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Abstract

Radio frequency identification (RFID) is a promising wireless technology for using tiny, remotely powered chips as
identifiers. The number of RFID applications is rapidly increasing because RFID technology is convenient, fast, and
contactless. However, collisions occur when multiple tags simultaneously transmit their IDs. Therefore, an efficient
anti-collision algorithm is needed to accelerate tag identification. In some applications, the reader may repeatedly
identify staying tags, which constantly exist in the reader's range. The adaptive query splitting algorithm (AQS) was
proposed for reserving information obtained from the last identification process to enable rapid re-identification of
staying tags. However, since AQS is a non-blocking algorithm that allows newly arriving tags to use the slots
reserved for staying tags, collisions among them are problematic. Thus, semi-blocking AQS (SBA) proposed in this
study is designed to reduce the collisions between arriving tags and staying tags by applying a semi-blocking
technique in which only a minority of arriving tags use the slots reserved for staying tags. By counting the number
of minor arriving tags, SBA estimates the number of unrecognized arriving tags and generates proper queries to
minimize their collisions. The identification delay of SBA is analyzed, and simulation results show that SBA
significantly outperforms AQS.
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1. Introduction
Radio frequency identification (RFID) has substantially
replaced the conventional bar code system of automated
identification because RFID is faster, more convenient, and
contactless. The many RFID applications developed so
far include inventory control, object tracking, and supply
chain management. An RFID system usually contains a
reader and multiple tags. Each tag has a unique identifi-
cation (ID), and the reader recognizes all tags in its radio
range through wireless communication. However, colli-
sions occur when multiple tags transmit their IDs simul-
taneously because they share the same wireless channel.
In this case, the reader cannot immediately recognize
any tags, and the collided tags must retransmit their IDs
until they are identified. This wastes bandwidth and de-
lays identification. Therefore, an efficient anti-collision
algorithm is needed to reduce tag collisions and to ac-
celerate tag identification.
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Current anti-collision algorithms can be classified as
aloha-based algorithms and tree-based algorithms. Aloha-
based algorithms estimate the number of tags and assign
the proper number of slots to reduce the probability of tag
collisions. They can be further classified as dynamic frame
slotted aloha [1-5] and splitting frame slotted aloha [6-8].
The major difference is that the former dynamically ad-
justs the number of slots allocated for each frame and
allows all unrecognized tags to share these slots while
the latter splits unrecognized tags into different collision
sets and allows each set to use individual slots separately.
However, a limitation of aloha-based algorithms is the
starvation problem, in which the tag cannot be identified
because its responses are constantly colliding with others.
Tree-based protocols, which continuously split a set of

tags into two subsets until all tags are identified, can be
classified as query tree (QT) protocols [9-14] and binary
tree (BT) protocols [15-18]. The former uses tag IDs while
the latter adopts random binary numbers to split the set
of collided tags. Therefore, QT is a memoryless protocol,
i.e., the tag does not memorize information, whereas BT
must maintain counters.
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Many RFID applications require the reader to identify
the same tags repeatedly. For example, the RFID applica-
tions for warehouse, parking lot, and library manage-
ment, etc. In these applications, the objects, i.e., the goods,
the cars, and the books, frequently stay at the same
places for a long time. Therefore, the reader often iden-
tifies the same tags repeatedly. Therefore, if an anti-
collision algorithm can reserve information obtained
from the last process of tag identification, i.e., the last
frame, the reader can skip many collisions and quickly
re-identify the staying tags that remain within the range
of the reader in the current frame.
Myung et al. [19-21] used two anti-collision algorithms,

adaptive query splitting algorithm (AQS) and adaptive
binary splitting algorithm (ABS), which were modifica-
tions of QT and BT, respectively, to retain information
from the last frame. By using this information, AQS and
ABS can successfully avoid collisions among staying
tags. A previous study [21] showed that AQS requires
lighter tag specifications although its performance may
be affected by the distribution of tag IDs. Nevertheless,
AQS and ABS are non-blocking algorithms in which
newly arriving tags can use the slots reserved for staying
tags. Thus, AQS and ABS cannot prevent arriving tags
from colliding with staying tags, causing many collisions
between them. Afterward, based on AQS and ABS,
some blocking algorithms, which block arriving tags
from using the slots reserved for staying tags, were pro-
posed to prevent their mutual collisions [22-24]. How-
ever, these blocking algorithms need the information
from the last frame to estimate the number of arriving
tags.
Many RFID applications meet the situations that many

arriving tags arrive sometimes and few arriving tags ar-
rive sometimes, for example, people in the subway sta-
tion or in the school, etc. In this case, the variation in
the number of the arriving tags may be large. Therefore,
when the blocking algorithms use the information from
the last frame to do the estimation, their identification
efficiency will be significantly reduced.
The novel semi-blocking AQS (SBA) algorithm pro-

posed in this paper inherits the essence of AQS by using
staying tag information obtained from the last frame. By
applying a semi-blocking technique that allows a minor-
ity of arriving tags to use the slots reserved for staying
tags, SBA reduces collisions between arriving tags and
staying tags. Moreover, by counting the number of
minor arriving tags, SBA can estimate the number of
unrecognized arriving tags and generates proper queries
to minimize their mutual collisions.
This study makes the following contributions to the

literature. (1) We propose a semi-blocking algorithm,
SBA, to quickly identify staying tags and arriving tags.
SBA estimates the number of arriving tags according to
the information obtained in the current frame rather
than in the last frame. (2) We mathematically analyze
the identification delay, i.e., the number of total required
slots, of SBA. (3) We conduct extensive simulations and
investigate the performance of SBA. The simulation re-
sults show that SBA significantly outperforms AQS.
The rest of this paper is organized as follows. Section 2

briefly describes QT, AQS, and other related works.
Section 3 presents the underlying concept and operation
of SBA. In Section 4, the mathematical analysis of identifi-
cation delay for SBA is derived. Section 5 discusses the
simulation results confirming the superiority of SBA over
AQS. The conclusions are presented in Section 6.

