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Abstract

In multihop wireless networks, reliable data transfer is one of the most difficult tasks. When transmission control
protocol (TCP) operates in multihop wireless networks, the performance of TCP reduces drastically. TCP
retransmission timeouts (RTOs) related to non-congestion events such as spurious and random packet losses have
been reported as one of the main problems in the performance degradation of TCP in multihop wireless networks.
The RTOs triggered by random packet losses due to transmission errors lead to unnecessary reduction of TCP
congestion window size, and the spurious RTOs due to sudden delay of packets on the network paths often cause
unnecessary retransmissions as well as reduction of congestion window size. Existing solutions for detecting non-
congestion RTOs have no mechanism to differentiate the spurious RTOs from RTOs caused by random packet loss.
In this paper, we introduce an efficient algorithm called non-congestion retransmission timeouts (TCP NRT) which is

the most widely deployed TCP, NewReno.

capable of recovering packets after RTOs by reducing unnecessary retransmissions and needless reduction of
congestion window size in order to improve the performance of TCP in multihop wireless networks. TCP NRT
consists of three key components: NRT-detection, NRT-differentiation, and NRT-reaction. We implemented the
algorithm in Qualnet network simulator and compared its performance to existing TCP versions. Results from the
experiments show that our algorithm achieves significant performance improvement in terms of throughput and
accuracy. Also, the results showed that our algorithm, TCP NRT, maintains a fair and friendly behavior compared to
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1. Introduction

In wireless local area and cellular networks, communi-
cation using wireless links occurs only in the last link
between a base station and the wireless end system.
Multihop wireless networks (MWNs) are a wireless
network adopting the multihop wireless technology
without deployment of wired backhaul links. MWNs
have increased in importance and usage at the edge of
the Internet over the past several years. It can be
deployed in a cost-efficient way and can avoid wide
deployment of cables. In MWNSs, there are one or more
intermediate nodes along the path that can receive and
forward packets via wireless links [1]. One of the most
important benefits of MWNs is the capability to extend
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the coverage of a network and improve the quality of
connectivity, compared to network with single wireless
links. Several paths might become available in the case
of dense MWNis that can be used to increase the robust-
ness of the network. Although MWNs are very useful,
the most important task to be accomplished in MWNs
is the reliability of data transmission due to current
limitations in wireless communications.

Transmission control protocol (TCP) is very important
for reliable data transmission as it is the most popular
transport protocol, and also, it is the de facto standard
in the Internet. In recent years, the performance of TCP
has acquired great attention, and it is an active research
area among research topics on MWNs [1]. TCP is
implemented as a reliable data transfer protocol in wired
networks. The congestion control algorithms of TCP are
very essential for the reliability of data transmission as
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well as stability of the Internet. The success of TCP in
wired networks motivates its extension to wireless net-
works [2]. However, the data transmission of TCP is no
longer stable in wireless networks. Particularly, when TCP
operates in MWNSs, the performance degrades signifi-
cantly by increasing the number of hops. It is well known
that the main reason for TCP performance degradation is
its inability to distinguish the causes of three duplicate
acknowledgments and retransmission timeouts (RTOs).
Among these, the RTOs caused by non-congestion events
have been reported as one of the main problems in TCP
performance degradation in MWNs [3]. Mainly, there are
two main types of non-congestion RTOs. They are as
follows: (1) spurious RTOs due to sudden delays or
reordering of packets and (2) RTOs due to random packet
losses caused by wireless transmission errors. These types
of RTOs are unavoidable in MWNss.

Our work is motivated by three main observations.
First, recent Internet measurement studies [4,5] show
that about 70% of the dropped packets are recovered
after the expiration of RTO. In wireless networks, con-
gestion is very rare, and frequent RTOs are often due to
transmission errors [3]. As a result, the sender reduces
its sending rate unnecessarily, and it affects the perform-
ance of TCP in MWNs. Recently, researches on the
performance of TCP reveal that spurious timeouts due
to the increase in unexpected delay can considerably de-
grade the performance of TCP. In addition, the authors
[2] show that in MWNSs, more than 20% of the RTOs
are caused spuriously by transmission delay of packets
which results in unnecessary retransmissions and need-
less reduction of congestion window (cwnd) size. It takes
a long time to reopen the window and is costly for high-
bandwidth links [6]. In conventional TCP, when RTO is
invoked, the sender assumes that the packet is lost due
to network congestion and immediately retransmits all
the outstanding packets and sets the cwnd size to one
maximum segment size (mss), which then increases
according to slow-start algorithm.

Second, previous research indicates that spurious
RTOs are not rare events in MWNSs [7,8]. After the
spurious RTO, the late-arriving acknowledgments (Acks)
can encourage TCP to retransmit all the packets in
flight, which may all have been correctly received by the
TCP receiver. This unnecessary retransmission behavior
leads to the under utilization of the network resources
such as available bandwidth. Not only that, each redun-
dantly retransmitted packet will be responded to with a
duplicate Acks by the TCP receiving side. Fast retrans-
mission algorithm can be triggered if the number of
duplicate Acks accumulates over the fast retransmit
threshold (normally, it is equal to three). In addition to
that, after the spurious RTOs, TCP starts the slow-start
algorithm, and each original Ack received in the slow-
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start will trigger out two or three segments, more than
the number of packets which have actually left the pipe.
This TCP behavior is a violation of the principle of TCP
packet conservation [2].

Third, several modifications have been proposed for
TCP loss recovery and congestion control mechanisms to
improve the performance of TCP. However, the existing
solutions [2,6,9-11] proposed for detecting congestion
RTOs and non-congestion RTOs have no mechanism to
differentiate the two different types of non-congestion
RTOs such as random loss and spurious RTOs. When
spurious RTOs coexist with RTOs due to random packet
losses, it results in unnecessary retransmissions and need-
less reduction of cwnd size, which leads to the perfor-
mance degradation of TCP in MWNSs. As a result, it is an
important issue whether the TCP sender can control
unnecessary retransmissions by differentiating the types of
RTOs due to random packet losses from spurious RTOs.

In this paper, we develop a new TCP algorithm for
differentiating non-congestion RTOs (TCP NRT), which
are caused by transmission errors and sudden delays on
the network path, and thereby improve the performance
of TCP in MWNs. TCP NRT consists of three key com-
ponents. They are as follows:

1. Detection of non-congestion RTOs (NRT-detection):
To detect non-congestion RTOs from congestion
RTOs using the improved explicit congestion
notification (ECN) mechanism.

