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Abstract

We consider the coexistence of a multiple-input multiple-output secondary system with a multiple-input
single-output primary link with different degrees of coordination between the systems. First, for the uncoordinated
underlay cognitive radio scenario, we fully characterize the optimal parameters that maximize the secondary rate
subject to a primary rate constraint for a transmission strategy that combines rate splitting and interference
cancellation. Second, we establish a model for the coordinated overlay cognitive radio scenario that consists of a
message-learning phase followed by a communication phase. We then propose a transmission strategy that
combines techniques for cooperative communication and for the classical cognitive radio channel. We optimize our
system to maximize the rate of communication for the secondary users under a primary-user rate constraint and find
efficient algorithms to compute the optimal system parameters. Finally, we compare both cognitive radio strategies

to assess their relative merits and to evaluate the effect of the message-learning phase. We observe that for closely
located transmitters, the overlay strategy outperforms the underlay strategy. In this situation, learning the primary
message is very beneficial for the secondary systems, especially if they are interference-limited rather than
power-limited. The situation is reversed when the distance between the transmitters is large. In either case, we
observe that there is room for significant improvement if the transmitter implements both strategies and decides
adaptively which one to use according to the channel conditions. We conclude our work with a discussion on the
extension to the coexistence with multiple-input multiple-output primaries.
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1 Introduction

The scarcity of available spectrum for accommodating
new services in combination with the underutilization of
currently allocated spectrum has fueled research on alter-
native visions on communications over the last decade. It
has been suggested that new, unlicensed (i.e. secondary)
users could utilize portions of the spectrum licensed to
primary users as long as the latter are not significantly
affected. In this context, the concept of cognitive radio,
with its promise of reconfigurability and adaptability to
varying conditions, has emerged as a strong candidate for
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implementing communication systems that make a more
efficient use of the spectrum.

Three major cognitive radio paradigms that consider
different degrees of interaction between primary and sec-
ondary users have been identified: interweave, underlay
and overlay [1,2]. Interweave cognitive radio is concep-
tually the simplest one: the secondary devices sense the
environment to detect the presence of primary users
and transmit opportunistically only when these are silent.
Underlay cognitive radio goes one step further and per-
mits communication between secondary users as long as
the disturbance created to the primary system is below
some predefined threshold. Clearly, in this case, the sec-
ondary terminals need not only assess whether primary
users are transmitting or not but also how much inter-
ference they will create and whether this will disrupt the
primary communication. Finally, the overlay paradigm
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allows for a tight interaction between primary and sec-
ondary systems. Of course, this comes not only at the
price of a higher degree of sophistication of the secondary
terminals but also requires flexibility in the primary sys-
tem. Nevertheless, in all three cases, it is necessary to
assess the impact of the presence of secondary users on
primary systems. Several measures have been discussed
in the literature for this purpose, for example, the proba-
bilities of miss detection and interference for interweave
cognitive radio or, more in general, soft- and peak-power-
shaping interference temperature constraints [3,4]. An
alternative is to consider directly the degradation suffered
by the primary users, for example, in terms of the loss
in rate [5].

Research on the physical layer has focused on estab-
lishing basic models for the different cognitive radio
scenarios, deriving their fundamental limits, and design-
ing practical transceivers that come close to these limits.
From an information theoretic point of view, two chan-
nel models have been considered for the three cogni-
tive radio paradigms: the Gaussian interference channel
[6,7] and the cognitive radio channel [8-10]. As described
before, in the cases of interweave and underlay cognitive
radio, there is no cooperation between primary and sec-
ondary systems. This is precisely the situation described
by the interference channel. The interweave cognitive
radio paradigm corresponds to time sharing in the inter-
ference channel [6], with a sharing parameter that is fixed
by the activity of the primary users. In this case, the
challenge lies almost exclusively in sensing accurately the
primary activity, a topic that lies outside the scope of this
paper (see, e.g. [11] and references therein). Therefore,
interweave cognitive radio scenarios will not be consid-
ered here. On the other hand, in the case of underlay
cognitive radio, primary and secondary systems can trans-
mit at the same time and thus the scenario is richer
from the point of view of the communication strate-
gies that can be used. This is well characterized by the
interference channel if one places some additional restric-
tions on the model. For example, one usually restricts
the communication strategies used by the primary user
pairs to consist of point-to-point codes and single-user
decoding.

In contrast, overlay cognitive radio scenarios are not
described properly by the interference channel. The main
reason for this is that the interference channel does not
allow for any active cooperation between the user pairs.
With the aim of overcoming this limitation, the cogni-
tive radio channel was introduced in [9]. This model
extends the interference channel by assuming that the
secondary transmitter has non-causal knowledge of the
primary message. This additional knowledge allows for
asymmetric cooperation in the sense that the secondary
transmitter can help the primary users to carry their
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communication. In addition, it can combat the interfer-
ence that the primary signal creates on the secondary
receiver by means of interference cancellation or dirty-
paper coding. This asymmetric cooperation was key for
establishing the capacity of the cognitive radio channel
with weak interference [8,9].

A usual system design criterion is to maximize the
rate of transmission for the secondary users while
ensuring a minimum quality of service (QoS) for the
primary users. A key observation is that multiple trans-
mit antenna techniques are a powerful and efficient way
of controlling the disturbance created by the secondary
users [12]. Unfortunately, the use of such techniques
often leads to complex matrix optimization problems.
This has motivated the use of tools from optimiza-
tion theory for the design of transceivers. For exam-
ple, convex optimization tools were used in [13] to
study underlay cognitive radio models with single-user
decoders. An underlay scenario with rate splitting and
multiple-user decoding was considered in [14]. The prob-
lem of distributed beamforming and rate allocation in
decentralized cognitive radio networks was treated in
[15]. In a more general framework, the set of effi-
cient strategies for multiple-input single-output (MISO)
interference networks was characterized in [16,17] in
terms of beamformers. The extension of the cog-
nitive radio channel to the multiple-input multiple-
output (MIMO) case was introduced in [18]. Overlay
cognitive radio strategies for this channel with par-
tial channel state information were considered in [19].
Optimal beamforming for the coexistence of a MIMO
secondary user with a MISO primary user with non-
causal knowledge of the primary message was consid-
ered in [20]. We studied the coexistence of a MISO
secondary system with a single-input single-output pri-
mary system in [21] for different levels of channel state
information, and considered linear precoding strategies
in [22].

A comparison of the results for underlay and overlay
cognitive radio channel models suggests that the addi-
tional knowledge of the primary message at the secondary
transmitter in the cognitive radio channel leads to sig-
nificantly higher achievable rates [21]. However, a criti-
cal point is how the secondary transmitter can acquire
such knowledge in practice. Clearly, requiring the sec-
ondary transmitter to learn actively the primary mes-
sage before communicating will lead to an inevitable
loss in rate for the secondary users, especially under
practical constraints such as half duplex communica-
tion. Some authors have motivated practical scenar-
ios in which the primary message is obtained causally.
For example, the secondary users may overhear a pri-
mary automatic repeat request (ARQ) session and use
their resources during the repetition phases to help the
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primaries finish their transmission earlier or to exploit
the inefficiencies of the ARQ protocol [23,24]. Similarly,
in [25], the secondary system acquires the primary mes-
sage and uses it to help the primary system finish the
transmission earlier and then use the channel during the
idle period. However, these schemes do not fully exploit
the possibilities of overlay cognitive radio, in particu-
lar the possibility of interaction between primary and
secondary systems. The use cooperative communication
techniques [26-28] as an enabling technology for cog-
nitive radio networks was surveyed in [29]. They were
considered in [30] for single-antenna overlay cognitive
radio and evaluated in terms of outage probabilities.
The optimal secondary power allocation and phase split
in a two-phase spectrum sharing scenario was consid-
ered in [31]. In [32], the authors studied beamforming
and power allocation for the coexistence of a primary
single-input single-output (SISO) user with a secondary
single-input multiple-output or MISO that acquired the
message in a causal fashion. However, as opposed to
the work presented here, their work focused only on
the second phase of communication, without consider-
ing explicitly the first, learning phase. In [33], beam-
forming and power allocation were studied for a system,
where the secondary users relay the primary signal in
an amplify-and-forward fashion, and the performance
of the proposed system was compared to an underlay
cognitive radio scheme. The use of cooperative relaying
mechanisms for spectrum sensing and secondary user
transmission in cognitive radio systems was described
in [34,35].

