the
ToA under a mismatch in the PLE, denoted by τ̂ML(γ ), as

τ̂ML(γ ) − τ̂ML ≈ −
(γ − γML)

∂2

∂γ ∂τ
fML(τ , γ )

∣∣∣τ=τ̂ML
γ=γ̂ML

∂2

∂τ 2
fML(τ , γ )

∣∣∣τ=τ̂ML
γ=γ̂ML

= εF(τ̂ML, γ̂ML),
(13)

which is obtained by approximating ∂
∂τ
fML(τ , γ ) by its first

order Taylor series expansion around τ̂ML and γ̂ML (see
[18], Section III).
In order to find an explicit form of 13, we can elaborate

both the numerator and the denominator of εF(τ̂ML, γ̂ML)
as

∂2

∂τ 2
fML(τ ,γ)

∣∣∣∣τ=τ̂ML
γ=γ̂ML

=
(

1
τ 2

γ (1 + γ )Esa2 − 1
τ 2

γ

×
(
1+ 1

2
γ

)
aρ(τ)+ 1

τ
2γ a

∂

∂τ
ρ(τ)

− 2a
∂2

∂τ 2
ρ(τ)

)∣∣∣∣τ=τ̂ML
γ=γ̂ML

= 1
τ̂ 2ML

γ̂ML(1+γ̂ML)Esa2ML− 1
τ̂ 2ML

γ̂ML

×
(
1 + 1

2
γ̂ML

)
aMLρ(τ̂ML)

+ 1
τ̂ML

2γ̂MLaMLρ̇(τ̂ML)−2aMLρ̈(τ̂ML)

(14)
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and

∂2

∂τ∂γ
fML(τ , γ )

∣∣∣∣τ=τ̂ML
γ=γ̂ML

=
(
1
τ
a (ρ(τ ) − Esa) + 1

τ
γ

× ln
(
d0
cτ

)
a
(
1
2
ρ(τ) − Esa

)

− ln
(
d0
cτ

)
a

∂

∂τ
ρ(τ)

)∣∣∣∣τ=τ̂ML
γ=γ̂ML

= 1
τ̂ML

aML
(
ρ(τ̂ML) − EsaML

)

+ 1
τ̂ML

γ̂ML ln
(

d0
cτ̂ML

)
aML

×
(
1
2
ρ(τ̂ML) − EsaML

)

− ln
(

d0
cτ̂ML

)
aMLρ̇(τ̂ML),

(15)

where aML = a(τ̂ML, γ̂ML) is the value of the path gain
for τ = τ̂ML and γ = γ̂ML; ρ(τ), ρ̇(τ ), and ρ̈(τ ) are
correlation functions given by

ρ(τ) =
∫ To

0
�(r(t)s∗(t − τ)) dt = a0ρss(τ ) + ρns(τ ),

(16a)

ρ̇(τ ) =
∫ To

0
�(r(t)

∂

∂τ
s∗(t − τ)) dt

= a0
∂

∂τ
ρss(τ ) + ∂

∂τ
ρns(τ ), (16b)

ρ̈(τ ) =
∫ To

0
�(r(t)

∂2

∂τ 2
s∗(t − τ)) dt

= a0
∂2

∂τ 2
ρss(τ ) + ∂2

∂τ 2
ρns(τ ), (16c)

respectively, where a0 = a(τ0, γ0) is the true value of
the path gain, and ρss(τ ) is the autocorrelation of the
transmitted signal, which is given by

ρss(τ ) =
∫ To

0
�(s(t − τ0)s∗(t − τ))dt, (17)

and ρns(τ ) is the correlation between the noise and the
transmitted signal, i.e.,

ρns(τ ) =
∫ To

0
�(n(t)s∗(t − τ))dt. (18)

Substituting (14) and (15) into (13), we obtain a closed
formula for the (approximate) estimation error, namely,

εF(τ̂ML, γ̂ML) = −(γ − γML)

h(τ̂ML)
×
[

1
τ̂ 2ML

γ̂ML(1+γ̂ML)EsaML

− 1
τ̂ 2ML

γ̂ML

(
1 + 1

2
γ̂ML

)
ρ(τ̂ML)

+ 1
τ̂ML

2γ̂MLρ̇(τ̂ML) − 2ρ̈(τ̂ML)

]
,

(19)

where

h(τ̂ML) = 1
τ̂ML

(
ρ(τ̂ML) − EsaML

)+ 1
τ̂ML

γ̂ML ln
(

d0
cτ̂ML

)

×
(
1
2
ρ(τ̂ML) − EsaML

)
− ln

(
d0

cτ̂ML

)
ρ̇(τ̂ML).

(20)

Friedlander’s approach provides us with a characteri-
zation of the error between two estimators of the ToA,
namely, the ‘full’ ML estimator obtained by maximiz-
ing the likelihood function −fML(τ , γ ) jointly over τ

and γ , on one hand, and the conditional ML estima-
tor obtained for a fixed (but imperfect or mismatched)
value of the PLE γ , denoted by τ̂ML(γ ), on the other.
However, the error given in (19) is a function of the ran-
dom variables τ̂ML, γ̂ML, ρ(τ̂ML), ρ̇(τ̂ML), and ρ̈(τ̂ML),
which in turn, depend on the realization of the noise pro-
cess n(t). This dependence makes the derivation of the
first and the second moments of εF(τ̂ML, γ̂ML) analytically
intractable.
To tackle this limitation, we propose a different

approach that aims at characterizing the error between
the estimator τ̂ML(γ ) for a fixed imperfect PLE, γ , and
the true value of the ToA, τ0. Our analysis not only
leads to a mathematically tractable approximation but it
is also, in our opinion, more meaningful from a practical
perspective.

3.2 Performance analysis based on a Taylor series
expansion

In this section, we evaluate the error between the true
and the estimated values of the ToA. Let τ0 and γ0 denote
the true values of the ToA and the PLE, respectively,
both assumed deterministic. The first-order Taylor series
expansion of the partial derivative ∂

∂τ
fML(τ , γ ) in two
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variables around the true values τ0 and γ0 can be written
as (see, e.g., [31-33])

∂

∂τ
fML(τ , γ ) = ∂

∂τ
fML(τ , γ )

∣∣∣∣τ=τ0
γ=γ0

+ ∂2

∂τ∂τ
fML(τ , γ )

∣∣∣∣τ=τ0
γ=γ0

× (τ − τ0) + ∂2

∂τ∂γ
fML(τ , γ )

∣∣∣∣τ=τ0
γ=γ0

× (γ − γ0) + o((τ − τ0)
2 + (γ − γ0)

2).
(21)

Assuming a large SNR, the terms of the second or higher
order in o((τ̂ML(γ ) − τ0)2 + (γ − γ0)2) are negligible
[25], p.236). The estimated value τ = τ̂ML(γ ) minimizes
fML(τ , γ ) using a mis-modeled PLE, i.e., τ̂ML(γ ) is a solu-
tion to the equation ∂

∂τ
fML(τ , γ )

∣∣
τ=τ̂ML(γ )

= 0. Then, by
dropping the term o((τ̂ML(γ ) − τ0)2 + (γ − γ0)2), we can
approximate the error between the true and the estimated
ToA as

τ̂ML(γ ) − τ0

≈ −
∂
∂τ
fML(τ , γ )

∣∣τ=τ0
γ=γ0

+(γ − γ0)
∂2

∂τ∂γ
fML(τ , γ )

∣∣∣τ=τ0
γ=γ0

∂2

∂τ 2
fML(τ , γ )

∣∣∣τ=τ0
γ=γ0

= ε̃TE(τ0, γ ).
(22)

In order to provide analytical expressions for the bias
and the MSE of the error in (22), we introduce a further
approximation into the error ε̃TE(τ0, γ ) by following [23],
p. 642, Equation (17-9.6) as

ε̃TE(τ0, γ )

≈ −
∂
∂τ
fML(τ , γ )

∣∣τ=τ0
γ=γ0

+ (γ − γ0)
∂2

∂τ∂γ
fML(τ , γ )

∣∣∣τ=τ0
γ=γ0

En(t)

{
∂2

∂τ 2
fML(τ , γ )

∣∣∣τ=τ0
γ=γ0

}

= εTE(τ0, γ ),
(23)

where the expectation in the denominator is introduced
for mathematical tractability. The derivatives ∂

∂τ
fML(τ , γ )

and ∂2

∂γ ∂τ
fML(τ , γ ) for τ = τ0 and γ = γ0 in (23) can be

evaluated explicitly and yield

∂

∂τ
fML(τ , γ )