2. Differentiation of non-congestion RTOs (NRT-
differentiation): To differentiate the RTOs due to
random packet losses from spurious RTOs by using
the comparison of the first Ack after the expiration
of RTO:s.

3. Reaction to non-congestion RTOs (NRT-reaction):
To guide the TCP sender to control the unnecessary
reduction of cwnd size and to control the needless
retransmissions according to the types of RTOs.

With the help of these components, TCP NRT can
improve the performance of TCP in MWNs. We imple-
mented TCP NRT in a Qualnet network simulator and
compared its performance using important metrics such
as throughput, accuracy, fairness, and friendliness with
the existing TCP versions such as Eifel, F-RTO, DSACK,
EQRTO, and NewReno. The results demonstrate that
TCP NRT achieves significant improvement in through-
put and accuracy compared to other TCP versions, espe-
cially when RTOs occur in non-congested environments.
Moreover, the simulation results show that when RTOs
occurred in a congestion-free network with packet loss
rate ranging from 1% to 9%, the TCP NRT performance
achieves 29% higher throughput than EQRTO and more
than 40% throughput improvement over Eifel, DSACK,
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and F-RTO especially at 9% packet loss rate due to
transmission errors. In addition, the experiment on
multiple TCP flows clearly shows that TCP NRT main-
tains a fair and friendly behavior with respect to other
TCP flows. The remainder of this paper is organized as
follows: Section 2 describes the problem of TCP RTOs.
In Section 3, we briefly summarize the existing research
related to the work done in this paper. We introduce
TCP NRT in Section 4, where the main features of each
component are discussed in detail. Section 5 describes
the performance evaluation of TCP NRT against existing
protocols. Finally, Section 6 concludes our work by
pointing out our major achievements.

2. The problem: retransmission timeouts of TCP

In the current implementation of TCP, whenever TCP
transmits a segment, the sender starts a timer which
keeps track of how long it takes for an Ack of that seg-
ment to return. This timer is known as the retransmis-
sion timer. If an Ack is returned before the timer expires
(by default is often initialized to 1.5 s), the timer is reset
with no consequence. However, if an Ack for the packet
does not return within the timeout period, the sender
would retransmit the packet and double the retransmis-
sion timer value for each conservative timeout up to a
maximum of about 64 s [12]. When RTO expires, the
sender assumes that the packet is lost and immediately
retransmits the first unacknowledged packets and sets
the cwnd size to one mss and the slow-start threshold
(ssthresh) to half of the cwnd size. After retransmitting
the packet, the sender continues to send packets by
invoking the slow-start algorithm and increases the size
of cwnd to one mss on each Ack. If the cwnd reaches
the ssthresh size, the sender enters congestion avoidance
algorithm in which the cwnd size increases linearly
based on round trip time (RTT). In this way, the sender
can recover the lost packets efficiently, and it works very
well in wired networks because most of the RTOs are
due to the congestion in the network. However, in the
case of MWN:s, this assumption is no longer true. In
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MWNS, the RTOs are due to transmission errors, sudden
delay, link level recovery, physical disconnection of a wire-
less link, packet reordering, etc. rather than the congestion
of the network [13]. As a result, the current RTO recovery
mechanism of TCP causes performance degradation in
MWNs. One of the main reasons is that TCP has no
mechanism to detect and differentiate the non-congestion
RTOs. As shown in Figure 1, we classify the RTOs into
two main types. They are congestion RTOs and non-
congestion RTOs. Congestion RTOs are those RTOs trig-
gered by packet losses due to network congestion, whereas
non-congestion RTOs are those triggered by packet losses
without any network congestion.

As we mentioned in the previous section, mainly,
there are two main types of non-congestion RTOs. One
is the RTOs caused by random packet losses due to
transmission errors, and the other is the RTOs triggered
spuriously due to sudden delays or due to reordering of
packets on the network path without any packet losses.
If RTO expires due to random packet losses, the TCP
sender retransmits the packet and unnecessarily reduces
the size of cwnd. On the other hand, when RTO occurs
spuriously, the sender not only reduces the size of cwnd
but also retransmits the packet unnecessarily. As a re-
sult, the TCP sender cannot utilize the available band-
width fully. This affects the performance of TCP in
MWNs. To observe the throughput degradation of TCP
in MWNSs, we did an experiment using seven-hop chain
topology and measured the throughput and the number
of retransmissions triggered by fast retransmission and
RTO procedures according to the number of hops. Al-
though it is well known that the performance of TCP
sharply decreases as the number of hop increases in
MWNSs, there is no experiment showing the variation of
TCP performance according to the ratio of retrans-
missions caused by random losses and spurious packet
losses. Thus, we did a simple experiment in order to
know the ratio of retransmissions caused by random loss
and spurious RTOs to that of retransmissions by trigger-
ing the fast retransmission algorithm. In this simulation,
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Retransmission Timeouts

Non-Congestion

Figure 1 Congestion control algorithms of TCP.
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we used one TCP flow from source to destination in a
chain topology with no network congestion and thereby
evaluate the unnecessary degradation of throughput due
to RTOs.

Figure 2a shows the throughput degradation of TCP
according to the number of hops in a congestion-free
network with random packet loss RTOs and spurious
RTOs when the bandwidth of the wireless channel is
9Mbps. When the number of hop increases to seven, the
TCP cannot achieve more than 1.5 Mbps of throughput.
The main reason for this degradation is shown in
Figure 2b. From this figure, it is clear that the number of
retransmissions due to RTOs is higher than that of fast
retransmissions. Among that, in our experiment, more
than 40% of the TCP retransmissions happen needlessly
due to spurious RTOs. As a result, it is very important
to differentiate random loss RTOs from spurious RTOs
to reduce unnecessary retransmissions and reduction of
the cwnd size.

3. Related work

There have been many solutions proposed for improving
the performance of TCP in MWN:s. In this section, we
briefly summarize the existing research related to the
work done in this paper. We classify the related work
into two parts. The first part depicts the solutions to
detect congestion and spurious RTOs, and the second
part presents the solutions to detect congestion and
non-congestion RTOs.