1.1 Contributions and outline

We study physical-layer aspects of cognitive radio com-
munications in a scenario, where a MISO primary sys-
tem coexists with a half-duplex MIMO secondary system.
We consider two approaches: on one hand, an underlay
cognitive radio model without any cooperation between
primary and secondary systems. On the other hand, an
overlay cognitive radio model that allows for causal coop-
eration between the systems. Our goal is to compare both
strategies and assess the potential advantages of each of
them under conditions that are more realistic than the
original cognitive radio channel model in [8,9]. In par-
ticular, we require that the primary message be learned
causally by the secondary system.

We emphasize that this paper deals with idealized mod-
els. In particular, the overlay scenario requires a high
degree of cooperation between primary and secondary
systems. Similarly, quite often, the terminals have access
to larger portion of channel state information than in
practical systems. In spite of this idealization, we have
decided to take this approach to quantify the benefits
of having coordinated primary and secondary system
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(through the message-learning phase) in a quite general
way, as compared to the more ad hoc approaches in [23-
25]. Moreover, these systems are, at least in theory, imple-
mentable, unlike the less realistic scenarios where the
secondaries have non-causal knowledge of the primary
messages.

This paper extends our previous work on the coexis-
tence of a SISO primary system with a MISO secondary
link for underlay [14] and overlay systems [36] to the case
of coexisting MISO primary and MIMO secondary sys-
tems. The addition of multiple antennas at the primary
transmitter and secondary receiver results in a model that
is richer and substantially more complex. In particular, for
the overlay scenario, the new model allows not only for
MIMO communication between secondary users but also
for MIMO inter-transmitter communication. Moreover,
this new channel configuration represents a departure
from the interference network (e.g. [17]) as it also incorpo-
rates aspects from cooperative communications. Finally,
note that the convex optimization framework developed
in [13] for underlay cognitive radio is not directly applica-
ble to the strategies presented here because they result in
non-convex problems.

The main contributions of this paper refer to the coex-
istence of a MIMO secondary link with a MISO primary
system. They are the following: First (Section 3), we con-
sider an underlay strategy that includes rate splitting and
interference decoding at the secondary and characterize
completely the set of transmission parameters that max-
imize the secondary rate subject to a constraint on the
primary rate. Second (Section 4), we establish a trans-
mission strategy for cognitive radio communication over
an extended channel model that consists of an initial
learning phase, followed by a communication phase. This
strategy combines elements from cooperative communi-
cations and communication over a non-causal cognitive
radio channel that exploit the special properties of the
extended cognitive radio channel model. In addition, we
characterize the set of parameters that maximize the rate
of the secondary users under a primary rate constraint
and formulate simple algorithms to find such parame-
ters. Third (Section 5), using a simple geometrical model,
we evaluate numerically the performance of the strategies
and compare them to establish the regions in which each
of them outperforms the other. To our knowledge, this
is one of the few studies that try to quantify the advan-
tages of the information-theoretic cognitive radio channel
models under realistic conditions (i.e. without assuming
non-causal knowledge of the primary message). Finally
(Section 6), we discuss the extension of all these con-
tributions to MIMO-MIMO coexistence scenarios. The
last part (Section 7) concludes our work. For clarity of
exposition, we present the proofs of all the results in the
‘Appendices’ Section.
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2 Preliminaries

2.1 Notation

Column vectors and matrices are represented in lower
case and upper case boldface letters, respectively. || is
the absolute value of a scalar or the determinant of a
matrix, ||-|| is the Frobenius norm of a vector or matrix,
and () stands for Hermitian transpose. The trace of a
square matrix is denoted by tr{-}. Tlx = X (XHX)i1 xH
denotes the orthogonal projection operator onto the col-
umn space of X, and Iy £ I — Iy, where I is the identity
matrix, denotes the orthogonal projection operator onto
the orthogonal complement of the column space of X.
The notation X > 0 denotes that the matrix X is positive
semidefinite. All logarithms in this paper are taken to the
base of 2, and all rates are expressed in bits.

2.2 System model

We consider a MISO primary system with Nt transmit
antennas that is willing to share its channel with a half-
duplex MIMO secondary system with Nt 7 antennas at the
transmitter and NR 5 antennas at the receiver. Our goal is
to compare basic communication strategies for underlay
and overlay cognitive radio without assuming non-causal
knowledge of the primary message at the secondary trans-
mitter. For this purpose, we introduce the following two
channel models.

2.2.1 Underlay cognitive radio

We use the Gaussian MIMO/MISO interference chan-
nel as a model to study the conflict between a primary
and a secondary link in underlay cognitive radio. Each
of the transmitters sends a signal that is observed by the
intended receiver in the presence of interference (from
the other transmitter) as well as white Gaussian noise. The
™ received sample from the matched-filtered complex
baseband model is

y1() = a1 () + K xo () + 1 (8) 1)
¥y (t) = Hibxy (£) + HY %0 (8) + ma(2), )

where &1 (¢) and x,(¢) are the N1; x 1 and Nt x 1 signal
vectors sent by the primary and secondary transmitters,
respectively, Aj; is the N1; x 1 vector of the channel gains
from transmitter i € {1,2} to receiver 1, and Hj is the
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Nt x Nr matrix of channel gains from transmitter i €
{1,2} to receiver 2. The scalar y;(¢) and the vector y, ()
are the observations at the receivers, which are corrupted
by the noise processes #1(£) and n,(¢), respectively.

2.2.2 Overlay cognitive radio

Our model for communication with half-duplex devices
in an overlay cognitive radio environment is illustrated in
Figure 1 and consists of two phases. In the first phase,
the primary transmitter broadcasts its message to both
its intended receiver and the secondary transmitter. The
th received sample from the matched-filtered complex
baseband model in this phase is

) = KV ) + 1 @) (3)
¥ () = H &V (6) + ng (1), (4)

where xﬁl)(t) is the N1; x 1 signal vector sent by the
primary transmitter, /;; is the Nt x 1 vector of chan-
nel coefficients between primary transmitter and receiver,
and H; is the N1; x Nt matrix of channel coeffi-
cients between both transmitters. The scalar ygl)(t) and
the Ntp x 1 vector y (¢) are the observations at the
primary receiver and secondary transmitter, respectively,
which are corrupted by the noise processes ngl)(t) and
nt(t), respectively. Note that, in principle, the secondary
receiver can also obtain its own observation yél) of the
primary signal. However, as we shall see, this does not pro-
vide any gain for the transmission strategy proposed in
Section 4.1.

The second phase corresponds to the set-up which is
known as the cognitive radio channel. In this phase, the
secondary transmitter can make use of the knowledge of
the primary message (obtained in a causal fashion in the
first phase). The model in this phase is

y 2 (6) = WP (6) + WP (0) + 1P (2) (5)
y2(6) = HEx® (1) + HEL &P (6) + ma(0), 6)

where x?) () and xgz) (t) are the N1 x1 and Nt x 1 signal

vectors sent by the primary and secondary transmitters,
respectively, /11 is the N1 x 1 vector of channel gains from
transmitter i € {1, 2} to receiver 1, and Hjy is the Nt; X
Np,2 matrix of channel gains from transmitter i € {1,2} to

Figure 1 Two-phase transmission. Primary transmitter (Prx), secondary transmitter (Stx), primary receiver (Prx), and secondary receiver (Sgx).

vat” hu y§2>
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receiver 2. The scalar y§2)(t) and the vector yéz)(t) are the
observations at the receivers, which are corrupted by the
noise processes n§2)(t) and n;(t), respectively.

The entire transmission is carried out over n channel
uses; k channel uses are consumed during the first trans-
mission phase, and (n — k) channel uses during the second
phase. The fraction of the channel uses in the first and the
second phases is given by « = k/n and 1 — «, respectively.
We will assume that the channels remain constant during
the duration of the two phases.

Noise and channel statistics For both underlay and
overlay cognitive radio models, the noises at the receivers
are modeled by independent circularly symmetric addi-
tive white Gaussian noise processes with unit variance:
ni, nil), niz) ~ CN(0,1), ny, st ~ CN(0,I). In this paper,
we assume that all nodes have perfect channel knowl-
edge on all links. In order to evaluate the average behavior
of our transmission strategies for different realizations
of the channel coefficients, we will model the entries of
Hy, 1, Hip, ho1, and Hyp as samples from independent
circularly symmetric Gaussian processes with zero mean
with appropriate variances.

3 Underlay cognitive radio

In this section, we introduce the transmission strategy that
we consider for the underlay cognitive radio paradigm.
Our goal is to maximize the communication rate of the
secondary users while ensuring that the primary users
have a minimum QoS, defined in terms of a minimum
rate Rj.

3.1 Underlay transmission strategy

We consider the extension to MIMO secondary systems of
the underlay transmission strategy introduced in [14]. The
primary transmitter is oblivious to the presence of the sec-
ondary users and broadcasts its single-stream signal with
power P; using the covariance matrix K corresponding
to the maximum-ratio transmit (MRT) beamformer, i.e.