∣∣∣∣τ=τ0
γ=γ0

= 1
τ0

γ0a0ρns,0 − 2a0ρ̇ns,0, (24)

and

∂2

∂γ ∂τ
fML(τ , γ )

∣∣∣∣τ=τ0
γ=γ0

= 1
τ0
a0ρns,0− 1

2τ0
γ0a0

(
Esa0−ρns,0

)

× ln
(
d0
cτ0

)
− a0ρ̇ns,0 ln

(
d0
cτ0

)
,

(25)

respectively, where ρns,0 = ρns(τ0) and ρ̇ns,0 =
∂
∂τ

ρns(τ )
∣∣τ=τ0
γ=γ0

. Additionally, the expected value of
∂2

∂τ 2
fML(τ , γ ) evaluated at τ = τ0 and γ = γ0 is

En(t)

{
∂2

∂τ 2
fML(τ , γ )

∣∣∣∣τ=τ0
γ=γ0

}
= 1

2τ 20
γ 2
0 Esa

2
0 + 8π2β̄2Esa20,

(26)

where β̄ is the effective bandwidth. Equations (24), (25),
and (26) are explicitly obtained in Appendix 1. Then,
substituting (26), (25), and (24) into (23), we obtain the
(approximate) closed formula for the ToA estimation
error

εTE(τ0, γ ) = − 1
1

2τ 20
γ 2
0 Es + 8π2β̄2Es

[
1
τ0

γ0ρns,0 − 2ρ̇ns,0

+ (γ − γ0)

(
1
τ0

ρns,0 − 1
2τ0

γ0
(
Esa0 − ρns,0

)
× ln

(
d0
cτ0

)
− ρ̇ns,0 ln

(
d0
cτ0

))]
.

(27)

The bias of the conditional ML estimator given an
imperfect PLE γ is obtained by taking the expectation of
(23), i.e.,

En(t) {εTE(τ0, γ )}

= −
En(t)

{
∂
∂τ
fML(τ , γ )

∣∣τ=τ0
γ=γ0

}
+(γ −γ0)En(t)

{
∂2

∂τ∂γ
fML(τ,γ)

∣∣∣τ=τ0
γ=γ0

}
1

2τ 20
γ 2
0 Esa

2
0+8π2β̄2Esa20

.

(28)

The expectations En(t)

{
∂
∂τ
fML(τ , γ )

∣∣τ=τ0
γ=γ0

}
and En(t)

{
∂2

∂τ∂γ

fML(τ , γ )
∣∣τ=τ0
γ=γ0

}
can be readily calculated by taking into

account that En(t)
{
ρns,0

} = 0 and En(t)
{
ρ̇ns,0

} = 0, and
yield

En(t)

{
∂

∂τ
fML(τ , γ )

∣∣∣∣τ=τ0
γ=γ0

}
= 0, (29a)

En(t)

{
∂2

∂τ∂γ
fML(τ , γ )

∣∣∣∣τ=τ0
γ=γ0

}
= − 1

2τ0
γ0a20Es ln

(
d0
cτ0

)
.

(29b)
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Hence, by substituting (29a) and (29b) into (28), the bias
of τ̂ML(γ ) can be written as

En(t) {εTE(τ0, γ )} = (γ − γ0)
γ0τ0 ln

(
d0
cτ0

)
γ 2
0 + 16π2β̄2τ 20

, (30)

which vanishes when γ = γ0, i.e., when the PLE is per-
fectly known.
The MSE of the estimator τ̂ML(γ ) can also be obtained

as a function of the nominal (imperfect) PLE γ , namely

En(t)
{
ε2TE(τ0, γ )

}

=
En(t)

{(
∂
∂τ

fML(τ , γ )
∣∣τ=τ0
γ=γ0

+(γ −γ0)
∂2

∂τ∂γ
fML(τ , γ )

∣∣∣τ=τ0
γ=γ0

)2}
(
En(t)

{
∂2

∂τ∂τ
fML(τ , γ )

∣∣∣τ=τ0
γ=γ0

})2

= 1(
En(t)

{
∂2

∂τ∂τ
fML(τ , γ)

∣∣∣τ=τ0
γ=γ0

})2
⎡
⎣En(t)

⎧⎨
⎩
(

∂

∂τ
fML(τ , γ )

∣∣∣∣τ=τ0
γ=γ0

)2

+ (γ − γ0)
2
(

∂2

∂τ∂γ
fML(τ , γ )

∣∣∣∣τ=τ0
γ=γ0

)2

+ 2(γ − γ0)
∂

∂τ
fML(τ , γ )

∣∣∣∣τ=τ0
γ=γ0

∂2

∂τ∂γ
fML(τ , γ )

∣∣∣∣τ=τ0
γ=γ0

}]
.

(31)

The above expression of the MSE depends on the sign of
the error between the true and the nominal values of the
PLE. This dependence can be removed if we substitute the
factor ∂2

∂τ∂γ
fML(τ , γ )

∣∣∣τ=τ0
γ=γ0

by its expectation, following a

similar derivation in, e.g., [23], Equation (17-9.6) p. 642.
Hence, we obtain an approximation of the MSE that is
symmetric w.r.t. γ0, namely

En(t)
{
(τ − τ0)

2}
≈ En(t)

{
ε2TE(τ0, γ )

}

≈
En(t)

{(
∂
∂τ
fML(τ,γ)

∣∣τ=τ0
γ=γ0

+(γ −γ0)En(t)

{
∂2

∂τ∂γ
fML(τ,γ)

∣∣∣τ=τ0
γ=γ0

})2}
(
En(t)

{
∂2

∂τ∂τ
fML(τ , γ )

∣∣∣τ=τ0
γ=γ0

})2 .

(32)

By substituting (24), (25), and (26) into (32), the MSE can
be approximated by the closed formula (see Appendix 2
for details)

En(t)
{
ε2TE(τ0, γ )

}

≈
(γ −γ0)2

1
4τ 20

γ 2
0 a

2
0Es
(
ln
(

d0
cτ0

))2+ 1
2τ 20

σ 2
nγ 2

0 +8π2β̄2σ 2
n

Esa20
(

1
2τ 20

γ 2
0 + 8π2β̄2

)2 .

(33)

Note that when γ = γ0, the MSE of the approximate error
reduces to

En(t)
{
ε2TE(τ0, γ )

}∣∣
γ=γ0

= 1
S
N a20

(
8π2β̄2 + γ 2

0
2τ 20

) ,
(34)

which is identical to the expression in (9b).

4 Performance in shadow fading environments
In this section, we investigate the impact of the shadow
fading on the analysis of Section 3. We also propose a
Monte Carlo method for the numerical approximation of
the MSE that avoids some of the approximations in the
latter analysis.

4.1 Analysis in presence of shadow fading
The analytical approximations of the bias and the MSE of
the ML estimator of the ToA are based on the assump-
tion that the path gain can be modeled by Equation (7),
which follows from neglecting the shadow fading term in
Equation (3), i.e., taking ψdB = 0 in (3) or, equivalently,
ψ = 1 in Equation (6).
If shadow fading is explicitly taken into account, the

path gain in Equation (6) becomes a random variable
(because the factor ψ is random with log-normal distri-
bution). However, assuming that the channel noise n(t) is
independent of the shadow fading factor ψ , the analysis
of Section 3.2 can still be carried out conditional on the
random variable ψ .
To be specific, let

a(ψ) =
√

κ

ψ

(
d0
cτ

) 1
2 γ

(35)

be the (random) path gain associated to the pair of PLE
and ToA values γ and τ , respectively. Correspondingly, let

a0(ψ) =
√

κ

ψ

(
d0
cτ0

) 1
2 γ0

(36)

the gain associated to the true values γ0 and τ0. In both
cases, ψ is a log-normal random variable, since ψdB =
10 log10 ψ is Gaussian with zero mean and variance σ 2

dB.
If we repeat the analysis in Section 3.2 step by step, albeit
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conditional on the σ -algebra generated by the random
variable ψ , we arrive at the approximations

B(τ0, γ ) = (γ − γ0)
γ0τ0 ln

(
d0
cτ0

)
γ 2
0 + 16π2β̄2τ 20

, (37)

for the bias of τML (see Equation (30)) and

ε2(τ0, γ ,ψ)