3.1. Solutions to detect congestion RTOs and spurious
RTOs

In MWN:Ss, spurious RTOs are inevitable because by no
means can TCP predict and avoid the link delay spikes.
The major difference in spurious RTO algorithms lies in
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how a spurious timeout is detected, which is equivalent
to solving retransmission ambiguity in many circum-
stances. By clarifying the retransmission ambiguity, TCP
can confirm whether or not data have been unnecessar-
ily retransmitted and further conclude if a spurious RTO
has happened. The following are the existing algorithms
for detecting congestion and spurious RTOs.

o Eifel. The Eifel algorithm [9], specified in REC 3522,
uses the TCP timestamp option [14] for detecting
spurious and congestion RTOs. The key idea is
when the sender sends packet, it stored the current
value of the timestamp clock into the header of each
outgoing packets. When the receiver receives that
packet, it echoes the timestamp value back to the
sender in the corresponding Acks. After the
expiration of a RTO, the sender stores the
timestamp of the retransmitted packet. Upon the
arrival of the first Ack after RTO, the TCP sender
compares the timestamp of the Acks with the
previously stored values. If the value of the Ack is
smaller than the stored value, then the sender
assumes that the RTO was spurious. The Eifel
algorithm uses extra information in the Acks to
eliminate retransmission ambiguity, thereby solving
the problem of spurious retransmissions.

e DSACK. The DSACK algorithm [10], specified in REC
3707, is an extension to the ‘selective
acknowledgment’ (SACK) option; the sender uses the
first SACK block to specify a segment that triggers a
duplicate Ack at the receiver. The DSACK algorithm
uses this feature of SACK for detecting spurious
RTOs. The general idea is that if a retransmitted
packet has been acknowledged for the second time,
the sender assumes that the earlier retransmission
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was spurious. DSACK introduces only less traffic
overhead than Eifel does since the TCP receiver only
needs replying with SACK or DSACK options upon
the detection of out-of-order packets, while a
timestamp option has to be attached to every TCP
packet and Ack in the case of Eifel. However, the slow
reaction of DSACK judgment makes the TCP
retransmit several packets mistakenly, or in the worst
case, a whole window of packets has to be
retransmitted before the situation is clear.

e F-RTO. The forward RTO-recovery (F-RTO)
algorithm [6], specified in RFC 4138, follows a
distinct rationale for detecting spurious RTOs
without using any TCP options. The key idea is that
at the time of RTO, the TCP sender enters the slow-
start algorithm, retransmits one outstanding packet,
and then monitors the first incoming Ack; after
retransmission advances the value of cwnd, the TCP
sender will retransmit two new packets. Again if the
second Ack advances the cwnd, then the sender
interprets that the RTO is spurious. Otherwise, a
congestion RTO occurs, and the sender will revert
to the traditional slow-start algorithm to retransmit
the outstanding packets. F-RTO requires no TCP
extension for its application and has higher link
utilization than TCP Eifel. However, F-RTO may
postpone the response for a genuine RTO if the
packet loss and the delay spike run in the same
transfer window.

e STODER. Spurious timeout detection by
repacketization (STODER) [11] detects
retransmission ambiguity using TCP repacketization.
When a RTO expires, a TCP sender repacketizes a
packet which is k-bytes smaller than the original
packet and retransmits it instead of the original
packet which triggered the RTO. Then, it detects
the spurious RTOs when an Ack arrives after the
RTO by examining the number of bytes that are
acknowledged. If the acknowledged bytes are the
same with the size of the original packet, it assumes
that the RTO is a spurious RTO. These schemes are
very effective to distinguish spurious RTOs from
congestion RTOs and let TCP avoid unnecessary
retransmissions and the improvement of TCP to
cope better with spurious RTOs. However, these
schemes have no mechanism to detect the RTOs
caused by random packet loss due to transmission
errors, which is harmful to the performance
degradation of TCP in MWN .

3.2. Solutions to detect congestion RTOs and non-
congestion RTOs

To the best of our current review of literatures, the only
study in the direction of detecting non-congestion RTOs
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and congestion RTOs has been carried out in [7] for
avoiding of unnecessary cwnd size reduction, thereby
solving the performance degradation of TCP in MWN:s.

Estimation of queue usage for detecting RTOs (EQRTO)
[7] is able to distinguish spurious and random packet loss
RTOs from congestion RTOs to improve the performance
of TCP in MWNSs. The main idea is that in order to iden-
tify congestion RTOs, EQRTO estimates the rate of queue
usage during the go-back-N retransmissions in the
network path between a TCP sender and a TCP receiver.
When the go-back-N retransmission ends, EQRTO
checks if the network queue usage indicates whether the
network is congested or not. If yes, the TCP sender as-
sumes the RTO as congestion RTO; otherwise, it assumes
that RTOs occurred due to random packet losses or spuri-
ous RTOs. The existing algorithms affect the behavior of
the TCP sender only after the expiration of RTOs. In the
case of three duplicate Acks, these algorithms work the
same as the conventional TCP. Unfortunately, the above
solutions have limitations in differentiating the RTOs
caused by random packet losses from spurious RTOs. In
the case of EQRTO, the algorithm can detect congestion
and random loss RTOs as well as congestion and spurious
RTOs. However, the algorithm cannot differentiate the
random loss RTOs from spurious RTOs. If the TCP
sender cannot differentiate the spurious RTOs from ran-
dom loss RTOs, it results in the degradation of the TCP
performance in MWNs. By considering the limitations of
the above solutions, we develop a new TCP algorithm for
the differentiation of non-congestion RTOs, thereby
increasing the performance of TCP in MWN:Ss.

4. Proposed algorithm: TCP NRT

The main motivation of our algorithm, TCP NRT, is to
recover packets efficiently from RTOs by differentiating
random packet loss RTOs from spurious RTOs to im-
prove the performance of TCP in MWNs. This algo-
rithm affects the behavior of the TCP sender only when
RTO occurs; otherwise the sender behaves similarly to
conventional TCP. As shown in Figure 3, TCP NRT con-
sists of three key components, namely NRT-detection,
NRT-differentiation, and NRT-reaction. The contribu-
tions of each component are explained in detail in the
following subsections.