H
4 = Py
sage in the presence of interference from the secondary
system and noise. The secondary transmitter splits its
message into two parts (i.e. rate splitting) using possi-
bly different covariance matrices with possibly different
powers for each of the parts: K1 and K2, respectively.
The secondary receiver performs successive/interference
decoding to recover the first part of the secondary mes-
sage, then the primary message (i.e. the interference), and
finally the second part of the secondary message.
The communication rate for the primary users is

The primary receiver decodes the mes-

K hyy 7
1+ Wi (Kyy + Ko)hyy |’

R¥ 2 og (1 +
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and the rate achieved by the secondary users is

|1 + HEY, (K1 + Kop)Hop + HILK H |

R 2o
2 &1 + HILKyoHyy + HILK H|
+ log ‘I + Hglzl(z,szz‘ . (8)

The first term in (8) corresponds to the part of the sec-
ondary message decoded in the presence of interference
(both from primary transmitter and self-interference).
The second term in (8) corresponds to the part of the sec-
ondary message recovered after decoding and subtracting
the primary message. This adds the constraint that the
secondary receiver must be able to decode the primary
message as well. That is,

\I + HY Koo Hoy + HL K Hys |

Rund iy
[T + HY, Ky 2Ho|

12 — log

)

In addition, we have the constraint on the QoS for the
primary user, i.e. lend > R}. Note that by setting appro-
priately K1 and K2, we obtain the extreme cases, where
the secondary receiver decodes first the primary message
or does not decode it at all.

We remark that we do not make any assumption on
the rank of the matrices K33 or Kjo. Basic consid-
erations on the number of transmit/receive antennas
required for multiple-stream transmission apply here, too
(see e.g. [37]).

3.2 Problem formulation

The problem of finding the covariance matrices Ko,; and
K, that maximize the secondary rate under the afore-
mentioned constraints is expressed as

max R‘zmd (10a)
1(2'1,1(2,2
subject to:
Ry > Ry, (10b)
R = R, (10¢)
tr{Ksy,1 + K2} < Py, (10d)
K31 = 0,K33 >0, (10e)

where it is implicitly assumed that (10c) applies only if
Ky # 0. Note that this problem is not concave due to
the constraints (10b) and (10c). Constraint (10b) can easily
be transformed into a linear constraint. However, dealing
with (10c) is more involved.

3.3 Optimal transmission parameters
The following proposition characterizes the solution to
(10). This extends the result in [14] to MIMO secondaries.

Proposition 1. The optimization problem in (10)
admits the following solution:
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Case 1: If

R} > log|I + HY,K 1 Hyy

, (11)

then decoding the primary message at the sec-
ondary receiver is not possible at all. Without
interference decoding, we have that K5 = 0, and
K, is the covariance matrix that maximizes

(12)

log I + HY,K 5,1 Hoy + HAL K Hyo |
I+ HILK Hys
subject to the corresponding constraints. This is

equivalent to solving the following concave prob-
lem:

max log |I + HY, ®H», + HYLK Hip|  (13a)

subject to:
tr(b ®hy ) < P9, (13b)
tr{®} < Py, (13¢c)
® >0, (13d)
where
i Kk
und o F118M 1711
Pie =~ —7 — (14)
Case 2: If
H H
R < log \I + HY,X*Hy + HISK Hy |
- T+ HY,2*Hy|
(15)
where X* is the covariance matrix that solves the
concave problem
max log |I + HY, X Ho, | (16a)
subject to:
tr{i Thy} < P, (16b)
tr{X} < Py, (16¢)
Y >0, (16d)

with Pf‘n’;d as defined in (14), then it is possible to
decode the interference directly, without using rate
splitting. Thus, the optimal covariance matrices
are Koy = 0and Kyp = X*.

Case 3: In all other cases, i.e. if
o I + HY,%*Hyy + HYL K Hy, |

I+ HY, X" Ho|
< R} <log|I + H,K Hy)

, (17)

the problem is solved by K51 = y A* and K5 =
(1 — y)A*, where y €[0,1] is chosen such that
Rﬁ‘"éd = R}, and A* is the matrix that solves the
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Jollowing concave problem
max I + HY, AHo, + HYL K H | (18a)
subject to:
tr{h Ahy) < P, (18b)
tr{A} < Py, (18¢)
A >0, (18d)
with P gs defined in (14).
Proof. The proof is provided in Appendix 1. O

Remark 1. In all three cases, the solution can be effi-
ciently obtained using convex optimization tools [38].

Remark 2. The preceding results for case 3 reveal that
the same covariance matrix (up to a scaling factor) is used
for both parts of the secondary message when using rate
splitting. For the case of beamformers, which are optimal
for MISO secondaries (see e.g. [17] or [39]), this means
that it suffices to consider the same beamformer for both
parts of the secondary message (cf. [14]).

4 Overlay cognitive radio with explicit
message-learning phase

In this section, we introduce the transmission strategy
that we consider for the overlay cognitive radio paradigm.
Our goal is again to maximize the communication rate of
the secondary users while ensuring that the primary users
have a minimum QoS, defined in terms of a minimum
rate R7.

4.1 Overlay transmission strategy
Our strategy for overlay cognitive radio combines coop-
erative communication techniques, in particular decode-
and-forward (DF) [26-28], with communication for
cognitive radio channels [8,9]. The strategy makes full
use of the potential of overlay cognitive radio by estab-
lishing active asymmetric cooperation between the users.
The protocol establishes transmission of the primary mes-
sage in two phases. Moreover, the primary transmitter
chooses the system parameters as to maximize the sys-
tem efficiency while ensuring that its message is reliably
communicated. The secondary transmitter, which only
broadcasts during the second phase, not only sends its
own message but also acts as a relay for the message of the
primary users. In addition to this, some degree of coop-
eration in the process of channel estimation is required
so that the transmitters obtain the relevant channel state
information.

Let R} be the target rate of the primary users. In the
first phase, of relative duration «, the primary transmitter
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broadcasts its message using the Nt antennas with trans-
mit covariance matrix K 51) > 0. The primary receiver
and secondary transmitter listen to this transmission.
Consider the rates

RY 2 alog (1+ KK my), (19)
Re2 alog ‘1 +HIKOH, (20)

and let P;l) denote the power spent by the primary trans-
mitter in the first phase, i.e. Pil) £ (K il)}. Expressions
(19) and (20) correspond to the rates from the primary
transmitter to the primary receiver and to the secondary
transmitter in the first phase, respectively.

If the channel H; is significantly better than h;; (e.g.
tr{H{'[Ht} > ||h11]|%), then the secondary transmitter will
need less redundancy to decode the message. In particular,
if

RV <Ry <Ry, (21)

then the secondary transmitter can decode the primary
message but the primary receiver cannot. Although it
cannot decode, the primary receiver has collected use-
ful observations of the primary signal. Roughly speaking,
it only needs additional redundancy to resolve its uncer-
tainty and be able to decode [26].

Once the secondary transmitter is able to decode, the
system can switch to the second phase. The second phase
has the duration 1 — « and consists of two simultane-
ous transmissions. On one hand, primary and secondary
transmitters cooperate to resolve the uncertainty of the
primary receiver. They act as one single virtual transmitter
that uses a virtual covariance matrix

(2)
Ko = |:K1 v i| (22)

H 1
v K

to send the remaining part of the primary message over
the extended channel kL, =[ K4}, h] ] that consists of the
concatenation of both channels to the primary receiver.
The sub-matrices K 52) and K correspond to actual the
covariance matrices used by each transmitter, while the
sub-matrix ¥ corresponds to correlation of the signals
sent by each transmitter, so that they add constructively
at the receiver (cf. [18], Eq. (3)). Note that while they
act coordinately, each transmitter has an independent
power constraint (i.e. on tr{K?)} and tr{K,}, respec-
tively): the primary transmitter uses the power left after
the first phase, while the secondary uses only a fraction
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of its available power. Simultaneously with this coopera-
tive transmission, the secondary transmitter employs the
remaining power and a different covariance matrix K, for
private communication to the secondary receiver. More-
over, it can use the knowledge of the primary message
to predict the interference that the secondary receiver
will experience and precode against it using dirty paper
coding. Using this strategy, the rates

hg(tl(cohext
1 + mhlethl

R 2 (1—a)log (1 +

1
Ry2(1—a)log|l+ EHQ{ZKPHZZ ) (24)

are achievable for transmitting information about the pri-
mary message and the secondary message during the
second phase. The factor ﬁ in front of the matrices
K and K, scales up the power to take into account the
duration of the second phase.

