Soury et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:259

http://jwcn.eurasipjournals.com/content/2013/1/259

® EURASIP Journal on
Wireless Communications and Networking

a SpringerOpen Journal

RESEARCH Open Access

Joint sub-carrier pairing and resource allocation
for cognitive networks with adaptive relaying

Hamza Soury'”, Faouzi Bader?, Musbah Shaat® and Mohamed-Slim Alouini'

Abstract

consequence of the choice of the pairing strategy.
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Relayed transmission in a cognitive radio (CR) environment could be used to increase the coverage and capacity of
communication system that benefits already from the efficient management of the spectrum developed by CR.
Furthermore, there are many types of cooperative communications, including decode-and-forward (DAF) and
amplify-and-forward (AAF). In this paper, these techniques are combined in an adaptive mode to benefit from its
forwarding advantages; this mode is called adaptive relaying protocol (ARP). Moreover, this work focuses on the joint
power allocation in a cognitive radio system in a cooperative mode that operates ARP in multi-carrier mode. The
multi-carrier scenario is used in an orthogonal frequency division multiplexing (OFDM) mode, and the problem is
formulated to maximize the end-to-end rate by searching the best power allocation at the transmitters. This work
includes, besides the ARP model, a sub-carrier pairing strategy that allows the relays to switch to the best sub-carrier
pairs to increase the throughput. The optimization problem is formulated and solved under the interference and
power budget constraints using the sub-gradient algorithm. The simulation results confirm the efficiency of the
proposed adaptive relaying protocol in comparison to other relaying techniques. The results show also the
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1 Introduction
The growth of technology has affected directly modern
communication systems. This expansion can be observed
when a comparison is made between the earlier systems
with some bits per second as a communication rate and
the 300 Mbps already considered in the long-term evolu-
tion (LTE) wireless communication systems. The growth
of the data rate in wireless standards and services was
accompanied by a rise in applications and costumers
which implies a strong increase in the demand for the
limited frequency spectrum. This means that the actual
available spectrum resource may not be able to respond to
the emerging and future technology demands.

In current systems, the frequency allocation, the type of
service, the maximum transmission powers, and the time
duration of the licenses are managed by governmental
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agencies, which apply the ‘command-and-control’ allo-
cation model by assigning a fixed frequency block for
each communication service. This scheme is statistic and
inflexible in spectrum management which leads, as shown
by practical measurements, to inefficient use of the pro-
vided spectrum because licensed users are not necessarily
using the allocated portion of spectrum at all times or over
all the spatial locations, and at the same time prevent other
users from accessing the unused spectrum.

Cognitive radio (CR) can manage the spectrum uti-
lization by detecting spectrum holes and avoiding the
occupied spectrum using the available part of the spec-
trum. In fact, the spectrum utilization can be improved
by allowing the secondary users (SUs) to use the vacant
channels left by the licensed users (PUs) [1]. Such systems
have to distribute their limited resources among the SUs
in order to maximize the capacity without causing harm-
ful interference to the PUs (see, e.g., [2,3]). Since OFDM
is widely used in various wireless system and shows a high
spectral efficiency and flexibility, it is often recommended
for cognitive radio systems [4].
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Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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To increase coverage and achievable capacity of the
communication system, relays (R) are used to transfer the
information from the cognitive source (CS) to the destina-
tion (D) when the direct link is not available [5] (in some
cases even if a direct link exists, the relays are used to
improve the performance of the communication systems).
The resource allocation problem for the non-cognitive
OFDM based relay system has been widely studied [6,7].
In [8], a cooperative scheme with decode-and-forward
technique is combined with the cognitive radio to pro-
duce a communication system with high performance
and higher coverage area. Note that in cognitive cooper-
ative communication systems, both transmitters, namely
source and relay, have to be aware about the interference
threshold tolerated by the PU.

In cooperative communication systems, the most
known relaying techniques are amplify-and-forward
(AAF) [9] and decode-and-forward (DAF) [10]. In the
AAF case, the R amplifies the received signal from the
source (S) by some fixed factor, then forward it to D. How-
ever, the relay using the DAF strategy decodes ‘perfectly’
the received signal from S and then encodes it again (with
the same code known by S and D) and forwards it to D.
Note that these procedures are done at each sub-carrier.
The disadvantages of these two techniques of relaying
come with the fact that: (1) AAF relaying can amplify the
noise coming form the (S-R) link, which degrades the sig-
nal quality, and (2) DAF relaying causes a propagation of
error in case of uncorrect decoding of the information
symbols.

Adaptive relaying or Adaptive Relaying Protocol (ARP),
as named in [6], is one of the proposed solutions that ben-
efits from the advantages of DAF and AAF, and aims to
minimize the disadvantages of these two relaying tech-
niques. In [7,11], the relay can execute AAF and DAF,
and there is a technique based on the signal-to-noise-ratio
(SNR) which triggers the switching between the AAF and
DAF strategies. It assumes that at high SNR (for an SNR
above some SNR thresholds), the relay can decode per-
fectly, so it is better to operate with DAF; for low SNRs
(below a certain threshold), when it is harder to decode
correctly, it is preferable to use the AAF to avoid propaga-
tion errors.