2. Related works
Some terms are first defined as follows.

� Frame: a frame is the duration from the moment a
reader begins recognizing tags within its reading
range to the time it completes all recognition. Let fi
denote the i-th frame.

� Slot: a slot is the duration that a reader transmits a
query signal to the tags and then the tags respond
by sending their IDs to the reader. Depending on
the number of tag responses, a slot is called idle,
readable, or collision when no tag responds, one tag
responds, or multiple tags respond, respectively.

� Staying tag in the i-th frame: the tag exists in fi-1 and
also in fi.

� Arriving tag in the i-th frame: the tag does not exist
in fi-1 but appears in fi.

� Leaving tag in the i-th frame: the tag exists in fi-1
but disappears in fi.

� Possible tags in the i-th frame: the tags appear and
are recognized in fi-1 and are likely to appear in fi.
Possible tags are the combination of staying tags and
leaving tags.

2.1. QT
The QT splits a tag set by tag IDs [9-14]. The reader
owns a queue Q, which stores bit strings of the queries
and is initialized with two 1-bit strings, 0 and 1, at the
beginning of each frame. At each slot, the reader interro-
gates the tags by popping one string from Q and trans-
mitting it to the tags. If the prefix of a tag ID matches
the bit string of the query, the tag responds by transmit-
ting its ID. The reader can identify the tag when only
one tag responds with its ID. When the tags' responses
mutually collide, the query q1q2…qx is called a collision
query. To solve this collision set composed of multiple
tags, the reader pushes two 1-bit longer queries, q1q2…
qx0 and q1q2…qx1 into Q. Thus, the set of tags with pre-
fix q1q2…qx is then split into two subsets of tags, one
with prefix q1q2…qx0 and another with prefix q1q2…qx1.
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The two subsets will respond with their IDs at separate
slots according to the queries sent from the reader. The
reader continues expanding the query until one or no
response is received. When Q is empty, the reader con-
cludes that all of the tags have been recognized.

2.2. AQS
The AQS, which was modified from QT, preserves read-
able queries obtained from the last frame in order to
avoid unnecessary slots generated from identifying
staying tags [20,21]. It also retains idle queries acquired
from the last frame in order to interrogate arriving tags
during the current frame. The reader in the AQS has
two queues: Q, which has the same manipulation as QT,
and CQ, a candidate queue that gathers readable queries
and idle queries in the last frame and retains them until
the current frame starts. At the beginning of each frame,
the reader first checks whether CQ has any query. An
empty CQ means that there is no tag recognized in the
last frame, making the reader initialize Q with two 1-bit
strings, 0 and 1. On the other hand, if CQ has some
queries, the reader initializes Q by copying all queries
from CQ. Then, the reader starts the identification pro-
cedure as QT until Q is exhausted.
Also, during the identification procedure, whenever a

readable query or an idle query occurs, the reader stores
this query into CQ. Thus, in the next frame, the colli-
sions among the staying tags can be totally avoided.
However, leaving tags generate some unnecessary idle
queries. AQS uses a query deletion procedure to handle
this situation. For a node of a collision query, abnormal
queries are its two child nodes being a pair of node types
as follows: (1) a readable query and an idle query and
(2) two idle queries. If leaving tags transform a pair of
child nodes as abnormal queries, the reader then deletes
unnecessary queries. That is, when q1q2..qx0 and q1q2..
qx1 are abnormal queries, the reader deletes q1q2..qx0
and q1q2..qx1 from CQ and enqueues q1q2..qx into CQ.
The reader deletes all abnormal queries from CQ recur-
sively until all the nodes do not have a child node pair
being abnormal queries.

2.3. Other works
The ABS, which is based on BT, has the similar concept
to AQS [19,21]. The ABS may have a shorter identifica-
tion delay compared to AQS, in which performance de-
pends on the distribution of tag IDs [21]. In each tag,
however, AQS only requires a matcher while ABS must
maintain two counters. Therefore, AQS has lighter tag
requirements compared to ABS.
Since both AQS and ABS are non-blocking algorithms,

they cannot prevent arriving tags from colliding with
staying tags, resulting in numerous collisions. Therefore,
two protocols, the single resolution blocking ABS algorithm
(SRB) and the pair resolution blocking ABS algorithm
(PRB) [22,23], were proposed to address these issues. The
blocking technique performed by SRB and PRB enables the
use of different slots by arriving tags and staying tags, which
prevents the former from colliding with the latter. However,
since they are based on ABS, they require higher specifica-
tions in tags. Afterward, based on AQS, the other two
blocking protocols, the couple-resolution blocking algo-
rithm (CRB) and the enhanced couple-resolution blocking
algorithm (ECRB) [24], were proposed. CRB and ECRB ac-
tually need lower tag specifications than SRB and PRB.
However, CRB and ECRB estimate the number of arriving
tags in the current frame based on the information
obtained from the last frame. When the number of arriving
tags significantly changed, these blocking algorithms, in-
cluding SRB, PRB, CRB, and ECRB, cannot accurately esti-
mate the number of arriving tags, resulting in more
collisions when identifying them.
Efficient continuous scanning (ECS) based on slotted

aloha also identifies staying tags quickly by the informa-
tion gathered in the last frame [25]. The ECS is com-
posed of two phases: the first phase identifies arriving
tags while the second phase finds the leaving tags. In the
first phase, arriving tags and staying tags individually se-
lect a slot in a round. Only arriving tags selecting pre-
empty slots, i.e., no staying tag responds in the slots, are
allowed to be active and will be identified in the next
round using typical slotted aloha. In the second phase, if
a pre-single slot, i.e., only one possible tag selects in the
slot, is empty, the corresponding possible tag leaves.
Clearly, collisions between arriving tags and staying tags
still occur since ECS is a non-blocking algorithm. ECS
relieves this problem by the use of different slot dura-
tions, so it can obtain acceptable performance. However,
the drawback is that ECS cannot provide perfect accur-
acy. Some arriving tags may not be identified and some
leaving tags may not be detected either.
Compared to previous approaches such as AQS, ABS,