4.1. Detection of non-congestion RTOs (NRT-detection)

To differentiate the RTOs due to random packet losses
from spurious RTOs (together we call ‘non-congestion
RTOys), first we should distinguish these RTOs from
congestion RTOs. In order to detect non-congestion
RTOs and congestion RTOs, we modified the ECN as it
has been approved as an Internet official protocol
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TCP NRT

Figure 3 Components of the TCP NRT algorithm.
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standard in RFC 3168 [15] and is recommended to be
widely deployed as a router mechanism. This is because
ECN provides higher network efficiency, fairer distribu-
tion of bandwidth, less packet losses, and less bursty
traffic; and benefits to short flows present a strong case
for its implementation. ECN requires an active queue
management mechanism in order to work [16]. Most of
the active queue management schemes can achieve high
performance with enabled ECN even if the load is more
than 85% [17]. ECN is an extension to the random early
detection (RED) algorithm for dropping packets. First,
we explain the mechanism of RED. RED is the most
widely deployed queue management scheme in commer-
cial Internet routers [18]. The key idea behind the RED
active queue management scheme is to inform the
sender about the detection of incipient congestion by
dropping the packets even when there is available buffer
space. This type of probabilistic packet drop prevents
the router from entering the fully congested state and
helps reduce the queueing delay. However, in the case of
large TCP flows, RED drops packets in higher loss rates
and thereby degrades network performance since it re-
quires extra time and causes TCP retransmissions which
add to network congestion. As a result, instead of drop-
ping packets randomly, an ECN router marks the
packets to alert the sender of incipient congestion. Re-
cent studies show that the performance of RED in the
absence of ECN is worst than drop tail queue [17].

An ECN-capable router is configured with three
main parameters. They are the minimum threshold
(min™), maximum threshold (max™), and the maximum
marking probability (Pp.). When a packet arrives at
the router, ECN calculates the average queue length
(AQL), and if the AQL is below min™, the router will
not mark the packet [19]. If the AQL exceeds min™

and below max™

probability (P),

, the router marks the packet with

pP= ((avg — minth) / (maxth — minth)) Pux

As a result, the sender reduces the size of cwnd to
control the sending rate in advance before the network
becomes heavily congested. If the AQL exceeds max™,
the TCP router marks the packets with probability 1. As
we mentioned in the previous section, in MWNs,
network congestion is very rare. As a result, there is no
need to mark and reduce the size of cwnd when the
AQL is between min™ and max™. This slows down the
sending rate, and the network cannot utilize the band-
width fully. To avoid the slowdown of sending rate
unnecessarily, TCP NRT marks the packets only when
the AQL is greater than or equal to maxth, as shown in
Figure 4. As a result, the sender can send more packets
than the original ECN without reducing the cwnd size
needlessly before the sender detects a packet loss by
duplicate Acks or RTOs. To check the effectiveness of
the modified ECN, we did an experiment using ten-hop
chain topology and trace the size of cwnd during the
transmissions to node 11 from node 1 while causing
packet losses by congestion and non-congestion. Figure 5a

AQL = max"
Receiver

Marked Packets

Figure 4 Packet marking method of the modified ECN.
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shows the cwnd size of ECN and the modified ECN. The
original ECN is not able to increase the size of cwnd
because of its unnecessary cwnd reduction due to packet
marking when AQI reaches between minimum and max-
imum thresholds.

On the other hand, the modified ECN can increase its
sending rate and leads to improvement in TCP perform-
ance. This is because the modified ECN reduces its win-
dow size only when the threshold reached maximum. As
a result, the sender can send more packets by increasing
the window size. This type of marking helps the sender
to use the proper congestion control strategy in various
circumstances. In addition, the TCP connections with
large window sizes are more tolerant of packet losses
than those with small windows. It takes only one RTT to

recover from multiple packet losses [16]. Moreover, we
evaluated the throughput performance of the modified
ECN against the original ECN by causing packet losses.
Figure 5b shows that the modified ECN achieves better
throughput compared to the original ECN. When RTO
expires during packet transmission, the sender checks
whether the last received Ack before RTO is marked or
not by using the modified ECN mechanism, as shown in
Figure 6a, to detect congestion and non-congestion
RTOs. If the Ack is marked, the sender assumes that the
network is congested, and the corresponding packet is
lost. Otherwise, the sender assumes that the RTO was
triggered due to non-congestion events such as random
packet loss or spurious RTOs due to sudden delays on
the network path.

Sending packds

Continue sending

Non-Congestion RTOs

l

Store the next expected Ack
in the variabk Exp_Ack

!

Send a new packet

packets
No
No Yo
Yo
Non-Congestion Congestion Random packet loss Spurious RTO

A TCP NRT-Detection

Figure 6 Detection and differentiation of non-congestion RTOs. (a) TCP NRT-detection and (b) TCP NRT-differentiation.

b TCP NRT-Differentiation
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4.2, Differentiation of non-congestion RTOs
In this subsection, we explain in detail how TCP NRT
differentiates the RTOs due to random packet losses
from spurious timeouts. Spurious timeouts due to sud-
den delay are not rare in MWNSs. As a result, it is very
important to differentiate the RTOs due to random
packet loss from spurious timeouts in order to reduce
unnecessary retransmissions and needless reduction of
cwnd size. As we explained in the previous subsection,
when RTO expires at the sender, it checks the last re-
ceived Ack to confirm whether it is marked or not. If it
is not marked, it means that the RTO is due to random
packet loss or spurious RTOs. As a result, the sender
stores the value of the next expected Ack in a variable
‘Exp_Ack’. Then the sender sends a new packet instead
of retransmitting the timeout packet, as shown in
Figure 6b. The reason is that non-congestion RTO
happens due to transmission errors or sudden delays. It
means that the buffer has space to accommodate a new
packet. When the sender receives an Ack after sending a
new packet, it checks whether the Ack is greater than
the stored value. If it is greater, it means that the RTO
was spurious; otherwise the sender retransmits the lost
packet immediately without reducing the size of cwnd.
Recent Internet measurement studies [20] show that
the time taken for the newly sent packet to be delivered
is greater than the time taken to reach the delayed
packet at the destination. As a result, the comparison of
the first incoming Ack after the non-congestion RTOs
with the stored value in the variable Exp_Ack at the time
of RTO helps the sender to confirm accurately that the
RTO triggered due to random packet losses or spurious
timeouts. To understand better, Figure 7 demonstrates
an example of how TCP NRT differentiates the RTOs
due to random packet losses from RTOs that occur
spuriously. Consider that the sender transmits 6 packets
from P1 to P6, and packet P6 is lost due to transmission
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error. When the receiver receives the packet P5, the re-
ceiver sends an Ack of packet P5 by sending the next
expected packet P6. As a result, the sender sends the
packet P6, and it is lost. Due to the lack of enough dupli-
cate Acks to trigger fast retransmission, the sender needs
to wait for the expiration of RTO. When RTO is triggered,
TCP NRT checks whether the last Ack is marked or not.