=
(γ −γ0)2

1
4τ 20

γ 2
0 a

2
0(ψ)Es

(
ln
(

d0
cτ0

))2+ 1
2τ 20

σ 2
nγ 2

0+8π2β̄2σ 2
n

Esa20(ψ)
(

1
2τ 20

γ 2
0 +8π2β̄2

)2
(38)

for the MSE of τML. Note that the MSE in (38) is a random
variable (while the MSE in Equation (33) is determinis-
tic). Let us note that the approximate bias B(τ0, γ ) in (37)
is independent of the path gain (and, therefore, of the
shadow fading factor ψ) and, hence, deterministic. The
approximate MSE ε2(τ0, γ ,ψ) of Equation (38), however,
depends explicitly on a0(ψ); therefore, it is random. Let us
look into its characterization.
When γ = γ0, the MSE (as shown in Section 3.2)

reduces to

ε2(τ0, γ ,ψ)
∣∣
γ=γ0

= 1
S
N a20(ψ)

(
8π2β̄2 + γ 2

0
2τ 20

) , (39)

and it can be shown to be a log-normal random variable
itself. In particular, if we write the approximateMSE when
the PLE is perfectly known (i.e., γ = γ0) in dB,

ε2(τ0, γ ,ψ)dB
∣∣
γ=γ0

= 10 log10 ε2(τ0, γ0,ψ) (dB),
(40)

then it is straightforward to show that

ε2(τ0, γ ,ψ)dB
∣∣
γ=γ0

= ψdB − 20 log10 a0 − 10 log10
S
N

×
(
8π2β̄2 + γ 2

0
2τ 20

)
,

(41)

where a0 = a0(ψ = 1) is the (deterministic) path gain in
absence of shadow fading. Equation (41) reveals that the
approximate MSE (in dB) of the ML estimator of the ToA
under a perfect knowledge of the PLE is a normal random
variable with mean

Eψ

{
ε2(τ0, γ ,ψ)dB

∣∣
γ=γ0

}
= −20 log10 a0−10 log10

S
N

×
(
8π2β̄2 + γ 2

0
2τ 20

)
,

(42)

and variance σ 2
dB. Let us remark that this mean is in

agreement with the approximation of Equation (34) in
Section 3.2.
When γ �= γ0, the approximate MSE ε2(τ0, γ ,ψ) is

given by the general expression of Equation (38). Let us
rewrite it, for conciseness, as

ε2(τ0, γ ,ψ) = Cψ + D, (43)

where

C = 1
S
N a20

(
1

2τ 20
γ 2
0 + 8π2β̄2

) , (44)

D =
(γ − γ0)2

1
4τ 20

γ 2
0

(
ln
(

d0
cτ0

))2
(

1
2τ 20

γ 2
0 + 8π2β̄2

)2 , (45)

and we have used the fact that a20(ψ) = a0/ψ (recall that
a0 = a0(ψ = 1)). The random variable ψdB = 10 log10 ψ

is normal with zero mean and variance σ 2
dB. By a change

of base in the logarithm, it is straightforward to show that
the random variable lnψ is also normal with zero mean
and variance

Var(lnψ) = σ 2
dB

(10 log10 e)2
. (46)

This implies that the pdf of ψ is [34]

pψ(ψ) = 10 log10 e
ψσdB

√
2π

e
− (10 log10 e)2

2σ2dB
(lnψ)2

, (47)

and, in particular,

E{ψ} = e
σ2dB

(10 log10 e)2 , (48)

Var{ψ} = e
σ2dB

(10 log10 e)2

(
e

σ2dB
(10 log10 e)2 − 1

)
. (49)

Since the approximate MSE, ε2(τ0, γ ,ψ), is a linear
transformation of ψ (see Equation (43)), it is straightfor-
ward to calculate its mean

με2 = E{ε2(τ0, γ ,ψ)} = D + Ce
σ2dB

(10 log10 e)2 , (50)

its variance

σ 2
ε2 = Var{ε2(τ0, γ ,ψ)} = C2e

σ2dB
(10 log10 e)2

(
e

σ2dB
(10 log10 e)2 − 1

)
,

(51)

and even its pdf

pMSE(ε
2) = 10 log10 e

(ε2 − D)σdB
√
2π

e
− (10 log10 e)2

2σ2dB

(
ln
(

ε2−D
C

))2
.

(52)
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Equations (50), (51), and (52) provide a complete statis-
tical characterization of the approximate MSE of the ML
estimator of the ToA in the presence of shadow fading.

4.2 Monte Carlo approximation
In the previous sections, we have introduced additional
approximations beyond the linearization by Taylor series
expansion (see Equations (23) and (32)) in order to attain
closed form expressions for the bias and the MSE of the
estimation error τ̂ML(γ ) − τ0. One consequence of these
approximations is that the formulas in (30) and (37) (for
the bias), and (33) and (38) (for theMSE)may not properly
represent the effect of the denominator in Equation (22),
which can be relevant for the performance of the ML
estimator τ̂ML(γ ) in the low SNR region. In this section,
we address this limitation of the analysis by describing a
simulation-based (Monte Carlo) method that enables us
to obtain accurate numerical estimates of the bias and
the MSE of the estimator τ̂ML(γ ) for a given nominal
value γ of the PLE in the presence of shadow fading. The
technique only requires the ability to draw from a few
Gaussian random variables, avoids some of the approx-
imations in the analysis (namely that of Equation (23)),
and has a computational cost well below that of the direct
simulation of the transmission system.
We first seek an explicit expression of the estimation

error

ε̄TE(τ0, γ ,ψ)

= −
∂
∂τ
fML(τ,γ)

∣∣τ=τ0
γ=γ0

+(γ −γ0)En(t)

{
∂2

∂τ∂γ
fML(τ , γ )

∣∣∣τ=τ0
γ=γ0

}
∂2

∂τ∂τ
fML(τ , γ )

∣∣∣τ=τ0
γ=γ0

.

(53)

This error variable is similar to ε̃TE(τ0, γ ) in Equation (22)
except for the expectation in the numerator, which is
introduced to remove the effect in the MSE of the sign
of the difference γ − γ0 (as discussed in Section 3.2),
and the explicit notation of the shadow fading factor ψ .
Substituting (24), (29b), and

∂2

∂τ 2
fML(τ , γ )

∣∣∣∣τ=τ0
γ=γ0

= 1
2τ 20

γ 2
0 Esa

2
0(ψ) + 8π2β̄2Esa20(ψ)

− 1
τ 20

γ0

(
1 + 1

2
γ0

)
a0(ψ)ρns,0

+ 1
τ0
2γ0a0(ψ)ρ̇ns,0 − 2a0(ψ)ρ̈ns,0,

(54)

(see Appendix 1) where ρ̈ns,0 = ∂2

∂τ 2
ρns

∣∣∣τ=τ0
γ=γ0

, into (53), we

obtain the ToA estimation error
ε̄TE(τ0, γ )

=−
1
τ0

γ0ρns,0−2ρ̇ns,0−(γ −γ0)
1
2τ0 γ0a0(ψ)Esln

(
d0
cτ0

)
1

2τ 20
γ 2
0 Esa0(ψ)+8π2β̄2Esa0(ψ)− 1

τ 20
γ0
(
1+ 1

2 γ0
)
ρns,0+ 1

τ0
2γ0ρ̇ns,0−2ρ̈ns,0

.

(55)

Note that ε̄TE(τ0, γ ,ψ) is random because it depends on
four random variables, ρns,0, ρ̇ns,0, ρ̈ns,0, and a0(ψ). The
random path gain, a0(ψ), is related to the shadow fading
factor ψ , which is log-normally distributed. Specifically,
ψdB = 10 log10 ψ and ψdB ∼ N

(
0, σ 2

dB
)
.

The other three random variables ρ2
ns,0, ρ̇

2
ns,0, and ρ̈2

ns,0,
which, in turn, are related to the noise process n(t) have
a joint Gaussian distribution with zero mean vector and
covariance matrix 
ρ , i.e.,⎡

⎣ ρns,0
ρ̇ns,0
ρ̈ns,0

⎤
⎦ ∼ N

(
0,
ρ

)
, (56)

where the covariance matrix �ρ can be written as

�ρ =

⎡
⎢⎢⎣

En(t)
{
ρ2
ns,0
}

En(t)
{
ρns,0ρ̇ns,0

}
En(t)

{
ρns,0ρ̈ns,0

}
En(t)

{
ρns,0ρ̇ns,0

}
En(t)

{
ρ̇2
ns,0
}

En(t)
{
ρ̇ns,0ρ̈ns,0

}
En(t)

{
ρns,0ρ̈ns,0

}
En(t)

{
ρ̇ns,0ρ̈ns,0

}
En(t)

{
ρ̈2
ns,0
}
.