SRB, PRB, CRB, ECRB, and ECS, the proposed SBA is
superior in five ways. First, SBA is a semi-blocking algo-
rithm whereas other algorithms are either non-blocking
or blocking algorithms. Thus, SBA is a more generic ap-
proach. Second, SBA is based on QT whereas SRB, PRB,
and ECS are based on either slotted aloha or BT. Thus,
SBA requires only light tag specifications. Third, SBA
can estimate more accurate number of arriving tags be-
cause it uses the information obtained in the current
frame while others use the information gathered in the
last frame. Fourth, PRB, CRB, and ECRB use a pair reso-
lution technique which couples possible tags and thus
need less time for identifying staying tags. However,
when the wireless channels are error-prone, these algo-
rithms will generate false-positive results [23]. On the
other hand, SBA does not have this problem. Fifth, SBA
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provides perfect accuracy on identification while ECS
may fail to identify some arriving tags and may fail to
detect some leaving tags. Table 1 summarizes the differ-
ences between these algorithms.
3. Semi-blocking AQS
Although AQS can avoid collisions among staying tags, it
has two drawbacks. First, it cannot prevent arriving tags
from colliding with staying tags. Second, it reserves idle
queries obtained from the last frame in order to interro-
gate arriving tags whose ID prefix matches one of these
queries, but these queries may again cause idle slots in the
current frame when no such arriving tag appears. The pro-
posed SBA algorithm avoids these problems. The AQS
and SBA differ in three ways. First, the former is a non-
blocking algorithm while the latter is a semi-blocking al-
gorithm to reduce the collisions between staying tags and
arriving tags. Second, SBA does not retain the idle queries
of the last frame. Third, SBA estimates the number of ar-
riving tags so that the appropriate queries can be gener-
ated to identify them.
The SBA is performed in two phases. The first phase

identifies staying tags and a few arriving tags. In the
phase, since SBA blocks most arriving tags, the probabil-
ity of a staying tag colliding with arriving tags is low.
The second phase identifies arriving tags that are not
recognized in the first phase. To avoid excessive colli-
sions caused by arriving tags, SBA counts the number of
minor arriving tags that have responded in the first
phase to estimate the number of arriving tags that will
respond in the second phase. By generating proper quer-
ies, SBA significantly reduces collisions caused by these
unrecognized arriving tags.
3.1. Estimating the number of arriving tags
The key issue in SBA is accurately estimating the num-
ber of arriving tags that will respond in the second
phase. The following notations are used to describe this
estimation method.
Table 1 Comparison among different anti-collision algorithm

Algorithm Blocking/non-blocking Type Informatio

AQS Non-blocking QT-based L

ABS Non-blocking BT-based L

SRB Blocking BT-based L

PRB Blocking BT-based L

CRB Blocking QT-based L

ECRB Blocking QT-based L

ECS Non-blocking Aloha-based L

SBA (this work) Semi-blocking QT-based Cu
P1: the probability that an arriving tag in which the ID
prefix matches the query is allowed to respond in the
first phase.
N1: the exact number of arriving tags responding in

the first phase.
N̂ : the estimated number of total arriving tags.
N̂ 2 : the estimated number of arriving tags responding

in the second phase.
Q: a set [q1, q2, q3, …qm] where qi denotes the i-th

readable query and m is the total number of readable
queries in Q.
Obviously, N̂ 2 ¼ N̂−N1. An intuitive thought to derive

N̂ is N̂ ¼ N1=P1 . However, this is not correct. In SBA,
Q only stores the readable leaf nodes in the query tree of
the last frame and does not store the idle leaf nodes.
Thus, the arriving tags located in the idle leaf nodes have
no chance to respond since they are not interrogated by
the reader in the first phase. For arriving tags that are in-
volved in the first phase, only the arriving tags located in
the readable nodes can be interrogated. Therefore, the
percentage Pr of arriving tags interrogated in the first
phase is calculated as

Pr ¼
Xm
i¼1

1

2 qij j; ð1Þ

where |qi| is the length of qi. Obtaining Pr enables

N̂ ¼ ⌈N1= P1 � Prð Þ⌉; ð2Þ

N̂ 2 ¼ ⌈N1= P1 � Prð Þ−N1⌉: ð3Þ

3.2. The SBA procedure
The unique ID of the SBA reader is rRID. Since each tag
stores its associated reader ID, tRID, a tag can independ-
ently determine whether it is a staying tag or an arriving
tag. For the SBA pseudocode in Figure 1, panels a and b
are the tag and the reader operations, respectively. Like
AQS, the reader in SBA has a queue, Q, but it only
s

n for estimation Pairing resolution Correct identification

ast frame No Yes

ast frame No Yes

ast frame No Yes

ast frame Yes No in error-prone channel

ast frame Yes No in error-prone channel

ast frame Yes No in error-prone channel

ast frame No No

rrent frame No Yes



Semi-Blocking AQS Algorithm: Tag Operation
1 Receive message m from the reader
2 Select arandom probability between 0 and 1 to
3 hasresponded = 0
4 while m != the command terminating a frame do
5 if m is the first-phase command then
6 if (tRID == rRID) or ( < ) then
7 isResponsible = 1
8 else
9 isResponsible = 0
10 end if
11 else if m is the second-phase command then
12 if hasresponded == 0 then
13 isResponsible = 1
14 else
15 isResponsible = 0
16 end if
17 tRID = rRID
18 else if m is a query and isResponsible == 1 then
19 if prefix(ID) == q then
20 Transmit ID
21 hasresponded = 1
22 end if
23 end if
24 Receive message m from the reader
25 endwhile

tP 1P

tP

rP

1P

1P

1PrP

NewEst

Semi-Blocking AQS Algorithm: Reader Operation
1 NewEst = z NewCount + (1 z) NewEst
2 NewCount = 0
3 IDList = NULL
4 Phase = 1
5 Transmit the first-phase command with rRID and
6 while Q != NULL or Phase == 1 do
7 if Q == NULL and Phase == 1 then
8 if > 0 then
9 NewEst = (NewCount / ) (1 / ) NewCount
10 end if
11 Q = QueryInsertion( )
12 Transmit the second-phase command
13 Phase = 2
14 end if
15 q = Pop (Q)
16 Transmit a query including q
17 Receive tag responses and detect a collision
18 if tag collision then
19 /* Push 1-bit longer bit strings into Q */
20 Push (Q, q0)
21 Push (Q, q1)
22 else if only a tag response then
23 Store the tag ID into IDList
24 if IsNew(tag) then
25 NewCount = NewCount + 1
26 end if
27 end if
28 end while
29 Transmit the command terminating a frame
30 Q = QueryConstruction(IDList)
31 = Preadable(Q)