In this example, consider that the last Ack is not
marked. As a result, the sender confirms that the RTO
happened due to a non-congestion event, either random
packet loss or sudden delay. Instead of retransmitting
the packet P6 immediately, the sender sends a new
packet P7 and stores the next expected Ack in the vari-
able Exp_Ack. As soon as the packet P7 reaches the
destination, the receiver again sends an Ack for the lost
packet P6. The sender compares the Ack with the stored
value in the variable Exp_Ack to check whether the first
Ack after the non-congestion RTO is greater than
Exp_Ack. Here, it is equal to the value in the Exp_Ack.
As a result, the sender confirms that the packet P6 is
lost and immediately retransmits the lost packet P6
without reducing the size of cwnd. On the other hand, if
the non-congestion RTO was triggered due to sudden
delay of packet P6, it reaches the destination before
reaching the packet P7. As a result, the TCP sender
receives an Ack of the next expected packet which is
greater than the value of Exp_Ack. Then the sender con-
firms that the RTO was spurious. In this way, TCP NRT
can reduce unnecessary retransmissions and needless re-
duction of cwnd size and thereby improve the perform-
ance of TCP in MWN:s.

4.3. Reaction to non-congestion RTOs (NRT-reaction)

This subsection explains how TCP NRT reacts after the
TCP sender detects and differentiates the RTOs. As we
explained in the above subsections, whenever the sender
detects RTO, it checks whether the last Ack is marked

Receiver
Pl P2 P2 P3 P3 P4 P4
Pl P2 P2 P3 P3 P4 P4
Sender
Figure 7 Example of NRT-differentiation.
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Whenever the sender expires RTOs

1: IfRTO () {
2 If Congestion () {
3 Retransmit the lost packet
£ Reduce cwnd as TCP NewReno
5 Jelse {
6: If ( Non-Congestion packet loss) {
7: Retransmit the lost packet
8 Keep the current value of cwnd
9 jelse {
10: The RTO is Spurious
11 Continue sending packets until the sender
reaches the value of ssthresh
12: }
13: }
14: }

Algorithm 1 TCP NRT-reaction at the time of RTO expiration.

or not. Note that we mark the packets only if the AQL
is greater than or equal to the maximum threshold. As
shown in Algorithm 1, if the packet is marked, the
sender immediately retransmits the lost packet and re-
duces the size of cwnd (lines 2 to 4) and follows the
RTO loss recovery algorithm of TCP NewReno as it is
the most widely deployed protocol. The reason is that a
marked packet is an indication of network congestion.
On the other hand, if it is not marked, the sender con-
firms that the RTO is caused by random packet loss due
to transmission errors or spurious packet losses due to
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sudden delays. As a result, instead of retransmitting the
packet, the sender sends a new packet and waits for the
Ack. If the RTO is triggered due to random packet loss,
the sender retransmits the lost packet while keeping the
current size of cwnd (lines 6 to 8). If the RTO is trig-
gered spuriously, the sender sends packets continuously
without reducing the size of cwnd and ssthresh until the
value of cwnd reaches the value of ssthresh. In this way,
the sender of TCP NRT is able to reduce unnecessary
retransmissions and needless reduction of the size of
cwnd due to spurious RTOs and the RTOs due to ran-
dom packet losses and can increase the performance of
TCP in MWN:s.

4.4, Operation of TCP NRT

In this subsection, we describe the rationale for proposing
an efficient algorithm for the differentiation of RTOs due
to random packet loss from spurious RTOs. We adopt the
slow-start (SS), congestion avoidance (CA), fast retransmit
(FRR), and recovery algorithms (FRE) algorithms of the
original TCP NewReno [21] and changed the loss recovery
algorithm in the case of RTOs. As shown in Figure 8, at
the beginning of the TCP connection, the sender enters
into the SS phase, in which the size of cwnd increases by
one mss for every receiving Ack and the cwnd grows ex-
ponentially. When the value of cwnd reaches the value of
ssthresh, the sender enters the CA state. During this
phase, the sender increases its cwnd size linearly for every
RTT. This linear growth of transmission rate helps the

cwnd <- mss
ssthresh <- 65535 bytes

n [—

cwnd > ssthresh

Ack Ack
cewnd <- ewnd +mss —b[ S CA ]4— ewnd <- ewnd + mss® / ewnd
cwnd > ssthresh Three |dupscks A
v
[ FRE FRR H RTO ]’{ NRT-Detection ]
Additional dupacks
ewnd 2 ssthresh PR ———— . e S
i i Congestion RTO i RTOs
ewnd <- ewnd + (mss) cwnd <- ssthresh = 3 (mss) ' 4

ssthresh =cwnd / 2

[ NRT-Reaction Jq[ NRT-Differentiation J

Figure 8 Congestion control of TCP NRT.
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sender to slowly probe the available network bandwidth.
When the sender receives three duplicate Acks (dupacks),
it proceeds as TCP NewReno because in our research we
are focusing on improving the TCP performance using the
loss recovery mechanism for the expiration of RTOs. As a
result, we use the same FRR and FRE mechanisms of TCP
NewReno.

As shown by the dotted lines in Figure 8, whenever the
timer expires, the sender goes to NRT-detection to detect
congestion and non-congestion RTOs. If the RTO is
caused by congestion, the sender invokes the NRT-
reaction algorithm to retransmit the lost packets and re-
duce the size of cwnd to one mss followed by the slow-
start algorithm like conventional TCP. Otherwise, the
sender goes to NRT-differentiation to check whether the
RTO is caused by random packet loss or spurious RTO
before retransmitting the packet and follows the com-
ponent NRT-reaction. If the RTO is caused by non-
congestion events, then the sender may not reduce the
size of cwnd and can reduce unnecessary retransmissions
using the component NRT-differentiation. When the
value of cwnd reaches the value of ssthresh, the sender
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goes to CA state and continues sending packets until the
sender receives three dupacks or the expiration of RTO.
In this way, TCP NRT can improve the performance of
TCP in MWNs by reducing unnecessary retransmissions
due to spurious RTO as well as by avoiding unnecessarily
reduction of cwnd due to the RTOs triggered by random
packet losses or spurious RTOs.

5. Performance evaluation

In this section, we explain the simulation methodology and
performance metrics we use to evaluate the effectiveness of
the TCP NRT algorithm in MWNs. In order to make sure
of the efficiency of our algorithm, the performance of TCP
NRT is compared to that of related works such as Eifel,
DSACK, F-RTO, EQRTO, and NewReno.