Using DF relaying arguments (see e.g. [26,27]), it is
possible to show that the rate

Ry 2 RD 4 RO 25)

is achievable for the primary users. Note that at this point,
we do not make any assumption on the rank of the covari-
ance matrices. In particular, K}, can incorporate multiple
streams, subject to the usual constraints [37].

Remark 3. We stress that it is necessary that Ry > Rj
to start the second phase. However, enforcing Ry = Rj
does not necessarily yield the largest secondary rate. As
we will see, it is sometimes better to extend ‘artificially’ the
duration of the first phase.

Remark 4. The requirement of decoding the primary
message at the secondary transmitter in combination with
the use of dirty paper coding during the second phase ren-
ders ineffective the direct observation ygl) of the primary
message obtained by the secondary receiver obtained dur-
ing the first phase, that is, the rate (24) is already free from
interference.

4.2 Problem formulation
We are interested in finding the choice of phase splitting

o, covariance matrices K 51) K 52), K} and K, and the cor-
relation matrix W that maximize the secondary rate Ry
while ensuring a target rate R} for the primary user pair
under average power constraints P; and P, at the primary
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and secondary transmitters, respectively. This is formu-
lated mathematically as

1 H
max (1—a)log |l + ——Hy»KpHy, (26a)
a K K l—«
Kp K., ¥
subject to:
R= RS, (26b)
Ry > R}, (26¢)
atr{KV} + (1 — o) te(K P} < PL K = 0K > 0,
(26d)
tr{Kp + K} < Py, K, = 0,K; = 0,K¢o = 0, (26e)
O<a<l. (26f)

We characterize the solution to (26) in the following
section.

4.3 Optimal transmission parameters

The problem in (26) is not convex; in particular, deal-
ing with constraint (26c) is problematic. An exhaustive
search over the 6 parameters seems unfeasible too. Our
approach is to study the properties of the optimal param-
eters through a series of propositions. Then, we use them
to reduce the optimization problem to a simpler search
over a small set of bounded real-valued parameters and to
find efficient algorithms to calculate the numerical values
of the system parameters.

4.3.1 Characterization of the solution

As it was discussed in Section 4.1, our transmission strat-
egy is reasonable only if the secondary transmitter can
decode the primary message earlier than the primary
receiver. This condition appears in the characterization
of the solution to (26) and is captured by the following
definition:

Definition 1 (Cooperation condition). Let

KY¥(o) 2 argmax log|I +HI'SH|
X>0: tr{X¥}<o

(27)

for some o € R*. We say that the cooperation condition
is satisfied if

log (1+ ML KYF Py ) < log ‘1 + B (Pl)Ht’ .
(28)

The matrix KVF(o) corresponds to the waterfilling
(WF) solution with power constraint o. Note that if
the cooperation condition is not satisfied, the primary
receiver may decode the message earlier than the sec-
ondary transmitter when the transmission is optimized

for the latter. In addition, we assume that KVF (o) is
hu b
R

never proportional to the MRT covariance matrix
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This technical condition simply ensures that the transmis-
sion between transmitters is never strictly co-linear with
h11 because this case would virtually turn the primary
transmitter into a single-antenna transmitter.

The first observation that we make regarding the solu-
tion to (26) concerns the power used by the transmitters.
Over the two phases, the primary transmitter uses all
its available power. Note that this power is in general
distributed unequally over the phases. Similarly, the sec-
ondary transmitter also exhausts all its power, distributing
it between the two simultaneous transmissions: cooper-
ation and private communication. This is stated in the
following proposition.

Proposition 2. The optimal transmission strategy in
(26) makes use of all the available power at the primary
and secondary transmitters, that is,

1 tr{Kp + K.} = P,
2 atrfK{"} + (1 — o) trfK?} = Py.

Proof. The proof is provided in Appendix 2. O

Our second observation is that the presence of the sec-
ondary transmitter always pushes the primary system to
the limit of decodability as described by the following
proposition:

Proposition 3. The set of parameters that solves the
optimization problem in (26) satisfies

R +R? =R} (29)

(i.e. constraint (26¢) with equality) if the cooperation con-
dition is satisfied.

Proof. The proof is provided in Appendix 3. O

This result is a consequence of the tight interaction
between users allowed in overlay cognitive radio scenar-
ios. On one hand, the secondary system makes use of its
resources in the way that maximizes the rate R;. At the
same time, the primary transmitter cooperates towards
this goal by distributing its resources between the two
phases in the way that Ry is maximized. For example, it
may choose a covariance matrix K 51) that makes the first
phase shorter if this is beneficial in terms of secondary
rate.

We can make a similar observation with respect to the
communication between transmitters in the first phase.

Proposition 4. The set of parameters that solve the
optimization problem in (26) satisfies
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Ro=R} (30)
(i.e. constraint (26b) with equality) unless the optimal

covariance matrix K gl) is proportional to the orthogonal

k]
71112

projector onto hi1, that is, proportional to

Proof. The proof is provided in Appendix 4. O

This result can be interpreted in terms of the duration
of the phases. In the cases where (30) holds, the system
switches from first phase to second phase as soon as the
secondary transmitter can decode the primary message.
However, (30) is not always satisfied; hence, this is not
true in general. In fact, it is sometimes beneficial to extend
‘artificially’ the first phase in order to achieve a larger
secondary rate. For example, if the primary transmitter
only has one antenna, then we cannot find non-trivial
conditions that ensure Ry = Rj]. The reason for this is
that with only one antenna, there is no way to distin-
guish directions, i.e. we always transmit in the direction
to the primary receiver. Similarly, it was observed in [27]
in the context of DF for single-antenna Gaussian relay
channels that the optimal split of phases has to be found
numerically.

Although Proposition 4 only gives a partial character-
ization of the covariance matrix K 51) , it turns out to be
very useful when it comes to finding its value numerically.
Combined with Proposition 2, it allows us to derive Algo-
rithm 1 that efficiently finds K 51) given the optimal values
of the phase split o and the power used by the primary in
the first phase (i.e. Pil) 2 (K gl)}).

Algorithm 1 Find optimal covariance matrix

1: procedure OPTIMAL—COVARIANCE(O(,Pil))
2 Py PV

3: K¢ < argmax log |I+H{'12Ht|
>0: tr{Z)<P

4 ifalog|l + HI'K(H;| < R} then
5 KV
6: else
7: P, Pil)
) h k)
8 K < Gz Ph
: if o log |[I + HI'KH,| > R} then
10 KV <Ky
11: else
12: BISECTION(R}, P\, €)
13: end if
14: end if
15: return K il)

16: end procedure
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Algorithm 2 Bisection method

1: procedure BISECTION(RY, P, €)
2. Ph,top < P
3 Ph,bot < 0
4 while true do
5 Py« w
6 P« P— Py
kY
k K < P2
8: K¢ < argmax log|I + H(Ky + X)H,|
>0:tr{ T} <Py
9 gap < alog|I + H (Ky, + Kp)H¢| — R}
10: if gap < 0 then
11: Phtop < Pn
12: else if ¢ < gap then
13: Prpot < Pn
14: else
15: K'Y « Ky + K¢
16: break
17: end if
18: end while
19: return K il)

20: end procedure

Algorithm 1 starts by verifying (line 4) if a solution
to (26b) exists for the given level of power Pil) by allo-
cating it freely, as in K¢, to maximize the expression in
line 3. Provided that such solution exists, the algorithm
verifies if MRT beamforming to the primary receiver
(i.e. in the direction of k3, using the covariance matrix
K1) is sufficient for decoding at the secondary transmit-
ter (26b) (line 9). If MRT does not satisfy (26b), then
it uses the bisection method (Algorithm 2) to find the
covariance matrix with largest component in the direc-
tion of ki that satisfies (26b). The search finishes when
the rate achieved for this choice of covariance matrix
exceeds the target rate R} by less than a predefined thresh-
old €. The maximization in Algorithm 1 (line 3) and
in the bisection method (Algorithm 2, line 8) can be
written as standard waterfilling problems, which can be
efficiently approximated or solved exactly (see e.g. [40]).
The following corollary establishes the the optimality of
Algorithm 1.

Corollary 1. Given the optimal values of @ and power
Pﬁl) used by the primary in the first phase, Algorithm 1

finds the optimal covariance matrix K (11) if the coopera-
tion condition is satisfied.

Proof. The proof is provided in Appendix 5. O

Remark 5. Note that, by construction, if a call to
Algorithm 1 results in the MRT covariance matrix for
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some (a,Pil)), then it will also result in the MRT covari-
ance matrix for any (, 1351)) with 1351) > Pil).

We conclude this section by characterizing the optimal
covariance matrices used in the second phase.