(a) (b)
Figure 1 Pseudocode of the SBA algorithm. (a) Tag operation. (b) Reader operation.
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reserves readable queries obtained from the last frame.
At the start of a frame, the reader first transmits the
first-phase command with rRID and P1 to all tags (line 5,
Figure 1b). Upon receiving the first-phase command
with rRID and P1 from the reader, each tag checks
whether its tRID matches the rRID sent by the reader. If
so, the tag interprets itself as a staying tag and directly
changes its variable, isResponsible, to 1. However, if tRID
does not equal rRID, the tag interprets itself as an arriv-
ing tag. Then, each arriving tag generates its own ran-
dom probability Pt for determining whether to respond
to the query in the first phase or in the second phase
(lines 6 to 10, Figure 1a). When Pt is smaller than P1,
the arriving tag can respond to the query in the first
phase, so it changes its isResponsible to 1. Otherwise, it
responds in the second phase and thus sets its
isResponsible to 0. Afterward, the reader sends queries
acquired from Q, which stores the readable queries
obtained from the last frame, until Q is empty.
In the first phase, the reader and the tags that can re-

spond in the first phase, including all staying tags and
minor arriving tags, operate as QT. Thus, if some arriv-
ing tags collide with staying tags in the first phase, the
SBA reader pushes two 1-bit longer queries into Q to
solve these collisions. Moreover, in the first phase, the
reader also stores each identified tag ID in IDList (line
23, Figure 1b) and counts the number of arriving tags as
NewCount. Each tag also sets hasreponded to 1 if it has
responded (lines 19 to 22, Figure 1a).
At the end of the first phase, i.e., when Q is empty and

Phase equals 1, the reader has identified all staying tags
and minor arriving tags that can respond in the first
phase. Before starting the second phase, the reader uses
Equation 3 to predict the number of unrecognized arriv-
ing tags, NewEst, by NewCount, which records the num-
ber of recognized arriving tags (line 9, Figure 1b). After
obtaining NewEst, the QueryInsertion() function oper-
ated internally in the reader generates a complete binary
tree in which the number of leaf nodes equals ⌈NewEst⌉
and returns all leaf nodes into Q (line 11, Figure 1b).
Based on the characteristics of a complete binary tree,
its leaf nodes can cover all possible ID prefixes. Thus,
the reader can use these queries of leaf nodes to interro-
gate arriving tags in the second phase.
The QueryInsertion() function operates as follows. Let

2l − 1 < ⌈NewEst⌉ ≤ 2l and the numbers of (l − 1)-bit and
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l-bit queries be denoted as c1 and c2, respectively. Then,
two simultaneous equations can be easily obtained as

c1 þ c2 ¼ ⌈NewEst⌉
2c1 þ c2 ¼ 2l

(

The second formula is because c1 queries of (l − 1) bits
and c2 queries of l bits must construct a complete prefix
set of all IDs. By solving the simultaneous equations, c1
is 2l − ⌈NewEst⌉ and c2 is 2⌈NewEst⌉ − 2l. Then, c2 quer-
ies of l bits are first generated and c1 queries of l − 1 bits
are then generated according to the increasing order of
binary representations of these queries. For example,
when ⌈NewEst⌉ = 5, the QueryInsertion() function gen-
erates two 3-bit queries and three 2-bit queries, i.e., 000,
001, 01, 10, and 11.
Upon receiving the second-phase command, each rec-

ognized tag changes its isResponsible to 0 while other
unrecognized tags change their isResponsible to 1 (lines
11 to 16, Figure 1a). Also, in the second phase, each tag
that can respond in the second phase and the reader are
operated as QT. The reader terminates the identification
process when Q is empty.
Unlike AQS, SBA cannot immediately store readable

queries obtained during the identification process be-
cause the readable queries obtained from recognizing
staying tags and from recognizing arriving tags may
overlap. For example, SBA may obtain readable query 00
for staying tag 0001 and also obtain readable query 00
for arriving tag 0010. To find all readable queries of a
frame, the reader applies the QueryConstruction() func-
tion to IDList (line 30, Figure 1b). This function uses all
recognized tag IDs stored in IDList to internally operate
the QT algorithm and find correct readable queries (000
and 001 in the example above). The SBA also uses the
Preadable() function to determine probability Pr based
on Equation 1 (line 31, Figure 1b).

3.3 Special case of SBA: a blocking algorithm
A special case of SBA is that no any arriving tag can be
allowed to use the slots reserved for staying tags, i.e.,
P1 = 0. In this case, SBA becomes a blocking algorithm
that completely prevents arriving tags from colliding with
staying tags. However, since no information can be
obtained from the first phase, SBA cannot use Equation 3
to estimate the number of arriving tags. Therefore, SBA
changes the method to adopt the information from the last
frame to estimate the number of arriving tags. Specifically,
the reader estimates the number of arriving tags, NewEst,
in the current frame with an exponential average of
NewCount, which records the number of total arriving tags
in the last frame, i.e., NewEst = z × NewCount + (1−z) ×
NewEst (line 1, Figure 1b). Factor z is used to weight the
last estimation and the exact number of arriving tags in the
last frame.