5.1. Simulation methodology

To evaluate the effectiveness of the TCP NRT algorithm,
we implement our algorithm in the network simulator
Qualnet version 5 [22] and test it in various conditions. As
the main focus of our algorithm is to reduce unnecessary
retransmissions and needless reduction of cwnd due to

Flow 2

b
Flow 1
>
S88888
13 14 15 16 17 18

Flow 3

g8 8888
12 11 10 9 8 7

SES888E
1 2 3 4 5 6

Figure 9 Network topologies (a) chain and (b) grid.
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spurious RTOs and RTOs caused by random packet
losses, we adopt the methodology used in [2] for tracing
RTOs. We use two types of multihop topologies, as shown
in Figure 9. One is a chain topology consisting of ten hops
or 11 nodes, and another one is the grid topology con-
sisting of 18 nodes. All wireless nodes are considered as
static, which are using IEEE 802.11a with a basic data rate
of 9 Mbps in our experiments, unless stated otherwise.
The distance between two neighboring nodes is given as
200 m so that the nodes can communicate with each
other. The maximum size of cwnd is set to 32 packets.
For routing, we use DSR protocol and FTP-generic used
for application. We designed about 300 scenarios by set-
ting different parameters in terms of the number of hops,
packet loss rate, bandwidths, number of RTOs, number of
unnecessary retransmissions, and number of unnecessary
reduction of cwnd. Through experiments, we aimed to
evaluate how much our algorithm improves the perform-
ance of TCP in MWNSs.

For this, we grouped our experiments into four sets.
The first set of experiments involves wireless links that
drop packets randomly without any congestion in the net-
work. The packet losses are distributed uniformly. The
main purpose of this scenario is to test the performance
when RTO occurs due to transmission errors. Since the
primary motivation of TCP NRT is to improve TCP
performance in MWNs when random packet loss causes
unnecessary cwnd reduction and spurious RTOs cause
unnecessary retransmissions and needless cwnd reduction,
we start with a scenario that involves random packet
losses. The second set of experiments involves wireless
links that do not drop any packets but randomly inflicts
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sudden delays for some packets. The main goal of this
experiment is to evaluate the performance when sudden
delays cause spurious RTOs. To perform this experiment,
we adopt the method described in [6].

The third set of experiments involves wireless links
that cause RTOs due to random packet losses and sud-
den delays. The main aim of this experiment is to ensure
the effectiveness of TCP NRT when the RTOs coexist
with random packet loss and sudden delays. It is essen-
tial to check the performance improvement of TCP NRT
by differentiating the two types of RTOs in the network.
The fourth set of experiments involves wireless links
that cause RTOs due to congestion as well as random
packet loss and RTOs due to sudden delays. The main
purpose of this experiment is to evaluate the perform-
ance of TCP NRT in a general environment. As men-
tioned in [2], in all scenarios, we traced packet losses at
the Mac layer and the network layers and compared
those lost packets with the packets triggered by RTO at
the transport layer. If the packet triggered by RTO is not
found at the Mac and network layers, we assume that
the corresponding RTO is triggered due to sudden delay,
and we treat those RTOs as spurious RTOs.

5.2. Performance metrics

To ensure the significant performance of TCP NRT, we
evaluate our algorithm using four perspectives: through-
put, accuracy, fairness, and friendliness.

5.2.1. Throughput
Throughput is one of the most important performance
metrics in the TCP. We define throughput as the number
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Figure 10 Throughput performance in terms of packet loss rates.
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Figure 11 Comparison of cwnd size in terms of 2% packet loss rate at ten hops.
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of packets sent divided by the transmission time. We mea-
sured throughput in terms of the number of hops, number
of flows, varying bandwidths, different packet loss rates,
and varying delays using chain and grid topologies.

5.2.2. Accuracy

Another important metric is accuracy. It defines exactly
how a scheme detects the different types of RTOs [7].
We measured accuracy in terms of RTOs due to random
packet loss (RPL), congestion packet loss (CPL), spuri-
ous RTOs (S), and the combination of random packet
losses and spurious RTOs (NC).

RPLpccrTo is defined as the accuracy in detecting
RTOs caused by random packet loss. The formula used
for calculating RPL s c.rTo is shown below:

RPLigentrTO

X 100 1
RPLtotalRTO ( )

RPLAcc—rTO =

where RPLjgene RTO is the number of RTOs exactly iden-
tified as RTO due to random packet loss by TCP NRT
compared to other existing algorithms, and RPLrq, RTO
is the total number of RTOs triggered due to random
packet losses.
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Figure 12 Throughput performance in terms of varying delays.
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CPLpccrTo is defined as the accuracy in detecting
RTOs caused by congestion loss. The formula used for
calculating CPLacc rro is shown below:

CPLidentrTO

CPLACC—RTO = x 100 (2)

CPLTotalRTO

where CPLjgen RTO is the number of RTOs exactly iden-
tified as RTO due to congestion packet loss by TCP NRT
compared to other existing algorithms, and CPLyy, RTO
is the total number of RTOs triggered due to congestion
packet losses.

Sace rro is defined as the accuracy in detecting spurious
RTOs which are triggered due to sudden delay of packets
on the network path. It is calculated by using the following
formula:

SidentrTO

SAcc—RTO = x 100 (3)

STotal RTO

where Sigene RTO is the number of RTOs exactly identi-
fied as spurious RTOs, and St RTO is the total number
of RTOs triggered due to spurious packet losses.
NCaccrro is defined as the accuracy in detecting non-
congestion RTOs when they coexisted with each other.
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The formula used for calculating NCxccrro 1S as
follows:

NCIdent

x 100
NCTotal

NCacc—rTO =

(4)

where NCigen, is the number of RTOs exactly identi-
fied as non-congestion RTOs, and NCroy is the
total number of non-congestion RTOs. Finally, we
compared the fairness and friendliness of TCP NRT.
We explain these in detail in the next subsections.

5.2.3 Fairness

Another important performance metric of TCP is its
fairness. Multiple connections of the same TCP scheme
must interoperate nicely and converge to their fair
shares. We use the fairness index function (Equation 5),
proposed in [23], to justify the fairness of TCP schemes.
The fairness index function is expressed as,

F(x) = (in> 2/}’1 (in) ’

where x; is the throughput of the ith connection, and # is
the number of connections. F(x) ranges from 1/n to 1.0. A

(5)
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perfectly fair bandwidth allocation would result in a fair-
ness index of 1.0. On the contrary, if all bandwidths are
consumed by one connection, Equation 5 would yield 1/n.