⎤
⎥⎥⎦.

(57)

The expectation terms in (57), in turn, reduce to (see [35],
Chapter 2)

En(t)
{
ρ2
ns,0
} = σ 2

n
2

∫ To

0
s2(t) dt = 1

2
Esσ 2

n , (58a)

En(t)
{
ρ̇2
ns,0
} = σ 2

n
2

∫ To

0

∣∣∣∣ ∂

∂τ
s(t)

∣∣∣∣
2
dt=2π2Esβ̄2σ 2

n ,

(58b)

En(t)
{
ρ̈2
ns,0
} = σ 2

n
2

∫ To

0

∣∣∣∣ ∂2

∂τ 2
s(t)

∣∣∣∣
2
dt, (58c)

En(t)
{
ρns,0ρ̇ns,0

} = σ 2
n
2

∫ To

0
s(t)

(
∂

∂τ
s(t)

)
dt = 0,

(58d)

En(t)
{
ρns,0ρ̈ns,0

} = σ 2
n
2

∫ To

0
s(t)

(
∂2

∂τ 2
s(t)

)
dt

= −2π2Esβ̄2σ 2
n , (58e)

En(t)
{
ρ̇ns,0ρ̈ns,0

} = σ 2
n
2

∫ To

0

(
∂

∂τ
s(t)

)(
∂2

∂τ 2
s(t)

)
dt,

(58f)
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where the integrals in (58c) and (58f) do no not have a
closed form but can be computed numerically.
In order to obtain accurate approximations of the statis-

tics of the error ε̄TE(τ0, γ ,ψ) we can resort to a numerical
method based on Monte Carlo sampling. In particular, it
is straightforward to draw an i.i.d. sample of size N from
the Gaussian random vector in (56), denoted as{

ρ
(i)
ns,0, ρ̇

(i)
ns,0, ρ̈

(i)
ns,0, i = 1, ...,N .

}
, (59)

as well as drawingN i.i.d. samples of the Gaussian shadow

fading variable ψdB. If we let ψ(i) = 10
ψ

(i)
dB
10 , then it is

straightforward to compute{
a(i)
0 , i = 1, ...,N .

}
, (60)

where a(i)
0 = a0(ψ(i)). Plugging the variates (a(i)

0 , ρ
(i)
ns,0,

ρ̇
(i)
ns,0, and ρ̈

(i)
ns,0) into Equation (55) yields a size N sample

from the error distribution, denoted as{
ε̄
(i)
TE(τ0, γ ), i = 1, ...,N .

}
, (61)

and, given (61), the bias and the MSE of the ML estimate
τ̂ML(τ0, γ ) can be approximated as

En(t),ψ {ε̄TE(τ0, γ ,ψ)} ≈ 1
N

N∑
i=1

ε̄
(i)
TE(τ0, γ )=μN (τ0, γ ),

(62)

and

En(t),ψ
{
ε̄2TE(τ0, γ ,ψ)

}≈ 1
N

N∑
i=1

(
ε̄
(i)
TE(τ0, γ )

)2=ε2,N (τ0, γ ),

(63)

respectively. According to the Strong Law of Large Num-
bers, the estimates μN (τ0, γ ) and ε2,N (τ0, γ ) converge
almost surely toward the true mean and the second order
moment of ε̄TE(τ0, γ ,ψ) ([36], Chapter 3). Note that this
numerical approximation can be also applied assuming a
deterministic path gain, i.e., in the absence of shadow fad-
ing effect, by simply setting a0 = a0(1) (i.e.,ψ = 1). In this
case, the method requires drawing only from the random
variables related to the noise (ρ(i)

ns,0, ρ̇
(i)
ns,0, and ρ̈

(i)
ns,0).

Let us remark that the approximation procedure
described in this section is semianalytical: it essentially
relies on the error formula of (55), and the Monte Carlo
simulation is only used as a numerical tool to integrate
w.r.t. the random variables a0(ψ), ρns,0, and ρ̇ns,0 ρ̈ns,0. The
simulations required are computationally ‘cheap’ com-
pared to a full simulation of the communication system.
Finally, note also that a similar procedure to estimate the

Friedlander’s error derived in Section 3.1 is infeasible due
to the fact that the error in Equation (19) depends on the
random variables τ̂ML, γ̂ML, ρ(τ̂ML), ρ̇(τ̂ML), and ρ̈(τ̂ML),

the probability density functions of which are unavailable.
They are all related to the ML estimates of the ToA and
the PLE (τ̂ML and γ̂ML), which, in turn, depend also on the
realization of the noise process n(t).

5 Numerical examples
UWB signaling has been broadly studied as a promising
candidate for accurate location estimation. In particular,
UWB signaling is presented as an appropriate technol-
ogy for positioning in indoor environments because it
allows centimeter accuracy, as well as low-power and low-
cost implementation of communication systems (see, e.g.,
[4,37,38] ). For this reason, we have chosen to validate the
analytical approximation results of Sections 3 and 4 by
simulating the transmission of a second-derivative Gaus-
sian pulse. This waveform is one of the most commonly
used in classical impulse-radio UWB systems, and it can
be expressed as [39])

p(t) =
(
1 − 4π

(
t
τp

)2
)
e−2π

(
t

τp

)2
, t > 0, (64)

where τp is the pulse-shaping factor.
For the computer simulations in this section, we set τp =

0.2877 ns to yield the pulse width Tp = 0.7 ns and con-
sider the transmitted signal s(t) = p

(
t − 1

2Tp
)
, t > 0.

The effective bandwidth, β̄ , and the effective absolute cen-
tral frequency, f̄abs, of s(t) can be obtained analytically (see
Appendices 3 and 4, respectively). To be specific,

β̄ = 1
2π

√√√√∫∞
−∞ ω2|S(ω)|2dω∫∞

−∞ |S(ω)|2dω = 1
τp

√
5
2π

, and

(65a)

f̄abs = 1
2π

∫∞
−∞ |ω||S(ω)|2dω∫∞

−∞ |S(ω)|2dω = 1
τp

16
3π

, (65b)

where ω is the angular frequency, and S(ω) is the Fourier
transform of s(t). Note that f̄abs is used here as an
approximation of the central frequency in Equation (4),
i.e., we assume f0 ≈ f̄abs. By plugging the parame-
ter values of (65a) and (65b) into Equations (30) and
(33), we obtain an analytical characterization of the bias
and the MSE, respectively, of the ML ToA estimator
(τ̂ML(γ )), conditional on the nominal PLE γ for the
second-derivative Gaussian pulse. If the shadow fading
needs to be considered, (65a) and (65b) can be substi-
tuted into Equation (37) for the approximation of the bias
and into Equations (50), (51), and (52) for the character-
ization of the random MSE. Similarly, we can substitute
β̄ and f0 ≈ f̄abs into Equation (55) in order to carry out
a Monte Carlo evaluation of the statistics of the error
ε̄TE(τ0, γ ) ≈ τ̂ML(γ ) − τ0.
In the remaining of this section, we numerically assess

the validity of the approximation formulas that we have
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derived in Sections 3 and 4. In order to consider realistic
scenarios, we select values for the PLE γ0 and the variance
of the shadow fading effect, σ 2

dB, based on measurements
in indoor environments [38].

5.1 Path loss model
Let us first consider the path loss model in the absence
of shadow fading. Assuming a line-of-sight (LOS) wireless
communication between a transmitter and a receiver in a
residential environment, we use a typical value for the PLE
as given in [38], e.g., γ0 = 1.7. In order to validate the ana-
lytical characterization of the conditional ML estimator
(τ̂ML(γ )) obtained in Section 3, we compare the approxi-
mate bias and RMSEs computed by means of the formulas
in both sections with the results obtained from the direct
simulation of the transmission system. In particular, we
consider the following methods to evaluate both the bias
and the RMSE of the estimator:

• Direct simulation of the transmission system with
either perfect knowledge of the PLE (γ = γ0, i.e.,
δγ = 0) or imperfect PLE (γ �= γ0, i.e., δγ �= 0). We
run NR = 6, 000 independent simulations and
compute the conditional ML estimatorb τ̂ML(γ ) and
the errors τ̂ML(γ ) − τ0 and (τ̂ML(γ ) − τ0)2 in each
case. The errors are then averaged and displayed.

• The approximate formula of Section 2 for the MSE of
the ML estimator, which can only be applied with a
perfect PLE (γ = γ0, i.e., δγ = 0).

• The approximate formula of Equations (30) and (33)
for the bias and the RMSE, respectively, of the ML
estimator. Such approximation can be used with the
imperfect PLE (γ �= γ0).