Proposition 5. The optimal covariance matrices in the
second phase are given by

@ _ p@ ki k)
1 — Pl 27 r —4r 27
171l (17221
@ hyH5
v =, /pPp 1L (31)
A1l 121 |l

and K, is the solution to the following concave problem:

1
ms?x(l —a)log |I + EHQ;SZHZZ (32a)
subject to:
tr(h5 QA1) < Py, (32b)
tr{R} =Py — P, R >0, (32¢)
where
@ » P1—atr{K")
pP 2 17T ] (33)
l—«o
5 2
(Ilhull VPP + ikl 1’}0,)
P2 (1—a) — -1,
Ri—Ry
27T — 1
(34)
for some Py €[ 0, Py] such that Piy,; > 0.
Proof. The proof is provided in Appendix 6. O

The interpretation of the optimal values for K (12)
and K is straightforward: they are adapted to their
respective channels and combine coherently at the
receiver. The matrix K, used for the secondary com-
munication is chosen to maximize the secondary rate
without violating the interference constraint at the
primary.

In the case of secondary MISO systems (i.e. /12 and
hy; instead of Hyy and Hyy, respectively), there is no loss
in restricting the covariance matrix K, at the secondary
transmitter to have rank 1, i.e. Kp = (P2 — Pr)wpwg . The
following corollary characterizes the optimal beamform-
ing vector wp.

Corollary 2. The optimal beamformer w;, is

1
I, h2»
T
11T, s |

Hh21 h22
“ [y, h22 ”

wp = VA +V/1-2 (35)
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with
i Pint
< —7 1t
A= )»MRTP if AMRrT < PPy 56
_ P .
1 11? (P2 —Py) otherwise,
2
hy
)‘MRT = M (37)

2
(123

with Pjy¢ as defined in (34), for some P, €[ 0, Py] such that
Pint > 0.

Proof. The proof is provided in Appendix 7. O

In the MISO case, we see more clearly that the beam-
former w;, used for the secondary communication is cho-
sen to be the one with largest projection over hyy that
satisfies the interference constraint, which is determined
by the projection over ky; [13,16].

4.3.2 Analgorithm to find the optimal parameters
The results from the previous section allow us to reduce
the solution to (26) to a search over three real-valued
parameters: the phase split «, the power spent by the pri-
mary in the first phase (i.e. Pil) £ K il)}), and the
distribution of power between relaying and private com-
munication at the secondary (e.g. P, = tr{K;}). Each
of these parameters is defined in a closed and bounded
interval. In contrast, solving (26) directly requires search
over one real-valued parameter and five complex-valued
matrices. We have summarized this simplified search in
Algorithm 3, which we describe in the following:

To find the solution, we perform a search over the phase
split o and the admissible power for the primary trans-
mitter in the first phase Pil) . Given these two values,

the matrix K ?) is found using Algorithm 1, whereas K 52)
is readily determined. To obtain the remaining matrices
K, K, and ¥, we perform a search over the different splits
of secondary power using the results in Proposition 5. The
optimal choice of parameters is the one that yields the
largest secondary rate Rj.

5 Numerical evaluation

5.1 Geometrical model

To present our results, we will use the simple geometrical
model in Figure 2, in which the different nodes are placed
on a plane. The relative positioning of the nodes is sum-
marized by the distance between each pair of nodes. We
model the block flat fading channel coefficient between
two nodes as

1

\/d»ﬁhij,

where djj is the distance between them, p is the path loss

h (38)

exponent, and ilij ~ CN(0,1). In the case of channel
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Algorithm 3 Algorithm to find the optimal parameters

1: fora <[0,...,1] do
2 for Pil) <~o0,. ..,%] do

3: Pﬁz) <« Pgl;apil)
-
& K" « OPTIMAL-COVARIANCE(a, P\")
: @ (2) huhl
> Ky =P
6: for P, <[0,...,Py] do
ho h
7: Kr < Pr 2%
llA21 |l Y
. @ p ik
& Y Py P g
9: Obtain K,
10: Compute Ry
11: end for
12: end for
13: end for

vectors or matrices, each of the entries is independently
modeled as in (38).

For convenience, we normalize all distances with
respect to the distance between the primary users
(iie. di1 = 1). We will consider the square surface
{(x,9) x €[0,1], ¥y €[0,1]}, and vary the position
of the secondary nodes (relative to the primary nodes)
over a regular square grid of size 11 x 11, that is,
we will move the secondary transmitter and receiver
over this grid, always parallel to the line between pri-
mary transmitter and receiver (as in Figure 2). The pri-
mary transmitter and receiver will be fixed at positions
(0,0.5) (black filled circle) and (1,0.5) (black filled box),
respectively.

In the plots, a pair of coordinates (x,y) identifies the
position of the secondary transmitter. All our results con-
sider dyy = 1/4 while the remaining distances dj3, do;
and d vary as described before. This models a secondary
middle-range communication in the presence of primary
users.

5.2 Note on the strategies
The overlay strategy in Section 4.1 yields R, = 0 for
some channel realizations. The reason for this is that

Prx

Prx

Figure 2 Geometrical model: primary transmitter (Prx),
secondary transmitter (Stx), primary receiver (Pryx), and

secondary receiver (Sgx).
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constraint (26b) cannot always be fulfilled for Ry > 0. In
such a scenario, a cognitive radio system would switch to
a different transmission strategy that can provide a non-
zero secondary rate Ry. For example, it could switch to the
underlay transmission mode presented here. In this way,
the hybrid overlay-underlay strategy would never perform
worse than the pure underlay strategy. However, includ-
ing such a functionality in our experiments is against the
nature of our work, which is to compare the underlay and
overlay scenarios, and evaluate the effect of the learning
phase. For this reason, we implement the strategies exactly
as described in Sections 3.1 and 4.1.

5.3 Complexity of the strategies

The complexity of the underlay solution varies for the
different cases in Proposition 1, which depend on the
instantaneous channel conditions. For cases 1 and 2,
the complexity is that of solving one concave problem
((13) and (16), respectively). For case 3, the complexity is
that of solving two concave problems: (16) (to check the
constraint) and (18), and finding the optimal split y (e.g.
using a loop or a bisection method). For MISO secon-
daries, the complexity can be lowered (e.g. using Remark 2
and [14]).

In contrast, Algorithm 3 finds the optimal overlay trans-
mission parameters by searching over three-real valued
parameters defined on a closed and bounded space. Up
to a scaling factor that depends on the powers, the matri-
ces K'¥, K, and ¥ can be determined before hand. The

covariance matrix K gl) needs to be determined for each
pair (o, tr{K}) using Algorithm 1. This algorithm relies on
the waterfilling and bisection methods that can be imple-
mented very efficiently (see e.g. [40]). In addition, note
that Remark 5 can be used to minimize the number of calls
to Algorithm 1. The optimal K, needs to be determined

for each triple («, Pil), P,) by solving the concave problem
in (32), which can also be implemented efficiently. Solving
this last problem can be avoided in the case where K, has
rank 1 using the results in Corollary 2.

When compared, it is clear that the complexity of solv-
ing the overlay problem is significantly larger than that of
the underlay problem, in particular for the case where K,
is not rank 1. Nevertheless, the solution to both problems
reduces to solving concave problems, for which a large
variety of efficient algorithms exist (see e.g. [38]).

5.4 Simulation results

We have performed extensive simulations of our under-
lay and overlay cognitive radio strategies to assess their
individual performances and merits relative to each other.
We show here results for a few representative cases and
comment in the end on the differences for other system
parameters.
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In the results in Figures 3, 4 and 5 the transmitters
are equipped with Nt; = Nt = 2 antennas, and the
receivers with one single antenna. In contrast, in Figure 6,
we study the behavior for varying N1; and Nty and
single-antenna receivers. In all cases, the path loss expo-
nent is fixed to p = 3, and the primary power is set to P; =
10 dB. The secondary power is P, = 1 dB for the results in
Figures 3 to 5 and variable for Figure 6. We assume that the
primary system has a target rate R} that corresponds to
a fraction p of its instantaneous point-to-point Shannon
capacity, that is,

1= plog(l + [hn])* Py). (39)
We refer to p as the load factor of the primary system.
We consider p = 0.75 for Figures 3 to 5, and p = 1 for
Figure 6. Every point in the plots represents the average
over 5 - 10* independent realizations of the channels. We
focus on the results for the overlay strategy and the com-
parison between the strategies because the results for the
underlay strategy alone do not differ qualitatively from the
single-antenna case in [14].