5.2.4. Friendliness

Gradual deployment requires acceptable friendliness
behavior when TCP NRT is sharing the medium with
other flows [8]. This means that TCP NRT ideally
should not suppress the regular flows but allow them to
achieve at least the same throughput they would obtain

without any improved flow in parallel. We show through
xour experiments how friendly our mechanism can be
when TCP NRT competes with regular flows of TCP
NewReno in a MWNS.

5.3. Experimental results

In this subsection, we present the results of our experi-
ments used to verify the effectiveness of our algorithm
in MWNs using three different scenarios, namely chain,
grid, and dumbbell topologies.
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Figure 20 Simulation network for verifying fairness.
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5.3.1. Comparison of throughput in chain topology
Using ten-hop chain topoloy, we compared the average
throughput of each algorithms in terms of packet loss
rates, bandwidths, delays, and varying number of hops.
Simulations were run ten times with 95% confidence
interval. Figure 10 shows the measured average through-
put at ten hops by sending the traffic flow from node 1
to node 11 in terms of varying packet loss rates ranging
from 1% to 5% using the first set of experiments, that is,
the RTOs are triggered only by random packet losses.
As we expected, when the packet loss rate increases, the
throughput of each TCP version reduces drastically.
However, compared to other TCP versions, TCP NRT
and EQRTO achieved better performance. When the per-
centage of packet loss rate becomes 5%, TCP NRT gains
18% throughput over EQRTO. This is because TCP NRT
can detect and differentiate the non-congestion RTOs very
efficiently. Figure 11 shows the comparison of the cwnd
size of TCP NRT with EQRTO in terms of 2% packet loss
rate at ten hops. The cwnd size of TCP NRT is increasing
faster than the cwnd size of EQRTO. It reveals that TCP
NRT can achieve higher throughput compared to EQRTO.
Figure 12 presents the result of throughput comparison in
terms of varying delays ranging from 40 to 120 ms using
the second set of experiments. In this experiment, the
RTO is triggered only due to spurious RTOs. The per-
formance is decreasing according to the increase in delays.
Even when the throughput decreases, TCP NRT outper-
forms the other TCPs. In this scenario, F-RTO achieves a
relatively higher throughput compared to Eifel, DSACK,
and EQRTO. The performance of DSACK and Eifel is the
same for the 120-ms delays, and TCP NRT improves with
more than 15% throughput at a delay of 100 ms compared

Table 1 Comparison of fairness

Loss rate (%) TCP NewReno TCP NRT
0.1 0.9999 0.9999
0.5 0.9999 0.9999
1.0 0.9998 0.9998
50 0.9991 0.9992
10 0.9984 0.9986

to F-RTO. Figure 13 depicts the result of the comparison
of throughput in terms of different bandwidths ranging
from 2, 5, to 11 Mbps using the third set of experiments.
In this experiment, the RTO is triggered only due to spuri-
ously or random packet losses. As the bandwidth increases,
the throughput also increases. However, the throughput of
TCP NRT is better than those of other TCPs. The reason is
that by reducing unnecessary retransmissions as shown in
Figure 13b and unnecessary reduction of cwnd, the sender
of TCP NRT can send more packets and thereby make
utilization of the available bandwidth in the network.

Figure 14a demonstrates the comparison of average
throughput in terms of the number of hops ranging
from five to nine using the fourth set of experiments,
that is, the RTOs are due to congestion, random packet
loss, and spurious packet losses. In this experiment, we
set node 1 as the source node and destination changes
from node 6 to node 10 according to the number of
hops. Although the throughput decreases when the num-
ber of hop increases, TCP NRT achieves better perform-
ance due to its capability to detect and differentiate the
type of RTOs. Compared to other TCPs, TCP NRT has
more than 80% throughput gain due to its capability to
avoid unnecessary retransmissions and needless reduction
of cwnd size, as shown in Figure 14b,c. In Figure 14b, we
can clearly see that TCP NRT reduces the size of cwnd
less than the other versions. In case of retransmissions,
Figure 14c depicts packet retransmissions during the
simulation time span of 300s. EQRTO frequently retrans-
mits a lot more packets unnecessarily than TCP NRT, and
this explains why TCP NRT improves the throughput of
TCP in MWN:s. Figure 14d shows the ratios of RTOs
caused in our experiments. In this figure, we can see that
the RTO due to random packet loss (WLRTO) is greater
than the RTOs due to congestion (CRTO) and spurious
RTOs (SRTO).

In addition to these experiments, we evaluate the through-
put performance of TCP NRT in the presence of spuri-
ous fast recovery as it is not a rare event in wireless
networks [24]. If the retransmission is triggered by fast
recovery and the particular packet loss is not found
at the Mac and network layers, we assume that the
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Figure 21 Simulation network for verifying friendliness.

corresponding fast recovery is triggered due to sudden
delay, and we treat that fast recovery as spurious fast re-
covery. In Figure 15, we can see the average throughput
of TCP NRT, DSACK, and EQRTO. In the presence of
spurious fast recovery, DSACK outperforms TCP NRT
and EQRTO. This is because TCP NRT and EQRTO
have no mechanism to false fast retransmissions. How-
ever, compared to EQRTO, when the number of hop in-
creases, the average throughput of TCP NRT is better
due to its efficiency in handling the fast retransmission
by using the features of TCP NewReno fast recovery
mechanism.