• With an imperfect PLE (δγ �= 0), we can also
compute the (approximate) expected bias and RMSE
via the Monte Carlo approach in Section 4.2, using a
population N = 6, 000 samples. Note that in this
case, we consider the deterministic path gain given in
(7) (no shadow fading); therefore, it is only necessary
to draw from the Gaussian variables ρ

(i)
ns,0, ρ̇

(i)
ns,0, and

ρ̈
(i)
ns,0.

For a better display, the errors (bias and RMSE) are
shown in terms of the transmitter-receiver distance d =
cτ , where c is the speed of the light. For an arbi-
trary estimate τ̂ , the bias and the RMSE of the corre-
sponding distance estimate d̂ = cτ̂ are proportional
(with constant c) to the bias and the RMSE of τ̂ .
Figure 2 shows the bias of the estimated distance as

a function of the received SNR, defined as SNR =
10 log10

(
a2Es
σ 2
n

)
(dB) (with a as given in Equation (7)).

The upper plot shows that the analytical expression prop-
erly captures the results from the direct simulation for
medium to high SNR values (SNR ≥ 20 dB). The lower

plot is a magnification of the vertical axis (notice the range
of 15 × 10−5 m) that shows the good fit between the ana-
lytical formula for the bias and the results of simulations,
both for positive and negative deviations of the nominal
PLE. Note also that the bias of the estimated distance is
positive when the PLE error is negative and vice-versa,
as predicted by Equation (30). The physical interpreta-
tion of this result comes from the fact that the path gain
a decreases both with the ToA τ and with the PLE γ , as
explicitly shown in Equation (7).
Figure 3 shows the bias of the estimated distance as a

function of PLE error given by δγ = γ − γ0. The upper
plot shows that the analytical bias is a good approxima-
tion of the simulation results only for PLE errors greater
than δγ = −0.5, due to the asymmetric behavior of the
conditional ML estimator w.r.t. the sign of δγ (this is in
agreement with the plot of Figure 1, which shows that fML
is not symmetric around the true PLE value). From the
lower plot (a magnification of the vertical axis with a range
of 8 × 10−5 m), we can observe that the theoretical anal-
ysis is more accurate for small values of the PLE error δγ ,
i.e., for δγ approximately between −0.5 and 0.2. This is
as expected, because the Taylor series expansion for two
variables is accurate only in the neighborhood of the true
values of both variables. This figure also shows the per-
formance of the ML estimator under a perfect knowledge
of the PLE, which is unbiased and serves as a practical
performance reference.
In Figure 4, we show the RMSE of the estimated distance

as a function of the received SNR. Again, the analyti-
cal approximations (of the RMSE) turn out accurate for
medium to high SNRs. The Monte Carlo approximations
(for both perfect and imperfect PLE) of the RMSE pro-
vide better results than the analytical approximations (in
Equations (9b) for the perfect PLE and (33) for the imper-
fect PLE) for the low SNR region, while for medium
to high SNRs, both the analytical and the Monte Carlo
approximations yield similar results.
Finally, Figure 5 shows the RMSE of the estimated dis-

tance as a function of the PLE error for several values of
the received SNR. As before, we can observe that the anal-
ysis is more accurate in the vicinity of the true value of
the PLE (δγ = 0). Note also that the approximation works
properly for SNR above 20 dB and δγ > −0.4.

5.2 Shadow fading environment
In this section, we validate the analytical andMonte Carlo
approximations derived in Section 4 for a combined path
loss and shadow fading model. To this end, we consider
the ToA estimation in a residential environment in two
different scenarios:

1. An LOS exists between the transmitter and the
receiver of the wireless communication system,
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Figure 2 The bias of the estimated distance as a function of the received SNR. Top: Bias of the ML distance estimate as a function of the SNR
with γ0 = 1.7, δγ = ±0.2, cτ0 = 4 m, β̄ = 3.1007 × 109 Hz, sampling time = 0.01 ps, and NR = 6, 000 independent runs. Bottom: A magnification
of the upper plot.

where the typical values for the PLE and the variance
of the shadow fading are, e.g., γ0 = 1.7 and
σ 2
dB = 1.6, respectively [38].

2. There is no LOS (NLOS) between the transmitter and
the receiver of the wireless communication system.
The typical values for the PLE and the variance of the
shadow fading are, e.g., γ0 = 3.5 and σ 2

dB = 7.29 [38].

In order to validate the analytical and the numeri-
cal characterizations of the conditional ML estimator,
τ̂ML(γ ), obtained in Section 4, we compare the approx-
imate bias and RMSEs with the results obtained from
the direct simulation of the transmission system. Sim-
ilar to Section 5.1, we consider the following methods
to evaluate the bias and the RMSE of the ML estimator
τ̂ML(γ ):

• Direct simulation of the transmission system in the
both LOS and NLOS communication, with either
perfect (γ = γ0) or imperfect knowledge of imperfect
PLE (γ �= γ0). We run NR = 6, 000 independent

simulations and compute the ML estimator τ̂ML(γ )

and the errors τ̂ML(γ ) − τ0 and (τ̂ML(γ ) − τ0)2 in
each one of them. The errors are then averaged and
displayed.

• With an imperfect PLE (γ �= γ0), we can
approximate the RMSE by using the approximate
analysis of the randomMSE ε2 obtained in
Section 4.2. In particular, we can approximate the
RMSE of the ML estimator τ̂ML(γ ) by the square root
of the mean με2 in Equation (50).

• With an imperfect PLE (γ �= γ0), we can
approximate the expected bias and RMSE via the
Monte Carlo approach in Section 4.2, using
N = 6, 000 samples of the random error ε̄TE(τ0, γ ) in
Equation (55). Note that in this section, we are
considering the shadow fading effect; thus, the path
gain is a random variable related to the random
shadow fading term ψdB, as shown in Equation (6).
Therefore, the Monte Carlo approach requires to
draw samples from four Gaussian variables ρ

(i)
ns,0,

ρ̇
(i)
ns,0, ρ̈

(i)
ns,0, and ψ

(i)
dB, i = 1, . . . ,N .
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Figure 3 Bias of the estimated distance as a function of PLE error. Top: Bias of the ML distance estimate as a function of the PLE error δγ , with
γ0 = 1.7, SNR = 30 dB, cτ0 = 4 m, β̄ = 3.1007 × 109 Hz, sampling time = 0.01 ps, and NR = 6, 000 independent runs. Bottom: A magnification of
the upper plot.
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Figure 4 RMSE of the estimated distance as a function of the received SNR. RMSE of the ML distance estimate as a function of the SNR with
γ0 = 1.7, δγ = −0.2, cτ0 = 4 m, β̄ = 3.1007 × 109 Hz, sampling time =0.01 ps, and NR = 6, 000 independent runs.
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Figure 5 RMSE of the estimated distance as a function of the PLE error. RMSE of the ML distance estimate as a function of the PLE error δγ for
several values of the SNR, with γ0 = 1.7, cτ0 = 4 m, β̄ = 3.1007 × 109 Hz, sampling time = 0.01 ps, and NR = 6, 000 independent runs.

The errors (bias and RMSE) are shown in terms of the
transmitter-receiver distance d = cτ for a better display.
Figure 6 shows the bias and the RMSE of the estimated
distance as a function of received SNR, assuming LOS
between the transmitter and the receiver of the commu-
nication system. The upper plot shows that the numerical
approximation of the bias properly captures the results
of the direct simulation for high SNR values and for
both positive and negative deviations of the nominal PLE
(notice that the range of the vertical axis is only 10−4 m).
The lower plot shows the Monte Carlo method approxi-
mation of the RMSE for a range of SNR values. This figure
also shows that a negative deviation of the PLE leads to a
greater RMSE than a positive error. This means that the
ML estimator of the ToA for a negative PLE mismatch
(δγ = γ − γ0 < 0) is more sensitive to the effects of noise
and shadow fading.
In Figure 7, we show the RMSE of the estimated dis-

tance as a function of the received SNR, assuming NLOS
between the transmitter and the receiver (hence, with
larger values of γ0 and σ 2

dB) and δγ = γ − γ0 = 0.2.
This figure shows that the analytical characterization of
the random MSE provided in Section 4.1 is accurate only
in the high SNR region. This figure also shows that the
Monte Carlo approximation of the RMSE is accurate in
the low and the high SNR regions. In the medium SNR
region, we observe a larger mismatch.