Figure 3 shows the average of the secondary rate Ry (in
bits per channel use, bpcu) achieved by our overlay cog-
nitive radio strategy for N1 = N2 = 2,Nrp = 1,
Py = 10dB, P, = 1dB,p = 3 and p = 0.75. To set
the numerical values in the figure in a context note that
if the secondaries were alone in the scenario, the ergodic

Page 12 of 21

capacity would be 6.96 bpcu. In comparison, the high-
est average secondary rate in Figure 3 is Ry = 6.29 bpcu
and is obtained when primary and secondary transmitters
are closely located. This represents 90% of the afore-
mentioned capacity. As one would expect, the average
secondary rate becomes lower as the two transmitters are
separated.

It is more interesting to look at the advantage in average
rate over the underlay strategy. Figure 4 shows the ratio
between the average of the secondary rate for overlay Ry
and the average of the secondary rate for underlay Rg“d
for NT,I = NT,2 = 2,NR,2 =1, P1 =10 dB, P2 =1 dB,
p = 3 and p = 0.75. The results are somewhat surpris-
ing in the sense that the largest-advantage region does
not correspond to the largest-secondary-rate region, that
is, the maximum in Figure 4 is not obtained for (x,y) =
(0,0.5) but rather for (x,y) =~ (0.4,0.5). The reason for
this is that for (x,y) = (0,0.5), the underlay strategy
also benefits from closely located transmitters, thanks to
the interference decoding functionalities. In fact, if one
removes this functionality in the underlay transmission
mode, the results change significantly. In that case, the
overlay system is overwhelmingly better than the underlay
strategy.

In addition, note that the advantage of the overlay sys-
tem diminishes as the two transmitters are separated. In
fact, in some regions, using the underlay strategy is bet-
ter in terms of average secondary rate. The reason for

Y position

0 0.1 0.2 0.3 0.4

0.5 0.6 0.7 0.8 0.9 1

X position

Figure 3 Overlay cognitive radio achievable rate R, averaged over channel realizations.
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Y position
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X position

Figure 4 Ratio of the average of the rates R, (overlay) and Rg"d (underlay).
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Figure 5 Percentage of channel realizations yielding an overlay rate R; larger than the underlay rate Rg“d.
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Figure 6 Averaged rates R;"d (underlay) and R; (overlay) for different secondary powers and transmit antenna configurations.

this is simple: in these regions, the first phase is rela-
tively long (e.g. @ > 0.5), and the higher sophistication of
the secondary transmitter (i.e. dirty-paper coding, coop-
erative transmission) cannot compensate for the loss in
secondary rate due to the passive first phase. Thus, the
underlay approach, even if it has to transmit mainly in the
zero-forcing direction to avoid interference, can make a
more efficient use of the resources and provide a larger
rate to the secondary users.

In order to implement a system that combines both
strategies (as discussed in Section 5.2), it is desirable
to know how often they outperform each other. This is
shown in Figure 5, in terms of the percentage of chan-
nel realizations for which the overlay strategy yields a
larger rate than the underlay strategy for Nt = Nty =
2,Nr2 =1,P; =10dB, P, = 1dB,p = 3and p = 0.75.
Again, we observe that the region with largest rate cor-
responding to the overlay strategy does not correspond
exactly to the collocation of transmitters. In the figure, we
observe that, except for a small region where overlay is
better over 90% of the time, there is room for significant
improvement if the system implements both strategies
and chooses the best one in each block.

Regarding variations in the scenario, we have observed
the following general trends. The secondary rate (Figure 3)
increases with both the number of antennas and the sec-
ondary power as one would expect. More interestingly,
as we increase the secondary power P, or the number

of antennas, the maximum in Figure 4 (i.e. the advan-
tage of overlay in terms of average rate) increases its value
and shifts its position towards the primary transmitter.
The load factor p is the parameter that has the most
impact: the largest advantages of the overlay strategy are
obtained for high primary load factors. For example, if
p = 1, the maximum advantage corresponds to a factor of
approximately 2.55. In contrast, for small loads, the advan-
tage might be too small to compensate for the additional
complexity when compared to the underlay strategy; for
example, in the case of a single-antenna primary system,
we observed an advantage factor of just 1.15 (see [36]).
Similar conclusions can be drawn for Figure 5: the max-
imum tends to move towards the primary transmitter as
we increase the secondary power or the number of anten-
nas and the region where overlay is better most of the
time becomes larger. Finally, for larger path losses (e.g.

p = 4), the results become more extreme: the positions of

the maxima in Figures 3 to 5 remain the same, but their
values are higher. In contrast, when the transmitters are
separated, the underlay scheme yields a larger advantage
than the one presented here.

Finally, Figure 6 shows the behavior of the underlay and
overlay strategies in terms of the average of the rates and
R and Ry, respectively, as a function of the secondary
power P, for different transmit antenna configurations
such that Nt,; + N12 = 5and Nrp = 1 for P; = 10dBin
a fully loaded system, i.e. p = 1, with path loss exponent
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p = 3. The secondary transmitter is placed at position
(x,5) = (0.3,0.5), i.e. on the line between the primary
users. The main observation is that, in terms of secondary
rate, it is better to deploy the antennas at the secondary
transmitter rather than at the primary transmitter. In the
underlay case, this is rather straightforward for the sec-
ondary system cannot benefit from the antennas at the
primary. In the overlay case, this observation implies that
the gains obtained via spatial diversity (i.e. larger Nt )
increase faster than those obtained by shortening the
learning phase (i.e. larger Nt,;1). However, observe that
increasing Nt suffers from a law of diminishing returns
and that beyond a certain value the gains are minor.
Regarding the changes in the behavior for varying sec-
ondary power Py, we observe the following general trends.
For very low Py, all the strategies are power-constrained,
and thus the gap between underlay and overlay vanishes.
This effect is more pronounced for p < 1, where the
primary can tolerate some interference. The gap between
the strategies widens as P, increases, meaning, than when
the secondary transmitter is no longer power limited, the
use of spatial shaping alone fails to exploit the available
resources. A special, extreme case is the underlay strategy
with N1 = 1: lacking spatial resources, it cannot make
any use of a fully loaded primary channel, i.e. R, = 0
independently of P;.

6 Coexistence with MIMO primary systems

The discussion in this paper has been restricted to
the coexistence of a MIMO secondary system with a
MISO primary link. The results presented here cannot
be extended in their totality to the case of MIMO pri-
maries neither for underlay nor for overlay. However, as
we will see in this section, under some reasonable assump-
tions, they carry over to scenarios with MIMO primary
systems.

In the case of underlay cognitive radio, it is important
to emphasize the underlying assumption that the pri-
mary users are oblivious to the presence of secondary
users. This effectively decouples the design of the optimal
secondary transmitter from the primary transmit param-
eters. Moreover, note that the effect of the primary users
enters the optimization in (10) through constraints (10b)
and (10c). The validity of Lemma 1 which plays a fun-
damental role in dealing with the non-convexity of (10c)
does not rely on any assumption about the primary trans-
mit covariance matrix and thus applies to the primary
MIMO case as well. In contrast, the simple transforma-
tion of (10b) into a linear constraint (i.e. (40b)) is no
longer possible in the MIMO primary case. If, however,
this constraint is replaced by a constraint that is linear
or convex in (K271, K21), then the results in Proposition 1
remain valid. For example, one may define a constraint
analog to (10b) by considering the worst-interference
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direction in the span of Hy;. Alternatively, if the pri-
mary system uses single-stream transmission with fixed
receiver beamformer, the results presented here remain
valid.

In the case of the overlay cognitive radio strategy, the
problem is more involved. In addition to a similar prob-
lem regarding constraint (26¢), the transmit strategies of
primary and secondary systems are necessarily coupled
by the very nature of the extended cognitive radio chan-
nel (i.e. by the message-learning phase). Moreover, in the
case of MIMO primaries, the optimization over the vir-
tual joint covariance matrix K, is more complex than
in the case of MISO primaries, where beamforming was
optimal, and thus K., could be determined easily. This
is issue is especially important when considering efficient
algorithms to find the optimal parameters. Notwithstand-
ing these considerations, the results in this paper remain
valid if the primary system uses single-stream transmis-
sion with fixed receive beamformer, as in the case of
underlay.

7 Conclusion

In this paper, we have studied the transmission strategies
for underlay cognitive radio and overlay cognitive radio
with an explicit learning phase, in which the secondary
transmitter acquires the primary message. Our strategy
for underlay uses interference decoding and exploits spa-
tial resources using multi-antenna methods. For the over-
lay case, we have combined cooperative communication
techniques (decode-and-forward relaying) with commu-
nication over a cognitive radio channel (cooperation and
interference control at the primary receiver and interfer-
ence pre-cancellation at the secondary transmitter) using
multi-antenna methods. For both strategies, we have char-
acterized the set of system parameters that maximize the
secondary rate while ensuring a fixed rate for the primary
system.