3.4. Hardware cost and energy consumption
The SBA tag needs a random number generator and
properly maintains four variables, Pt, tRID, isResponsible
(1 bit), and hasreponded (1 bit). On the other hand, the
AQS tag requires only one matcher to match the pre-
fix and its ID. Thus, the cost of SBA tags may in-
crease. However, as defined in ISO 18000–6 [26], a tag
shall have a random/pseudorandom number generator
and the minimal memory size of 4 bytes. Thus, the
hardware requirements for SBA can be supported for
existing tags. Moreover, considering the energy con-
sumption caused by communication, SBA consumes
less energy than AQS because the former spends less
slots and transmits less bits than the latter, as shown
in Section 5.

4. Performance analysis
In this section, we analyze the identification delay of
SBA in the average case. For convenience, the number
of total slots required in QT is first derived because
SBA uses QT upon encountering a collision slot. Let
Ti represent the set of tags existing in fi, and let n be
the number of tags in the set Ti, i.e., n = |Ti|. Add-
itionally, let α and β be the numbers of arriving tags
and leaving tags, respectively, in fi+1. Finally, assume
that the bit length b of each tag ID is infinite and that
tag IDs are uniformly distributed among 2b IDs. Thus,
the reader can continually extend the prefix by
appending bits until all tags are recognized. Since the
size of b is always sufficient, this assumption appears
reasonable and does not substantially affect the accur-
acy of the following analyses.

4.1. QT
In QT, slots in a frame can be represented as a query
tree. Thus, the average number of total collision slots for
n tags, CQT(n), is as follows:

CQT nð Þ ¼
X∞
k¼1

CQT n; kð Þ; ð4Þ

where CQT(n, k) is the average number of collision slots
in the depth k of the query tree for n tags. Since the total
number of nodes in the depth k of a full query tree is 2k,
CQT(n, k) can be written as

CQT n; kð Þ ¼ 2k 1−PIQT n; kð Þ−PRQT n; kð Þ� �
; ð5Þ

where PIQT(n, k) and PRQT(n, k) are the probabilities of a
slot being an idle slot and a readable slot in the depth k
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of the query tree, respectively. These probabilities are
easily calculated as

PIQT n; kð Þ ¼ 1−
1

2k

� �n

;

PRQT n; kð Þ ¼ n
1

2k

� �
1−

1

2k

� �n−1

:

ð6Þ

From Equations 5 and 6, we obtain

CQT n; kð Þ ¼ 2k 1− 1−
1

2k

� �n

−n
1

2k
1−

1

2k

� �n−1
( )

:

ð7Þ
Theorem 1: DQT(n), the average number of total slots

for recognizing n tags under QT, is as

DQT nð Þ ¼ 1þ
X∞
k¼1

2kþ1 1− 1−
1

2k

� �n

−n
1

2k
1−

1

2k

� �n−1
( )

Proof: Since QT splits the set of colliding tags into two
subsets according to the tag IDs, all nodes in the query
tree have a degree of either two or zero. All intermediate
nodes in the tree also correspond to the collision slots,
and each leaf node corresponds to either an idle slot or
a readable slot. Therefore,

DQT nð Þ ¼ 1þ 2CQT nð Þ ¼ 1þ 2
X∞
k¼1

CQT n; kð Þ: ð8Þ

Substituting Equation 7 into Equation 8 obtains Theorem 1.

4.2. SBA
Let DSBA(Ti + 1|Ti) be the average number of total slots
required by SBA in recognizing Ti + 1 after having recog-
nized Ti, where |Ti|=n. D�

SBA Tiþ1 TiÞjð denotes the opti-
mal DSBA(Ti + 1|Ti). First, suppose that γ arriving tags
respond in the first phase. Considering that β tags leave,
there are (n − β) queries where one staying tag responds
and β queries where no staying tag replies in the first
phase. For γ arriving tags in which the IDs are uniformly
distributed from all combinations of queries, the prob-
ability of x arriving tags among γ arriving tags interro-

gated by a query is ð γx Þ 1
n

� �x
1− 1

n

� �γ−x
. If collisions occur,

SBA uses QT to solve them. Thus, the average number
of slots in the first phase is as follows:

n−βð Þ
Xγ
x¼0

γ
x

� �
1
n

� �x

1−
1
n

� �γ−x

DQT 1þ xð Þ

þβ
Xγ
x¼0

γ
x

� �
1
n

� �x

1−
1
n

� �γ−x

DQT xð Þ:

ð9Þ
In the second phase, for α − γ arriving tags, SBA may es-
timate N̂ 2 arriving tags, thus giving N̂ 2 queries that allow
α − γ arriving tags to respond. Therefore, the probability of
x arriving tags among α − γ arriving tags interrogated by a

query is
�
α−γ
x

�
1
N̂ 2

� �x
1− 1

N̂ 2

� �α−γ−x
. Thus, the average

number of slots required by SBA when γ and α − γ arriving
tags respond in the first phase and in the second phase, re-
spectively, which is denoted Dγ

SBA Tiþ1 TiÞjð , is as follows:

Dγ
SBAðTiþ1jTiÞ ¼ n−βð Þ

Xγ
x¼0

γ
x

� �
1
n

� �x

1−
1
n

� �γ−x

DQT 1þ xð Þ

þβ
Xγ
x¼0

γ
x

� �
1
n

� �x

1−
1
n

� �γ−x

DQT xð Þ

þ N̂ 2

Xα−γ
x¼0

α−γ
x

� �
1

N̂ 2

� �x

1−
1

N̂ 2

� �α−γ−x

DQT xð Þ:

ð10Þ
Theorem 2: According to the probabilities P1 and Pr to

determine γ arriving tag, the optimal average number of
slots under SBA can be expressed as:

D�
SBAðTiþ1jTiÞ ¼

Xα
γ¼0

α
γ

� �
P1Prð Þγ 1− P1Prð Þα−γ

�
n−βð Þ

Xγ
x¼0

γ
x

� �
1
n

� �x

1−
1
n

� �γ−x

DQT 1þ xð Þ

þ β
Xγ
x¼0

γ
x

� �
1
n

� �x

1−
1
n

� �γ−x

DQT xð Þ

þ α−γð Þ
Xα−γ
x¼0

α−γ
x

� �
1

α−γ

� �x

1−
1

α−γ

� �α−γ−x

DQT xð Þg:

Proof:
The probability that arriving tags are interrogated in the

first phase is Pr, and the probability that arriving tags deter-
mine to respond in the first phase is P1. Therefore, the prob-
ability of γ arriving tags among α arriving tags responding in

the first phase is
α
γ

� �
P1Prð Þγ 1−P1Prð Þα−γ . Thus, the aver-

age number of total slots required by SBA is as follows:

DSBAðTiþ1jTiÞ ¼
Xα
γ¼0

α
γ

� �
P1Prð Þγ 1−P1Prð Þα−γDγ

SBA Tiþ1 TiÞ:jð

ð11Þ
Equation 11 gives the optimal value when the estimation

is perfect, i.e., N̂ 2 ¼ α−γ . Hence, by substituting N̂ 2 with
α − γ and substituting Equation 10 into Equation 11, we
can obtain the optimal D�

SBA Tiþ1 TiÞjð as Theorem 2.
In Theorem 2, Pr is unknown. However, according to

Equation 1, Pr is calculated from the queries in Q. How-
ever, we only discern that the number of readable quer-
ies stored in Q is n, i.e., n tags recognized in the last
frame. Therefore, the number of idle queries should be
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derived, and thus, we first compute the total number of
required slots when recognizing n tags.
First, the probability of a frame using l slots to recognize

n tags is defined as:

Pl;n ≜ Pr total slots ¼ l n tagsj g:f

To obtain Pl,n, we use the probability generating func-
tion as:

Qn zð Þ≜
X∞
i¼0

Pi;nz
i: ð12Þ

When a collision happens, two 1-bit longer queries are
generated after this collision query. Thus, we can obtain
the following recursion on the frame size

Qn zð Þ ¼
Xn
h¼0

Bn
hQh zð ÞQn−h zð Þz; n ¼ 2; 3; :::::: ð13Þ

where

Bn
h ≜ Prfh tags in the first subset n tagsj g ¼ n

h

� �
2−n;

ð14Þ
from the binomial probability of a (h, n − h) split. By dif-
ferentiating z of Equation 13 by l times and setting z = 0,
we obtain the probability, Pl,n, as follows:

Pl;n ¼ Q lð Þ
n zð Þjz¼0

l!
: ð15Þ

Pl,n is not only the probability, wherein the frame has
l total slots, but it also represents the probability
wherein the frame has n readable slots, (l − 1)/2 colli-
sion slots, and l − n − (l − 1)/2 idle slots. Thus, with this
probability, we can get the average number of idle quer-
ies, �nI , as:

�nI ¼
X∞
l¼0

Pl;n � nI ;where nI ¼ l þ 1ð Þ=2−n: ð16Þ

Since the readable queries and idle queries are ran-
domly scattered in the leaf nodes of the query tree, thus
the average Pr can be approximated as:

Pr ¼ n
nþ �nI

: ð17Þ

Finally, substituting Equation 17 into Theorem 2, the aver-
age number of total slots required by SBA can be obtained.
5. Performance comparison
The special case of SBA with P1 = 0 is a blocking algo-
rithm that uses the number of arriving tags existing in
the last frame to estimate the number of arriving tags
existing in the current frame. Thus, the performances of
SBA with P1 = 0 and P1 > 0 should be individually com-
pared with that of AQS. Here, ‘SBA0’ represents SBA
with P1 = 0 while ‘SBA+’ represents SBA with P1 > 0.
The QT is excluded from the comparison because it per-
forms poorly even in comparison with AQS [19-21], and
the lines of the other methods in the figures are difficult
to view when including QT. The evaluation also ex-
cludes ECS because it cannot provide perfect accuracy.
Three metrics, the number of collision slots, the number
of idle slots, and the number of total slots, are consid-
ered when evaluating the efficiency of tag identification.
Total slots include collision slots, idle slots, and readable
slots. The number of total slots signifies the delay in
identifying all tags. The two other metrics, the number
of bits sent by the reader and the number of bits sent by
all tags, are also considered. More bits means more over-
head, causing more power consumption.
First, a simulation is performed to investigate how the

numbers of staying tags and arriving tags affect the per-
formance of AQS, SBA0, and SBA+. Here, the number
of arriving tags is assumed to be estimated accurately by
SBA, i.e., it obtains the optimal performance. This as-
sumption simplifies the observation of trends and the
performance comparison.
A more realistic simulation under a mobile environ-

ment where tags move within an area is then performed.
Unless otherwise specified, SBA0 in the simulation uses
an exponential average with a default factor z = 0.5, and
SBA+ adopts a default probability P1 = 0.2. The effects
of some parameters, including the number of tags, the
tag moving velocity, and the stationary tag probability,
are also investigated. Finally, we investigate the effect of
an incorrectly estimated number of arriving tags in SBA
under the stationary tag probability following the beta
distribution. The influence of P1 on SBA performance is
also studied in this environment.

5.1. Impact of staying tags and arriving tags
Let N be the number of all the tags in the simulation
area, Ti be a set of tags existing in fi, and |Ti| be the
number of these tags. The performance of the i+1-th
frame, fi+1, can then be investigated by varying the
staying ratio rs and the arriving ratio ra, where rs is the ra-
tio of the number of staying tags over |Ti| and ra is the ra-
tio of the number of arriving tags over N − |Ti|. Two
scenarios are considered according to the values of rs and
ra. In both scenarios, N is 1000 and |Ti| is 500. In scenario
1, rs is fixed at 0.5, and ra is varied from 0 to 1. In scenario
2, ra is fixed at 0.5, and rs is varied from 0 to 1.



Figure 2 Number of slots versus the arriving ratio ra when the
staying ratio rs is fixed at 0.5.