5.3 Impact of the approximations
In Sections 3 and 4, we have introduced additional approx-
imations, beyond the linearization by Taylor series expan-
sion, in order to attain analytical expressions for the bias
and the MSE of the estimator τ̂ML(γ ). The goal of this
section is to summarize and point out the impact of such
approximations.

In Section 3, we have taken the expectation w.r.t. the
noise process n(t) in the denominator of Equation (22).
One consequence of this approximation is that the for-
mulas in (30) and (37) (for the bias), and (33) and (38)
(for the MSE) do not properly capture the effect of the
denominator in Equation (22), which is relevant for the
performance of the ML estimator τ̂ML(γ ) in the low SNR
region. Although the impact of this approximation cannot
be analyzed theoretically, the numerical results in Figure 4
show that the mismatch between the proposed analytical
approximation of the RMSE and the RMSE obtained by
direct simulation of the communication system is larger
in the low SNR region. This artifact is considerably mit-
igated when the RMSE is approximated with the Monte
Carlo method of Section 4.2. Indeed, it can be seen in
Figures 4, 6, and 7 (the latter for a shadow fading sce-
nario) that the Monte Carlo estimates of the RMSE are
usable in the whole SNR range (although still better for
high values, SNR > 20 dB). Note that the Monte Carlo
procedure of Section 4.2 requires to draw only from a few
simple Gaussian distributions, which is computationally
much cheaper than simulating the complete transmission
system.
The Taylor series expansion leads to an approximation

of the MSE that depends on the sign of the difference
δγ = γ − γ0 between the true and the nominal values
of the PLE, as shown in Equation(31). We have followed
[23, equation (17-9.6), p. 642] in order to remove this
dependence, leading to Equation (32). As a consequence,
the analytical and the Monte Carlo approximations of
the RMSE proposed in the paper are independent of the
sign of δγ . While this approximation is correct for small
δγ , the simulations (see Figures 2, 3, 5, and 6) show
that the estimator is more sensitive to negative errors in
the PLE.
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Figure 6 Bias (top) and RMSE (bottom) of the estimated distance as a function of the SNR. LOS transmission with γ0 = 1.7, δγ = ±0.2,
σ 2
dB = 1.6, cτ0 = 4 m, β̄ = 3.1007 × 109 Hz, sampling time = 0.01 ps, and NR = 6, 000 independent runs. Note that the Monte Carlo approximation

of the RMSE is independent of the sign of δγ .

6 Conclusions
We have analyzed the performance of the maximum like-
lihood of a signal time-of-arrival when the path loss expo-
nent of the communication link is not perfectly known. In
the first approach, we have modeled the signal received
amplitude as a deterministic function of the PLE and
the transmitter-to-receiver distance. Within this setup,
we have applied a Taylor series expansion, together with
other approximations needed for mathematical tractabil-
ity, in order to obtain closed-form expressions for the
bias and the RMSE of the ML ToA estimator. In the
second stage, we have extended our analysis to cope
with shadow fading effects. In such case, the analyti-
cal approximation of the estimator MSE takes the form
of a random variable, the mean, variance, and probabil-
ity density function of which are derived and given in
closed form. Additionally, we have introduced a simple

Monte Carlo method for the numerical computation of
the errors, which removes some of the approximations
in the analysis, can be applied both with and with-
out shadow fading, and presents a computational load
much smaller than that of the direct simulation of the
transmission.
We have carried out extensive computer simulations to

assess the validity of the proposed approximation tools.
For the evaluation, we have simulated the transmission
of a second derivative Gaussian pulse, a waveform com-
monly used in UWB systems, where the ToA estimation
is of great importance for positioning applications. Our
simulations show that the analytical approximations, both
with and without shadow fading, are very accurate in the
medium and high SNR regions. The Monte Carlo tech-
nique is equally accurate with mid and high SNRs, while
it also yields usable approximations of the bias and RMSE
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Figure 7 RMSE of the ML distance estimate as a function of the SNR. NLOS transmission with γ0 = 3.5, δγ = 0.2, σ 2
dB = 7.29, cτ0 = 4 m,

β̄ = 3.1007 × 109 Hz, sampling time = 0.01 ps, and NR = 6,000 independent runs. Recall that we have modeled the MSE as a random variable with
mean με2 (Equation (50)) and variance σ 2

ε2
(Equation (51)). The analytical approximation of the RMSE of the ML ToA estimation is

√
με2 , and we also

show
√

με2 ± σε2 in the plot.

in the lower SNR region. The computer experiments also
show that the ML ToA estimator is more sensitive to
the underestimation of the PLE than to its overestima-
tion (this result is consistent with the numerical study
of [6]).

Endnotes
a Actually, the negative of the log-likelihood.
b We have solved the optimization problem of

Equation (12) numerically in order to compute τ̂ML(γ ).
In particular, we have generated a regular grid of
candidate values of τ (with separation of 10−2 ps
between adjacent points of the grid), evaluated the
likelihood fML for every candidate, and then selected the
best one. It is not the goal of this paper to propose a
practical means for the calculation of τ̂ML(γ ), but simply
to assess its theoretical performance. In a practical
receiver, an adaptive algorithm (similar to a timing error
detector [40]) could be used to compute τ̂ML(γ ).

Appendices
Algebraic derivations
Appendix 1: derivatives of the likelihood function fML(τ , γ )

The objective of this appendix is to obtain closed
expressions for the derivatives of the likelihood function
fML(τ , γ ), which are needed in Section 3.2. The partial
derivatives of the likelihood function fML(τ , γ ) w.r.t. τ , τ 2,
and γ are given by

∂

∂τ
fML(τ , γ ) = −1

τ
γ (Esa − ρ(τ)) a − 2a

∂

∂τ
ρ(τ),

(66)

∂2

∂τ 2
fML(τ , γ ) = 1

τ 2
γ (1 + γ )Esa2− 1

τ 2
γ

(
1+ 1

2
γ

)

× aρ(τ)+ 1
τ
2γ a

∂

∂τ
ρ(τ)−2a

∂2

∂τ 2
ρ(τ),
(67)

∂2

∂γ ∂τ
fML(τ , γ ) = 1

τ
a (ρ(τ ) − Esa) + 1

τ
γ ln

(
d0
cτ

)

× a
(
1
2
ρ(τ) − Esa

)
− ln

(
d0
cτ

)

× a
∂

∂τ
ρ(τ), (68)

respectively, where the correlation ρ(τ) can be written as

ρ(τ) =
∫ To

0
�(r(t)s∗(t − τ))dt = a0ρss(τ ) + ρns(τ ).

(69)

The functions ρss(τ ) and ρns(τ ), given by Equations (17)
and (18), evaluated at τ = τ0 yield

ρss(τ0) =
∫ T0

0
|s(t)|2dt = Es, and (70a)

ρns(τ0) = ρns,0. (70b)

Hence, the expression of ρ(τ) for τ = τ0 is given by

ρ(τ0) = a0Es + ρns,0. (71)
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Moreover, the derivative of ∂
∂τ

ρ(τ ) evaluated at τ = τ0
can be written as

∂

∂τ
ρ(τ)

∣∣∣∣
τ=τ0

= a0
∂

∂τ
ρss(τ )

∣∣∣∣
τ=τ0

+ ∂

∂τ
ρns(τ )

∣∣∣∣
τ=τ0

,

(72)

where ∂
∂τ

ρss(τ )
∣∣
τ=τ0

can be obtained as

∂

∂τ
ρss

∣∣∣∣
τ=τ0

=
∫ To

0
�
(
s(t − τ0)

∂

∂τ
s∗(t − τ)

)
dt

∣∣∣∣∣
τ=τ0

.

(73)

Applying the change of variable t′ = t − τ in (73), we can
write

∂

∂τ
ρss

∣∣∣∣
τ=τ0

=
∫ To−τ

−τ

R

(
s(t′−(τ0−τ))

∂

∂t′
s∗(t′)

)
dt′
∣∣∣∣∣
τ=τ0

=
∫ To−τ0

−τ0
�
(
s(t′) ∂

∂t′
s∗(t′)

)
dt′

= 1
2

|s(t′)|2∣∣t′=To−τ0
t′=−τ0

,

(74)

in which the change of variable t = t′ + τ0 yields

∂

∂τ
ρss

∣∣∣∣
τ=τ0

= 1
2

|s(t)|2∣∣t=To
t=0 = 0. (75)

Then, by defining ρ̇ns,0 = ∂
∂τ

ρns(τ )
∣∣
τ=τ0

, (72) reduces to

∂

∂τ
ρ(τ)

∣∣∣∣
τ=τ0

= ρ̇ns,0. (76)

Substituting (71) and (76) into (66) and (68), we obtain
the first and the second derivatives, ∂

∂τ
fML(τ , γ ) and

∂2

∂γ ∂τ
fML(τ , γ ), evaluated at τ0 and γ0 as

∂

∂τ
fML(τ , γ )

∣∣∣∣τ=τ0
γ=γ0

= 1
τ0

γ0a0ρns,0 − 2a0ρ̇ns,0, and

(77)

∂2

∂γ ∂τ
fML(τ,γ)

∣∣∣∣τ=τ0
γ=γ0

= 1
τ0
a0ρns,0− 1

2τ0
γ0a0

(
Esa0−ρns,0

)

× ln
(
d0
cτ0

)
−a0ρ̇ns,0 ln

(
d0
cτ0

)
,

(78)

respectively.