Finally, we have evaluated the performance of the strate-
gies relative to each other in order to quantify the advan-
tages and disadvantages of the degrees of coordination (i.e.
uncoordinated for underlay vs. message-learning phase
and cooperative communication for overlay). We have
observed that for a wide range of channel conditions,
when the primary and secondary transmitters are close
to each other, the overlay strategy provides a significant
advantage over the underlay strategy. This gain is partic-
ularly relevant for those scenarios where the secondary
is interference-limited rather than power-limited. How-
ever, as the distance between transmitters becomes larger,
this advantage vanishes and in fact at some point under-
lay starts outperforming overlay. Our analysis reveals that
a combination of underlay and overlay strategies is neces-
sary to exploit best the available resources, especially if the
users in the system do not have fixed positions.
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Appendices

Appendix 1

Proof of proposition 1

We first prove an auxiliary lemma that will be used
in the proof of Proposition 1. Note that using simple
manipulations, the optimization problem in (10) can be
reformulated as

max |I+H§2(K2,1 +Ko2)Ho +H11{2K1H12| _Rlllgd
2

K1,Ko,
(40a)

subject to:
tr{f] (Ko, + Kop)har} < P, (40b)
RS = Ry, (40¢)
tr{Ks,1 + K2} < Py, (40d)
K1 = 0,K33 =0, (40e)

with Pﬂﬂd as defined in (14).

We will show now that when considering case 3, there
is no loss of generality in restricting constraint (40c) to be
an equality.

Lemma 1. Any optimal point that falls within case 3 can
be attained by a pair of covariance matrices (K 2,1,I~( 22)
such that K5 satisfies constraint (40c) with equality.

Proof. Let K1 and K 5 solve the optimization problem
and assume that

R (Kyp) > RY, (41)

where the notation R‘fgd(l( 2,2) stresses out the
dependency of R‘I‘Ed on Kjj. Similarly, the notation
R‘z‘“d (K2,1,K2,) will stress out the dependency of R‘2lnd on
K;; and Kop5.

First, we consider the case K31 = 0. Let X* be the
solution to problem (16) (in case 2) and recall that

R(Z*) < RY,
REM(0, Ky0) < RAM(0, %),

(42)
(43)
for case 3. Now, construct the new covariance matrix

Koy =yKap + (1—y)Z* (44)

Note that for any y €[0, 1], this matrix satisfies constrains

(40b), (40d) and (40e), and
R™(0,K»2) < RE™(0,K>p), (45)

by the concavity property of the log-determinant.
R‘fﬁd (K2,2) is a continuous function of y that satisfies

R,y = RIS (K > R > RBA(EY) = R, .
(46)

Thus, by choosing X appropriately, we construct either an
admissible matrix that yields a higher secondary rate or
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a matrix yielding the same secondary rate, and such that
(40c) is satisfied with equality.

We now consider the case Ky; # 0. Construct the
following two covariance matrices

Ky1 = (1 —y)Kay,
Koy = Kop + yKa

(47)
(48)

for y €[0,1]. Note that by construction, both K 2,1 and
K> are positive semi-definite. Moreover, this choice of
covariance matrices satisfies

Ko+ Kop = K1 + Ko, (49)
and thus the constraints (40b), (40d) and (40e) are sat-
isfied, and the first term in the objective function (40a)
remains unchanged. However, noting that

A+B+ C A+ B
|A+ B+ C| < |A + B] (50)
|B+ C| | B
for A = 0,C > 0 and B > 0, we see that
RN (Kap) = RIS (K>2) (51)

for any y €[0,1]. Moreover, R‘I‘Ed (f(z,g) is a non-
increasing and continuous function of y. If, for any y €
(0, 1], we have that

RN (Kap) > R (Ka2) = RY, (52)
then we have contradicted our initial hypothesis. Other-
wise, by the non-increasing property, the pair of matrices
Ky = Ky3+Kp1and Ky = 0 (i.e. y = 1) mustalso be a
valid solution. Thus, we can use the first part of the proof

to show that there is no loss of generality in restricting
(40c) to be an equality. O

We now proceed to prove Proposition 1.

Proof of Proposition 1. The proof for case 1 follows from
the fact that it is not possible for the secondary receiver
to decode the primary message (for the case of equality in
(11), any K72 # 0 would render decoding of the primary
message impossible). Thus, the best that the transmitter
can do is to choose the covariance matrix that maximizes
(12). The formulation in (13) follows by noting that the
denominator in (12) is independent from the covariance
matrix.

The proof for case 2 follows easily by noting that the
solution to (16) is the best the secondary system can do
given the power and interference constraints.
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To prove the solution for case 3, we make use of
Lemma 1 to rewrite the optimization problem in (40) as

max |I+H (K21 + Ko2)Ho» —|—H12K1H12|

K2,1,K22
(53a)

subject to:
tr{i] (Ko + Koo)hy ) < PR, (53b)
RY% =R, (53¢)
tr{Ky,1 + K2} < Py, (53d)
K31 = 0,K3 = 0. (53e)

Note that only the first term in the objective function is
relevant for the optimization. Moreover, except for (53c),
the maximization only depends on K1, K52 through
their sum, which we denote by A. The general solution
(K2,1,K2,) can be obtained by computing the optimal A*
disregarding constraint (53c) and then setting

Ky =yA*%,
Ko = (1 —-yp)A,

(54)
(55)

with y €[0,1], such that R‘"“jl = Rj. Note that such y
must exist because R‘l”id is continuous in y and

RN, 1 < Ry < RS, o, (56)
by assumption for case 3. O
Appendix 2
Proof of proposition 2

We shall make use of the following well-known Lemma in
our arguments:
Lemma 2. The function

Blog (57)

1
I+ ﬂBHCB‘

defined for B € (0,1], any B and any C > 0 (with
appropriate dimensions) is strictly increasing in .

Proof. We have that

I+ BHCB‘ Z,Blog(1+ﬂ>

where A; and r are the singular values and the rank of
B CB, respectively. It is easy to check that the first deriva-
tive of each of the terms in the sum is positive for § > 0,
proving that (57) is strictly increasing in 8. O

Blog (58)

Proof of proposition 2. First, we prove statement 1 by
contradiction. Assume that the set of parameters that
attains the optimum satisfies

tr{Kp + K} < Pa. (59)
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Consider two new covariance matrices
Ky = ypKyp,
K, = yK..

(60)
(61)

Since R?) is a continuous function of both tr{K}} and
tr{K}, we can find (sufficiently small) y, > 1and y; > 1
that do not violate constraint (26d) and such that Riz)
evaluated for K. p and K remains unchanged (and hence
satisfy (26¢)). However, using K p Yields a larger secondary
rate Ry, which contradicts our assumption that the set of
parameters solved the optimization problem.

We now prove statement 2 also by contradiction.
Assume that the optimal choice of parameters yields

atr{KP} + (1 — o) tr{KP} < Py, (62)

where K 51) is the optimal choice of covariance matrix.

~ (1
Now, define the matrix K 5 - yK gl) for some y > 1,

such that

atr(K )+ (1 — o) tr(KP) < Py, (63)
This choice of matrix yields
RY 2 4 log (1 + LR hu) (64)
— alog (1 +yhl K(l)h11> (65)
> alog (1+ MK h ) (66)
=rY (67)
and
Re2 alog ‘1 + HIKS Ht‘ (68)
= alog |1 + yHI'K{VH| (69)
r
=a Y log(l+y2) (70)
i=1
r
>ay log(1+ 1) (71)
i=1
= alog ‘I +HI'K\VH, (72)
=R, (73)

where A; and r are the singular values and the rank of
H.K il)H{{ , respectively. Thus, we have that

R R o s
f?t > R;,

(74)
(75)

and we can find a shorter duration of the first phase @ < «
such that the rates, evaluated at &, satisfy

RY@ + R @) = R},
Ri(@) > Ry.

(76)
(77)
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At the same time, we have increased the secondary rate
by Lemma 2, thus contradicting our hypothesis on the
optimality of the set of parameters.

Appendix 3

Proof of Proposition 3

Assume that the set of parameters that attains the maxi-
mum in (26) satisfies

RPVEKY) +R? > R},
R(KY) > RY,

(78)
(79)

where K il) is the optimal covariance matrix. The notation
remarks the dependency of Rgl) and R; on the covariance
matrix K ﬁl) . Let 0* denote the power used by this covari-
ance matrix, i.e. o* £ tr{K gl)}. We divide the proof into
two cases.