Figure 3 Performance versus the arriving ratio ra when the staying ra
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Figure 2 depicts the simulation results in scenario 1
and shows that AQS, SBA0, and SBA+ increase identifi-
cation delay in proportion to the increase in arriving tags
since more collision slots, idle slots, and readable slots
are caused by them. The SBA0 has fewer collision slots
compared to AQS. This is because the former not only
avoid collisions between staying tags but also prevent ar-
riving tags from colliding with staying tags. This figure
also shows that SBA+ has more collision slots than
SBA0 does since it permits a minority of arriving tags to
collide with staying tags. Moreover, SBA+ generates fewer
collision slots than AQS does because it prevents most of
the arriving tags from colliding with staying tags.
Figure 2 shows that AQS has more idle slots compared

to SBA0 when ra < 0.65 since AQS transmits many idle
queries obtained from the last frame to identify arriving
tags, but only a few arriving tags match these queries. In
AQS, a larger ra increases the number of arriving tags
that can respond with idle queries caused from the
tio rs = 0.5. (a) Number of total slots. (b) Number of transmitted bits.
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leaving tags or idle queries recorded in the last frame.
Therefore, AQS has fewer idle slots compared to SBA0.
The SBA+ also generates fewer idle slots compared to
SBA0 because SBA+ permits some arriving tags to re-
spond with the idle queries caused from the leaving tags.
Finally, Figure 3a shows that SBA0 and SBA+ have simi-
lar identification delays and that both outperform AQS
in terms of the number of total slots. Moreover, analyt-
ical and simulation results quite match.
From Figure 3b, SBA0 and SBA+ obviously outperform

AQS in the numbers of bits sent by the reader and sent by
all tags. The bits sent by the reader between the former
and the latter in a collision slot, an idle slot, and a readable
slot, are similar. Since both SBA+ and SBA0 have fewer
slots than AQS, they must have less bits sent by the reader
than AQS. For the same reason, SBA+ and SBA0 have less
bits sent by all tags. On the other hand, SBA+ has slightly
less bits sent by the reader and slightly more bits sent by
all tags than SBA0. The main reason is that SBA+ gener-
ates more collision slots and less idle slots than SBA0
where no bit is transmitted in an idle slot and the bits of
ID length are transmitted in a collision slot.
Figure 4 illustrates the simulation results for scenario 2.

When rs > 0.23, SBA0 and SBA+ have substantially fewer
collision slots compared to AQS. In AQS, when more
staying tags are present, arriving tags will more likely col-
lide with them, resulting in the worst performance. How-
ever, when rs < 0.23, in AQS, many idle queries caused
from the leaving tags are then used by the arriving tags,
resulting in fewer collision slots compared to SBA0 and
SBA+.
Figure 4 shows that the number of idle slots is expected

to decrease as rs increases. The SBA+ clearly has fewer
Figure 4 Number of slots versus the staying ratio rs when the arriving
idle slots than AQS does. The reason is in order to identify
arriving tags, AQS must transmit the idle queries recorded
in the last frame. If no arriving tags match them in the
current frame, these idle queries still cause the idle slots
again. Interestingly, the gap between the number of idle
slots in AQS and in SBA+ increases as rs increases. The
main reason is that rs correlates positively with the num-
ber of idle queries recorded in the last frame. Thus, for
these queries, more idle slots appear in the current frame
under a fixed ra. When rs > 0.32, SBA0 has fewer idle slots
compared to AQS for the same reason observed in SBA+.
When rs < 0.32, i.e., when the number of leaving tags is
large, SBA0, which is a blocking algorithm, prevents arriv-
ing tags from responding with idle queries caused from
leaving tags. Thus, SBA0 produces more idle slots com-
pared to AQS. Finally, as shown in Figure 5a, in most
cases, both SBA0 and SBA+ outperform AQS in terms of
the number of total slots. Also, analytical and simulation
results quite match. However, when rs is low, SBA0 re-
quires a longer identification compared to AQS because it
generates more collision slots and idle slots.
From Figure 5b, SBA0 and SBA+ obviously outperform

AQS in the numbers of bits sent by the reader and sent by
all tags. The reason is the same as the descriptions for
Figure 3b. Also, the results of comparing SBA+ with SBA0
in Figure 5b are similar to those in Figure 3b for the same
reason.

5.2. Performance under a mobile environment
A mobile environment is established as follows:

� Simulation area: 10 m × 10 m
� Identification range of the reader: 3 m
ratio ra is fixed at 0.5.



Figure 5 Performance versus the arriving ratio rs when the staying ratio ra = 0.5. (a) Number of total slots. (b) Number of transmitted bits.
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� Tag ID: Randomly selected 96-bit ID
� Number of tags (N): 1,000
� Tag moving velocity (v): 2 m/frame
� Tag stationary probability (ps): 0.5
� Weight factor (z): 0.5
� Probability factor (P1): 0.2

The N tags in this environment are mobile within a
10 m × 10 m area. Each tag has a stationary probability
ps to decide whether it will move or not during the
period of a frame. The tag moving velocity v is the dis-
tance that each tag moves during one frame if it moves.
Since the identification range of the reader is 3 m, some
tags enter and leave the range of the reader as arriving
tags and leaving tags, respectively. All initial tag posi-
tions and directions are randomly selected in the simula-
tion area. Tags that touch the border of the simulation
area randomly change direction. Each simulation is
performed for 106 frames.
The next subsection discusses the results of simula-
tions performed to investigate how parameters, N, ps,
and v affect the performance of AQS, SBA0, and SBA+.

5.2.1. Impact of the number of tags
As the number of tags increases, the numbers of arriving
tags, leaving tags, and staying tags increase. Therefore,
the numbers of collision slots, idle slots, and readable
slots increase linearly as the number of tags increases.
The blocking technique used by SBA0 prevent arriving
tags from colliding with staying tags to minimize the
collisions. On the other hand, SBA+ semi-blocks most
of the arriving tags, so it generates slightly more colli-
sion slots than SBA0 does.
Since neither SBA0 nor SBA+ retain idle queries in

the last frame, they have fewer idle slots compared to
AQS. Moreover, when the number of tags becomes
large, AQS clearly shows a performance gap between
SBA0 and SBA+ because it sends excessive idle queries



Figure 7 Number of total slots versus the tag moving velocity
in a mobile environment.
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obtained from the last frame. Figure 6 shows that, for
the above reasons, SBA0 and SBA+ significantly outper-
form AQS in terms of identification delay regardless of
the number of tags even though they may incorrectly es-
timate the number of arriving tags in this environment.