5.3.2. Comparison of accuracy in grid topology

In this subsection, we present the results of accuracy in
terms of the number of hops using grid topology.
Figure 16 shows the accuracy of random packet loss

RTOs. Only TCP NRT and EQRTO achieve the highest
accuracy in detecting the RTOs due to random packet
losses. When the number of hop increases, the accuracy
of TCP NRT increases compared to EQRTO. At ten
hops, TCP NRT achieves more than 80% accuracy in
detecting random packet loss RTOs compared to
EQRTO. Figure 17 shows the accuracy of congestion
packet loss RTOs in terms of the number of hops. In
this experiment, all the variants have similar perform-
ance. However, TCP NRT achieves more than 85% ac-
curacy at six hops compared to other variants. Figure 18
shows the accuracy of spurious RTOs in terms of the
number of hops. The results of this experiment show
that, except for EQRTO, all of the compared TCP ver-
sions achieve good accuracy. This is because EQRTO
misclassifies the RTOs as congestion packet losses. In
the case of TCP NRT, it shows a slightly high accuracy
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Table 2 Comparison of existing solutions with TCP NRT
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Solutions Sender-side modifications Receiver-side modifications Type A Type B Type C
Eifel Yes Yes No Yes No
DSACK Yes Yes No Yes No
F-RTO Yes No No Yes No
STODER Yes Yes No Yes No
EQRTO Yes No Yes Yes No
TCP NRT Yes No Yes Yes Yes

compared to other TCPs. F-RTO algorithm has accuracy
close to that of TCP NRT in the case of spurious
RTOs. Figure 19 shows the accuracy in detecting non-
congestion RTOs in the presence of congestion RTOs.
For this experiment, we caused 1% spurious RTOs and
3% random packet loss RTOs. From the figure, it is
evident that EQRTO and TCP NRT have the highest
accuracy when the network coexists with spurious and
random packet loss RTOs. Compared to the other TCPs,
EQRTO is effective in detecting the RTOs caused by
random packet loss like TCP NRT, while F-RTO is ef-
fective in detecting spurious RTOs in addition to TCP
NRT. At ten hops, TCP NRT has more than 70%
accuracy compared to F-RTO, EQRTO, DSACK, and
Eifel. If accuracy is better, the performance of TCP is
also better. Due to the highest accuracy of TCP NRT,
it can achieve significant improvement in the per-
formance of TCP in MWN:s.

5.3.3. Comparison of fairness using dumbbell topology

In order to assess the ability of our mechanism to allow a
fair distribution of bandwidth, we simulate here another
scenario for the dumbbell topology in Figure 20 which
consists of two source nodes (S and S1) and two destina-
tions (D and D1). We measure the fairness of TCP NRT
compared to TCP NewReno as it is the most widely
deployed protocol. We use the Jain fairness index pro-
posed in [23] to measure the fairness of TCP NRT and
TCP NewReno. In our experiment, we use ten TCP con-
nections with packet loss rates varying from 0.1% to 10%
and 1% delay with 6Mb bottleneck link and 20-ms propa-
gation delay. We run the simulation for TCP NRT and
TCP NewReno and compare their fairness index. The re-
sults are summarized in Table 1. From Table 1, it is clear
that TCP NRT achieves fairly satisfactory fairness index.

5.3.4. Comparison of friendliness using dumbbell and chain
topologies

A friendly TCP scheme should be able to coexist with
other TCP variants and not cause them starvation [8].
To verify the friendliness of TCP NRT, we use the
dumbbell topoloy, where TCP NRT coexists with TCP
NewReno. The simulation network is shown in Figure 21.
There are 20 pairs of connections, of which ‘M’ are TCP

NRT connections and ‘N’ are TCP NewReno connec-
tions. Using different parameters, in our experiment, we
caused congestion and non-congestion RTOs and mea-
sured the mean throughput of TCP NRT and TCP
NewReno. We calculated the mean throughput by sum-
ming up the throughput of the same TCP scheme and
dividing by the number of connections, respectively.
Figure 22a depicts the mean throughput in terms of the
number of connections of TCP NewReno and TCP
NRT. It is observed that the bandwidth allocation of
each TCP connection is close to its fair share at the
bottleneck links. In addition to that, we measured the
friendliness of TCP NRT using the chain topology.
Figure 22b presents the fairness of TCP NRT in terms of
the number of hops. For this experiment, we use three
TCP connections by keeping node 1 as the source node
and the destination changes according to the number of
hops. Compared to Figure 22a, TCP NewReno is not
friendly with TCP NRT because TCP NRT is more dom-
inating due to its advantage in controlling the size of
cwnd if both TCPs are communicating separately. TCP
NRT can send more data packets compared to TCP
NewReno especially when the number of hop increases.
On the other hand, when TCP NRT coexists with TCP
NewReno, TCP NRT shows a friendly behavior to TCP
NewReno, as shown in Figure 22a.

5.3.5. Comparison of existing solutions with TCP NRT

In this subsection, we compare existing solutions with
TCP NRT using type A, type B, and type C classifications.
Type A classification is the solutions which are able to
detect congestion RTOs and the RTOs due to random
packet loss, whereas type B classifies the solutions
proposed for detecting congestion RTOs and spurious
RTOs. Finally, type C is able to classify solutions which
are capable of differentiating random loss RTOs from
spurious RTOs. Table 2 shows the classifications of
existing solutions with TCP NRT in terms of sender and
receiver-side modifications, detection of congestion loss
and random loss RTOs, detection of congestion loss and
spurious RTOs, and finally, differentiation of random loss
RTOs from spurious RTOs. From the table, we can see
that only TCP NRT can guide the sender congestion
window mechanism by detecting and differentiating the
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congestion and non-congestion RTOs and thereby in-
crease the performance of TCP in MWN.

6. Conclusions

In this paper, we have proposed a new TCP algorithm,
called TCP NRT, to improve the performance of TCP in
MWNS by differentiating the types of non-congestion
RTOs. TCP NRT detects the non-congestion RTOs by
means of the modified packet marking scheme of ECN
mechanism. Our approach is easy to implement and re-
quires only simple changes in the sender side of the TCP
without altering the protocol itself. Our simulation
results show that TCP NRT is a viable solution to the
TCP performance degradation in MWNSs. Results show
that under 5% packet loss rate, a typical characteristic of
MWNs, TCP NRT outperforms other TCP variants by
20% to 60% improvement in throughput when the RTO
is caused in the absence of network congestion and pres-
ence of random loss due to transmission errors. On the
other hand, the results show that under 140 ms delay,
TCP NRT achieves high throughput compared to other
existing solutions in the presence of spurious RTOs. Fur-
thermore, when the network coexists with both conges-
tion and non-congestion RTOs, the throughput of TCP
NRT increases more than 25% compared to the other
solutions. There are three main reasons for these signifi-
cant improvements in the throughput, namely NRT-
detection, NRT-differentiation, and NRT-reaction. Our
experiments also show that TCP NRT maintains a fair
and friendly behavior with other TCP flows. Our future
research in this direction would be to improve TCP NRT
so that the sender could further control its congestion
control mechanism when it receives duplicate acknowl-
edgments or RTOs in case of loss of acknowledgments in
addition to the sudden delay or random loss of packets.
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