The second derivative of the correlation between the
transmitted and received signals in (69) w.r.t. τ , for τ = τ0
and γ = γ0, is given by

∂2

∂τ 2
ρ(τ)

∣∣∣∣τ=τ0
γ=γ0

= a0
∂2

∂τ 2
ρss(τ )

∣∣∣∣
τ=τ0

+ ∂2

∂τ 2
ρns(τ )

∣∣∣∣
τ=τ0

,

(79)

where the second term is given by

∂2

∂τ 2
ρns(τ )

∣∣∣∣
τ=τ0

= ρ̈ns,0, (80)

and the first term can be elaborated as

∂2

∂τ 2
ρss(τ )

∣∣∣∣τ=τ0
γ=γ0

=
∫ To

0
�
(
s(t−τ0)

∂2

∂τ 2
s∗(t−τ)

)
dt

∣∣∣∣∣
τ=τ0

.

(81)

Then, applying the change of variable t′ = t − τ in (81),
we obtain

∂2

∂τ 2
ρss(τ)

∣∣∣∣τ=τ0
γ=γ0

=
∫ To−τ

−τ

�
(
s(t′−(τ0−τ))

∂2

∂t′2
s∗(t′)

)
dt′
∣∣∣∣∣
τ=τ0

=
∫ To−τ0

−τ0
�
(
s(t′) ∂2

∂t′2
s∗(t′)

)
dt′

=
∫ To−τ0

−τ0
�
(
s(t′) ∂

∂t′
s∗(t′)

)
dt′

=
∫ To−τ0

−τ0

∣∣∣∣ ∂

∂t′
s(t′)

∣∣∣∣
2
dt′,

(82)

in which the first term vanishes, and the change of variable
t = t′ + τ0 in the second term yields

∂2

∂τ 2
ρss(τ )

∣∣∣∣τ=τ0
γ=γ0

= −
∫ To

0

∣∣∣∣ ∂

∂t
s(t)

∣∣∣∣
2
dt= −

∫ ∞

−∞

∣∣∣∣ ∂

∂t
s(t)

∣∣∣∣
2
dt.

(83)

The expression of the effective bandwidth in the time

domain is given by β̄ = 1
2π

√∫∞
−∞

∣∣∣ ∂
∂t s(t)

∣∣∣2dt∫∞
−∞ |s(t)|2dt . Then, by

including in (83) the expression of the effective band-
width, we have

∂2

∂τ 2
ρss(τ )

∣∣∣∣
τ=τ0

= −4π2β̄2Es, (84)

and the expression of ∂2

∂τ 2
ρ(τ)

∣∣∣τ=τ0
γ=γ0

can be written as

∂2

∂τ 2
ρ(τ)

∣∣∣∣τ=τ0
γ=γ0

= −4π2β̄2Esa0 + ρ̈ns,0. (85)
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Finally, substituting (71), (76), and (85) into (67) for τ =
τ0, we obtain

∂2

∂τ 2
fML(τ , γ )

∣∣∣∣τ=τ0
γ=γ0

= 1
2τ 20

γ 2
0 Esa

2
0 + 8π2β̄2Esa20

− 1
τ 20

γ0

(
1+ 1

2
γ0

)
a0ρns,0

+ 1
τ0
2γ0a0ρ̇ns,0 − 2a0ρ̈ns,0.

(86)

In order to get the expectation w.r.t. the noise of (86),
we need the expectations w.r.t. the noise of the correla-
tion function ρns,0 and its derivatives. Fortunately, it is
straightforward to show that

En(t)
{
ρns,0

} = 0, (87a)

En(t)
{
ρ̇ns,0

} = 0, (87b)

En(t)
{
ρ̈ns,0

} = 0. (87c)

Thereby, the expected value of (86) w.r.t. the noise for τ =
τ0 is given by

En(t)

{
∂2

∂τ∂τ
fML(τ , γ )

∣∣∣∣τ=τ0
γ=γ0

}
= 1

2τ 20
γ 2
0 Esa

2
0+8π2β̄2Esa20.

(88)

Finally, substituting (77), (78), and (88) into (23),
we obtain the final expression of the error given in
Equation (27).

Appendix 2: derivation of theMSE En(t)
{
(εTE(τ0, γ ))2

}

In this appendix, we derive explicitly a closed formula for
the MSE of the ToA estimation based on the Taylor series
expansion, i.e., we obtain a closed expression of the MSE
in Equation (32). Substituting Equations (24), (25), and
(26) into (32) yields

En(t)
{
(εTE(τ0, γ ))2

}

≈
En(t)

{(
(γ −γ0)

1
2τ0 γ0a0Esln

(
d0
cτ0

)
− 1

τ0
γ0ρns,0+2ρ̇ns,0

)2}
(

1
2τ 20

γ 2
0 Esa0+8π2β̄2Esa0

)2

=
En(t)

{(
k1 + k2ρns,0 + k3ρ̇ns,0

)2}
(

1
2τ 20

γ 2
0 Esa0 + 8π2β̄2Esa0

)2 ,

(89)

where k1, k2, and k3 are given by

k1 = (γ − γ0)
1
2τ0

γ0a0Es ln
(
d0
cτ0

)
(90)

k2 = − 1
τ0

γ0, and k3 = 2. (91)

By using (87a) and (87b), it is easily shown that the
numerator in (89) reduces to

En(t)
{(
k1−k2ρns,0+k3ρ̇ns,0

)2}=En(t)
{
k21+k22ρ

2
ns,0+k23 ρ̇

2
ns,0
}
,

(92)

where En(t)
{
ρ2
ns,0
}
, En(t)

{
ρ̇2
ns,0
}
, and En(t)

{
ρns,0ρ̇ns,0

}
are

given by

En(t)
{
ρ2
ns,0
} = 1

2
Esσ 2

n , (93a)

En(t)
{
ρ̇2
ns,0
} = 2π2Esβ̄2σ 2

n , (93b)

En(t)
{
ρns,0ρ̇ns,0

} = 0. (93c)

Then, substituting (93a), (93b), and (93c) into (92), we
have

En(t)
{(
k1 − k2ρns,0 + k3ρ̇ns,0

)2} = k21 + 1
2
Esσ 2

nk22

+ 2π2Esβ̄2σ 2
nk

2
3 ,

(94)

and, therefore, plugging (94) into (89), we obtain

En(t)
{
(εTE(τ0, γ ))2

} ≈ k21 + 1
2Esσ

2
nk22 + 2π2Esβ̄2σ 2

nk23

E2s a20
(

1
2τ 20

γ 2
0 + 8π2β̄2

)2 .

(95)

Finally, substituting the expression of k1, k2, and k3 into
(95), we obtain the final expression of the MSE, given in
Equation (33).

Appendix 3: derivation of the effective bandwidth of the
second derivative Gaussian pulse
In this appendix, we obtain the effective bandwidth β̄ of
the second derivative Gaussian pulse in Equation (64),
necessary for the numerical results in Section 4.
The effective bandwidth can be derived from (see, e.g.,

[25])

β̄ = 1
2π

√√√√∫∞
−∞ ω2|S(ω)|2dω∫∞

−∞ |S(ω)|2dω , (96)
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where S(ω) is the Fourier transform of the transmitted
signal s(t). Consider the Fourier transform of the second-
derivative monocycle with finite duration pulse from

S(ω) = F {s(t)} =
∫ ∞

−∞
s(t)e−jωtdt

=
∫ 1

2Tp

− 1
2Tp

(
1 − 4π

(
t
τp

)2
)
e−2π

(
t

τp

)2
e−jωtdt,

(97)

where both S(ω) and F {s(t)} are standard notation for
the Fourier transform of the continuous time signal s(t).