First, consider the case K(ll) £ KY¥(o*) with KVE(6*)
as defined in (27). Both R(ll) and R; are continuous func-
tions of the entries of the covariance matrix, and the
log-det operator is concave on the set of Hermitian posi-
tive semi-definite matrices with bounded trace. Therefore,
we can find a Hermitian positive semi-definite covariance
matrix K11, with |[K1; — K(ll) | small enough such that

R(ll)(f(n) + R§2) > R},
Ri(K11) > Rj.

(80)
(81)

Now, since Ril), Ry, and Riz) are all continuous in o, we
can find a shorter duration for the first phase, i.e. @ < «,
such that the two constraints are still satisfied. However,
by Lemma 2 in Appendix 2, shortening the first phase
strictly increases the secondary rate Ry, contradicting our
assumption on the optimality of the set of parameters.

In the case where K ?) = KYF the rate R; is already

maximum. In this case, if either K 52) # 0or K, # 0, we
can use similar arguments to those used in the proof of
Proposition 2 to arrive at a contradiction. In contrast, if
K (12) = 0 and K; = 0, we cannot always ensure that (26c)
is satisfied with equality. However, in the cases where we
cannot reach a contradiction, we can use that R(12) = 0and
tr{K ?)} = % (cf. Proposition 2). Combined with the fact
that the solution to (26) must satisfy Ril) > R}, we can
show that

alog (1+ LK i) = alog ‘1 + HKYEH,
(82)

thus violating the cooperation condition.
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Appendix 4

Proof of Proposition 4

We prove the first part of the claim by contradiction.
Assume that the optimal choice of parameters yields

R =alog|l + H'K\"H,| > R}, (83)

where K (11) is the optimal covariance matrix. Note that we
can express K 51) as

K =1, k" + 1, K" (84)
= p1X1+ BrXo, (85)
1 1
where g1 = [y, KV = T K|, %

By, KD, and 3y = BT K for i € (1,2} with
Bi > 0. Otherwise, set ¥; = O for i such that g = 0.
Assuming Bi > 0 fori € {1,2}, both X; and X have unit
norm. Now, let

hy K
Kj= 1. (86)
(3w
Note that K|| = I,,. Thus, we have
g, Ky = Ky, (87)
M, K| =0. (88)

Now define a new matrix

~ (1) 1

K, =yK\" 4 K| = yB131 + yPaZa + €K, (89)

~ (1
where € = (1—y)(81+B2). Note that Kg ) is a valid choice
of covariance matrix because it is the sum of positive
~ (1

semi-definite Hermitian matrices and satisfies tr{K g )} =
tr{K 51) }. Since the determinant is a continuous function of
the entries of the matrix, and the logarithm is a continu-

ous function of its argument, we can find 0 < y < 1 such
that

Rt éalog ’I—l—H{{f((lDHt‘ >RI. (90)
This choice of K ?) yields
jggl) £ alog (1 + hﬁi(gl)hu) (91)
=« log (1 + h{{l ()/,3121 + EKH) hll) (92)
= alog (1+ ypik}) E1hyy + el | K1) (93)
> alog (14 yBiH Sk + Ghﬁzlhll) (94)
=alog(1+ (B1+ po(1 — y)H T 1h11) (95)
> alog (14 /31h]1{1)31h11) (96)
=rY. (97)
The inequality in (94) is due to the fact that
WKy > B 20 > 0. (98)
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The inequality in (96) follows if 83 > 0 by the fact that 0 <
y < 1. Hence, for this new choice of covariance matrix

~ (1
K; ), we have
R +R? > R},
Rt > Ri

(99)
(100)

Now, we can find a shorter duration of the first phase & <
a, such that the rates evaluated at « satisfy

Y@ +rP @) > Ry,
Ru(@) > R3.

(101)
(102)
At the same time, we have increased the secondary rate by
Lemma 2 in Appendix 2, thus contradicting our hypothe-

sis on the optimality of the set of parameters.
Finally, note that 8, = 0 implies that

M, K\ = kY, (103)

1) . . . .
so that K § ) is a Hermitian rank-one covariance matrix.

Therefore, we must have

W _ Iy
! [k,

(104)
for some p € R. This concludes the proof.

Appendix 5
Proof of Corollary 1
Assume that K 51) is the optimal covariance matrix in (26),

and let K (11) be the output of Algorithm 1. Note that by

construction of the algorithm tr{f( ;1)} = tr{K gl)}. We

divide the proof into two parts:

1) _ hh
HKY = o

for some p € R (i.e. it corresponds to

. (1
the MRT beamformer to receiver 1), then trivially K i ' =

K (11) as this is the initial guess of the algorithm (lines 7 and
8) and it satisfies

.
alog|l + HIR\ H,| > R, (105)

Thus, this is the output of the algorithm (lines 9 and 10).
For the case when K (11) does not correspond to the MRT
beamformer, we prove the optimality of the algorithm by

- (1
contradiction. Assume K (1 ) #K (11) and note that

alog ‘I + H{*Kﬁ“Ht( =R}, (106)

o log ’I + H{{kil)Ht‘ =Rj.

(107)

The equality in (106) comes from Proposition 4 and the
fact that K 51) is the optimal covariance matrix. The equal-
ity in (107) is ensured by construction of the algorithm in
the limit of arbitrary numerical precision in the bisection
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method, i.e. ¢ — 0 (lines 9 to 17 in Algorithm 2). In
addition, we have

hll-[lf(?)hu > hll-llK(ll)hll (108)

because by construction, Algorithm 1 finds the matrix
with largest component in the direction of /;; that satis-
fies (26b) with equality. Thus,

.
ROKY) + RY > RS, (109)

R&Y) =Ry (110)

We can now proceed as in Proposition 3 to contradict our
initial hypothesis on the optimality of K (11). Thus, we must

A (1
have Kg ) = K?) in this case as well.

Appendix 6
Proof of Proposition 5

The matrix K, and its sub-matrices K 2) ,K; and ¥ only
appear in the expression for R§2) through the expression

H

hext

Kcohext- (111)

It is easy to see that the optimal K, has rank 1, i.e. Ko =
vmvg). The vector v, is chosen as to maximize the projec-
tion v hex while satisfying the constraints on the traces

of K 52) and K. Simple calculus shows that the optimal v,
is given, up to a common factor, by

(2) _hn
Vey = [Vpl T } ,
21
VPr g7
The desired K 52), K, and ¥ are readily obtained from K.

Using these results, it is straightforward to establish the
identity

2
P,
B K cohext = <||h11|| VP + Do | \/1_ra> :
(

From (113), we see that the effect of ¥ is to correlate the
primary and secondary transmissions so that their signals
add constructively at the receiver. Finally, given the matri-

(112)

113)

ces K 52),1( r and ¥, the characterization of K, in terms of
the concave problem in (32) follows immediately (see [20]
as well).

Appendix 7

Proof of Corollary 2

The beamformer w}, appears both in the objective func-
tion (26a) and in constraint (26¢) through Riz). First, note
that if Pjy < 0, the problem has no valid solution. For
a given second phase (that is, given « and P;z)), using
Propositions 2 and 3, the optimization problem is reduced
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to finding wy, and P. and can be reformulated, for
Pint >0, as

T W w, 2Py — Py) (114)
maxmin \ ————Lint, [ Wp 2~ L) (>
Prxwp |h12—[1Wp|2

with0 < P, < Py, H wp || = 1. For a fixed Py, the objective
function (114) is monotonically increasing in |h§‘(2 wp |2 and
monotonically decreasing in |hglwp|2. Thus, for given P,
the optimal beamformer w}, can be parametrized as

1
15, h2s

1
| |

Hh21h22
| Ty, s |

wp(A) = v +V/1-2 (115)

for some A €[ 0, 1]. Using this parametrization, we define
FO) =& |Kw,(1)1? and note that [ wp|? = A B ||* to
write, for fixed Py, the optimization problem as

Pint
max f(A) min{,Pz —P } (116)
A Xl |1 '
The function f(}) is unimodal with maximum value
attained for A = Amgr, that is, when wy(}) is in the

direction of hyy (i.e. MRT). Thus, if
Pint
Py — Pp) Il 1>

then A = Aprr yields the optimum value. Otherwise, the
basic calculus shows that (114) is maximized for

2= Pint
(Py — Py) |l |12

Using this parametrization, we can find the optimal beam-
former by varying P, from P; to O to find the maximum
value of (114).

For Pine = 0, the primary receiver is already at the
limit of decodability and cannot tolerate any interference.
Thus, the secondary transmitter must transmit in the ZF
direction. This special case is already considered by our
parametrization (i.e. setting A = 0).

AMRT < (117)

(118)
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