5.2.2. Impact of tag mobility
As tags move faster, the possibility that they move in and
out of the range of the reader becomes more frequent and
implies a larger ra and smaller rs. More arriving tags cause
more collision slots, while fewer staying tags cause more
idle slots. Thus, Figure 7 shows that all the algorithms re-
quire more slots at high speed than at low speed, since
fewer staying tags exist and more arriving tags appear in
the former case. The AQS has more collision slots com-
pared to SBA0 and SBA+ because it uses the non-blocking
technique. The AQS also produces more idle slots because
idle queries in the last frame are reserved for identifying
arriving tags. Figure 7 shows that, regardless of the value
of v, SBA0 and SBA+ significantly outperform AQS in the
identification delay, even when they may incorrectly esti-
mate the number of arriving tags.

5.2.3. Impact of tag stationary probability
At a high stationary probability, most tags are immobile.
Therefore, most tags beyond the range of the reader do
not enter, and most tags within the range of the reader
do not leave. That is, as the stationary probability in-
creases, ra decreases and rs increases. In this case, AQS,
SBA0, and SBA+ therefore benefit from remembering
the tags in the last frame, resulting in fewer collision
slots and idle slots. Since few arriving tags come into the
range of the reader when the stationary probability is
high, SBA0 and SBA+ have an only small improvement
on the number of collision slots over AQS. In contrast,
when the stationary probability is high, AQS clearly has
more idle slots compared to SBA0 and SBA+ since the
idle queries recorded in the last frame are very likely to
cause idle slots again in the ongoing frame. Therefore,
Figure 8 shows that SBA0 and SBA+ again outperform
AQS.
Figure 6 Number of total slots versus the number of tags in a
mobile environment.
5.2.4. Performance under an incorrectly estimated number
of arriving tags
In the previous subsection, the number of arriving tags
may be incorrectly estimated in the steady state. How-
ever, these errors are small. This study therefore further
examines the effect of ps following the beta distribution
to observe the performance of SBA in the case of an in-
correctly estimated number of arriving tags.
In this simulation, the probability of the tags randomly

selecting the stationary probability ps in each frame is
determined by the probability density function of the
beta distribution [27] with parameters α and β:

f xð Þ ¼ xα−1 1− xð Þβ−1Z 1

0
uα−1 1−uð Þβ−1du

; α; β > 0; 0≤ x≤1:

With the beta distribution, different degrees of the
variation in the numbers of staying tags and arriving tags
can be easily observed in the same figure. Here, α = β.
Therefore, this distribution is U-shaped under α < 1 and
β < 1, while it is similar to the normal distribution when
α > 1 and β > 1. When α = 1 and β = 1, the distribution
is uniform. Thus, smaller α and β imply a larger vari-
ation of ps, which increases the variation in the numbers
of arriving tags and staying tags. Thus, this simulation
can clearly exhibit the effects of the variation in the
Figure 8 Number of total slots versus the tag stationary
probability in a mobile environment.
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number of staying tags and arriving tags on the perform-
ance of SBA and AQS.
Figure 9 shows the number of total slots of SBA when

using five values of P1, 0 (i.e., SBA0), 0.2, 0.5, 0.8, and 1,
and AQS. Regardless of the values of α and β, SBA+ re-
quires a quite stable number of slots because the esti-
mate based on the information obtained in the first
phase is sufficiently accurate. Also, when P1 is smaller,
SBA+ performs better because SBA+ allows fewer arriv-
ing tags to collide with staying tags and have many
chances to use the slots of leaving tags in the first phase.
When the number of arriving tags substantially varies,
i.e., α ≤ 1 and β ≤ 1, SBA0, which uses the information
of the last frame, generates a larger estimation error and
degrades performance. On the other hand, when α > 1
and β > 1, because the variation in the number of arriv-
ing tags and staying tags are smooth, SBA0 still has a
correct estimation even when it uses the information of
the last frame. Furthermore, SBA0 prevents arriving tags
from colliding with staying tags, causing that it has bet-
ter performance than SBA+. In summary, the figure
shows that SBA+ with P1 = 0.2 is superior when α ≤ 1
and β ≤ 1 while SBA0 is superior when α > 1 and β > 1.
Still, SBA+ with P1 = 1 significantly outperforms

AQS. The SBA+ is superior because it only transmits
readable queries, but not idle queries, obtained from the
last frame. Moreover, SBA+ uses proper queries with ac-
curate estimation to interrogate arriving tags. Thus,
most idle slots and collision slots in AQS are avoided in
SBA+ with P1 = 1.

6. Conclusions
Collisions that occur during simultaneous tag trans-
missions are a major cause of delayed tag identifica-
tion in RFID systems. The novel SBA proposed in this
study not only exploits information obtained from the
last frame for reducing collisions among staying tags
but also reduces collisions by blocking most arriving
tags, which may collide with staying tags. The SBA
also reduces unnecessary idle queries by only sending
the readable queries obtained from the last frame.
Additionally, SBA quickly identifies arriving tags by es-
timating their number and generating proper queries
based on the information of the first phase in the
current frame.
The formal analysis obtains a formula for calculating

the number of total slots required in SBA. Several simu-
lations are also performed. The main observations in this
study are summarized as follows:
(1) When the numbers of tags in and out of the
reader's range are fixed, SBA outperforms AQS in
almost all cases except in the case of a small rs and
a large ra; in which case, AQS allows many arriving
tags to match the idle queries caused from the
leaving tags.

(2) In a mobile environment, SBA always outperforms
AQS regardless of the number of tags, the tag
velocity, and the stationary probability. The SBA is
superior in terms of collision, idle, total slots, and
the transmitted bits.

(3) When the number of arriving tags is generally
stable, setting P1 = 0 in SBA obtains the best
performance since this number can be accurately
estimated based on the information in the last
frame. However, setting P1 = 0.2 in SBA obtains
the best performance when this number widely
varies. Thus, an appropriate P1 should be set
according to the variation in the number of
arriving tags.
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