Assuming that e−2π
(

t
τp

)2
≈ 0 for |t| > 1

2Tp, we can split
S(ω) into two terms, namely

S(ω) = F

⎧⎪⎪⎨
⎪⎪⎩e

−
(

t
τp√
2π

)2⎫⎪⎪⎬
⎪⎪⎭− 2F

⎧⎪⎪⎨
⎪⎪⎩
⎛
⎝ t

τp√
2π

⎞
⎠

2

e
−
(

t
τp√
2π

)2⎫⎪⎪⎬
⎪⎪⎭.

(98)

Using the time scaling and the frequency properties of the
Fourier transform in (98), we obtain

S(ω) =
∣∣∣∣ τp√

2π

∣∣∣∣F {e−t2
}

− 2j2
∣∣∣∣ τp√

2π

∣∣∣∣ ∂2

∂ω2F
{
e−t2

}
.

(99)

Since F
{
e−t2

}
= √

πe− ω2
4 , (99) reduces to

S(ω) = √
π

∣∣∣∣ τp√
2π

∣∣∣∣ e− ω2
4 + 2

√
π

∣∣∣∣ τp√
2π

∣∣∣∣ ∂2

∂ω2 e
− ω2

4

= τp

2
√
2
ω2e− ω2

4 .

(100)

In order to obtain the effective bandwidth of the trans-
mitted signal defined by (96), we need to obtain the value
of |S(ω)|2, which is given by

|S(ω)|2 = τ 6p
32π2ω4e− τ2p

4π ω2
. (101)

Then, the integral
∫∞
−∞ |S(ω)|2dω can be written as

∫ ∞

−∞
|S(ω)|2dω =

∫ ∞

−∞
τ 6p

32π2ω4e− τ2p
4π ω2

dω

= τ 6p
16π2

∫ ∞

0
ω4e− τ2p

4π ω2
dω.

(102)

In (102), there is an integral with the form
∫∞
0 xne−ηx2dx.

Using variable change y = ηx2, the integral
∫∞
0 xne−ηx2dx

may be rewritten as a function of y in the following
equivalent form:∫ ∞

0
xne−ηx2dx =

∫ ∞

0
(x2)

n
2 e−ηx2dx

= 1
2

(
1
η

) n+1
2
∫ ∞

0
y
n−1
2 e−ydy.

(103)

To resolve (103), we use the Gamma function �(m) =∫∞
0 ym−1e−ydy. Choosing m = n+1

2 , it is readily seen that
the integral in (103) can be written as∫ ∞

0
xne−ηx2dx = 1

2

(
1
η

) n+1
2

�

(
n + 1
2

)
. (104)

Thereby, by selecting η = τ 2p
4π and n = 4 and using (104),

the solution of (102) is given by
∫ ∞

−∞
|S(ω)|2dω = τ 6p

16π2

(
4π
τ 2p

) 5
2

�

(
5
2

)
. (105)

The integral
∫∞
−∞ ω2|S(ω)|2dω is evaluated as follows.

We start with a straightforward manipulation to obtain∫ ∞

−∞
ω2|S(ω)|2dω =

∫ ∞

−∞
τ 6p

32π2ω6e− τ2p
4π ω2

dω

= τ 6p
32π2 2

∫ ∞

0
ω6e− τ2p

4π ω2
dω.

(106)

Then, applying η = τ 2p
4π and n = 6, we can use (104) to

arrive at the solution∫ ∞

−∞
ω2|S(ω)|2dω = τ 6p

16π2

(
4π
τ 2p

) 7
2

�

(
7
2

)
. (107)

Substituting (105) and (107) into (96) yields

β̄ = 1
2π

√√√√√√√√√
τ 6p

32π2

(
4π
τ 2p

) 7
2
�
( 7
2
)

τ 6p
32π2

(
4π
τ 2p

) 5
2
�
( 5
2
) . (108)

Using the property of the Gamma function �(m + 1) =
m�(m), the ratio of Gammas reduces to �( 72 )/�( 52 ) = 5

2 ;
therefore, the expression in (108) finally reduces to

β̄ = 1
τp

√
5
2π

. (109)

Appendix 4: derivation of the effective absolute central
frequency of the second derivative Gaussian pulse
In this appendix, we derive the central frequency of the
second derivative Gaussian pulse, i.e., the central fre-
quency given in Equation (64), necessary for the numeri-
cal examples in Section 4.
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Since we work with a carrierless system, we need to
elaborate the effective central frequency,

f̄ = 1
2π

∫∞
−∞ ω|S(ω)|2dω∫∞
−∞ |S(ω)|2dω . (110)

However, it is readily to see that the denominator of (110)
is positive (see Equation (105)) while, for the numerator,
we obtain

∫ ∞

−∞
ω|S(ω)|2dω =

∫ +∞

−∞
τ 6p

32π2ω5e− τ2p
4π ω2

dω

= τ 6p
32π2

(∫ 0

−∞
ω5e− τ2p

4π ω2
dω

+
∫ +∞

0
ω5e− τ2p

4π ω2
dω
)

= 0,

(111)

where we have used Equation (104). Therefore, f̄ = 0
and we need to approximate the central frequency by the
effective absolute central frequency defined as

f̄abs = 1
2π

∫∞
−∞ |ω||S(ω)|2dω∫∞

−∞ |S(ω)|2dω . (112)

Then, we have to evaluate

∫ ∞

−∞
|ω||S(ω)|2dω = τ 6p

32π2

(∫ 0

−∞
|ω5|e− τ2p

4π ω2
dω

+
∫ +∞

0
ω5e− τ2p

4π ω2
dω
)
.

(113)

It is straightforward to show that

∫ ∞

−∞
|ω||S(ω)|2dω = τ 6p

32π2 2
∫ ∞

0
ω5e− τ2p

4π ω2
dω,

(114)

and applying the result of (104) into (114), with η = τ 2p
4π

and n = 5, we obtain

∫ ∞

−∞
|ω||S(ω)|2dω = τ 6p

16π2

(
4π
τ 2p

) 6
2

�

(
6
2

)
= 8π .

(115)

Finally, substituting (105) and (115) into (112), we arrive at

f̄abs = 1
2π

8π
3π
4 τp

= 1
τp

16
3π

. (116)

Abbreviations
τ , propagation delay or ToA; τ0, true value of the ToA, γ , PLE; γ0, true value of
the PLE; δγ = γ − γ0, PLE mismatch; s(t), transmitted signal; r(t), received
signal; n(t), additive noise (zero-mean white Gaussian process with variance
σ 2
n ); Es, energy of the transmitted signal; a = a(τ , γ ), path gain in the model of

Section 3.2, which is a deterministic function of the ToA (τ ) and the PLE (γ );
ψdB, shadow fading variable (assumed Gaussian distributed with zero mean
and variance σ 2

dB); a(ψ), path gain in the model of Section 4, which is a

random variable that depends on the shadow fading ψ = 10
ψdB
10 and,

deterministically, on the ToA (τ ) and the PLE (γ ); −fML(τ , γ ), log-likelihood
function; ρ(τ), correlation between the received and the transmitted signals
(random variable); ρss(τ ), autocorrelation of the transmitted signal (random
variable); ρns(τ ), correlation between the noise and the transmitted signal
(random variable); τ̂ML and γ̂ML, ToA and PLE estimates that jointly maximize
log-likelihood function −fML(τ , γ ); τ̂ML(γ ), the conditional ML estimator of
the ToA obtained for a fixed (but imperfect or mismatched) value of the PLE
(γ ); εF(τ̂ML, γ̂ML), Friedlander’s error in error given in (19); ε̃TE(τ0, γ ), ToA
estimation error given in (22), Section 3.2; εTE(τ0, γ ), ToA estimation error
given in (23), Section 3.2; B(τ0, γ ), theoretical approximation of the bias of the
ToA estimation given in (37), Section 4.1; ε2(τ0, γ ,ψ), theoretical
approximation of the MSE of the ToA estimation given in (41) in Section 4.1,
which is a random variable that depends on the shadow fading ψ ;
ε̄TE(τ0, γ ,ψ), ToA estimation error given in (53), Section 4.2; ε̄(i)

TE (τ0, γ ), sample
of the ToA estimation error given in 61, Section 4.2; μN(τ0, γ ), Monte-Carlo
approximation of the bias of the ToA estimation given in (62), Section 4.2;
ε2,N(τ0, γ ), Monte-Carlo approximation of the MSE of the ToA estimation
given in (63), Section 4.2; S

N , the signal-to-noise ratio (SNR).
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