The objective of this paper is to provide an efficient
procedure to integrate the adaptive relaying technique in
a CR-based environment for a joint optimization of the
choice of pairing strategy and the power allocation at the
transmitters (S and R) to reach high capacity, without
causing harmful interference to the primary user. The pro-
posed solution goes through an algorithm based on the
dual problem and sub-gradient method [12-14]. For sim-
plicity, we begin by selecting the sub-carrier and assume
that the relay uses the same sub-carrier for receiving
(from S) and for transmission (to D). We also consider
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other type of pairing selection, like random sub-carrier
selection and optimal sub-carrier selection from S-R to
R-D and compare the performances of these different
schemes.

1.1 Related work

Many works were done to solve the power allocation prob-
lem for the cooperative cognitive radio communication
systems. In [15], Zou et al. study the spectrum sensing of
the cognitive system using a cooperative relay cognitive
radio system. Their work focuses on the trade off between
the spectrum sensing and SU transmission. The use of
relays is presented also in [16], where the authors study the
outage probability of the SU when DAF is used. In [17], a
cooperative scheme has been used with DAF relaying. [17]
deals also with a multiple relay systems and relay selection
strategy. The AAF and DAF are both used in [18], where
the system decides to use one of these schemes accord-
ing to the known CSL. If the relay operates in AAF mode,
it will amplify the received signal. However, for the DAF
mode, if decoding is unsuccessful, the relay will remain
silent. Otherwise, the relay re-encodes the decoded data
and transmits it to the destination. As we will explain
later, we use a different scheme in our work focus on
the cognitive context, and this yields another optimiza-
tion problem. In cite [19], a similar scheme was presented
using the sub-carrier pairing technique and AAF forward-
ing strategy only. On the other hand, similar scheme were
presented in [20-22] (with relay selection and sub-carrier
pairing); these works focused on power allocation of a
relaying system in cognitive radio scenario using only the
DAF technique without considering the AAF technique.
The contribution of the present work is the use of an adap-
tive scheme of relaying based on switching between both
techniques, i.e., AAF and DAF.

1.2 Summary of contribution

This paper proposes a new adaptive relaying protocol
based in the AAF and DAF modes. In this protocol, the
relays are able to perform the AAF and the DAF accord-
ing to the capability of the relay to decode successfully the
signal. Note that the decision of switching, between both
modes, is based not only on the channel information but
also on the received SNR which will add more complex-
ity on the optimization problem to maximize the total rate
subject to power and interference constraints; the ARP is
described in [6], but it is not used for cognitive radio as it is
in this paper. Also, the optimization problem to maximize
the total rate is missing in [6]. This paper deals also, in a
second part, with the sub-carrier pairing problem using
the ARP model which differs from the multi-relays espe-
cially in the interference computations. Finally, this paper
uses the dual problem and sub-gradient algorithm to solve
numerically the optimization problem.



Soury et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:259

http://jwcn.eurasipjournals.com/content/2013/1/259

1.3 Outline of the paper

The remainder of the paper is organized as follows. In
Section 2, we present the system model and the match-
ing sub-carrier problem with a proposed algorithm. The
proposed solution is illustrated by some selected numeri-
cal results to compare the performance over the different
types of relaying (AAF, DAF, and ARP). In Section 3, we
investigate the pairing problem by including the pairing
parameters within the optimization problem studied in
Section 2. More specifically, the same algorithm is used
with some modifications to find the best sub-carrier dis-
tribution, and we end the section with some simulation
results showing the difference between the pairing tech-
niques used in this work. Finally, we conclude this work in
Section 4, with a summary of the main results.

2 Near-optimal algorithm for sub-carrier
matching scheme

In this section, we focus on the simple case in which
the power allocation of a cognitive system with one relay
system using a matching pairing strategy is adopted. In
particular, we assume that the relay forwards the signal
over the same received sub-carrier and study the differ-
ence in performance between the three types of relaying
schemes introduced in the previous section.

2.1 System model

In this work, an OFDM-based relay CR system is con-
sidered. The CR relay system coexists with the primary
system in the same geographical location. We assume that
there is no direct link between the CS and the D, so S tries
to communicate with D through the relay (see Figure 1).
The frequency spectrum of the CR system is divided into
N sub-carriers, each having a Af bandwidth. We assume
that the CR system can transmit through the unused PU
band without exceeding the maximum interference power
Iy, that can be tolerated by PU. The relay is assumed to be
half-duplex, so receiving and forwarding at two different
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time slots. In the first time slot, S transmits to R, while
in the second time slot, R forwards the signal to D with
the ARP technique. It has been assumed that we have
one relay which can work with different channels. Note
that the relay can forward the data using two techniques
(DAF and AAF) by switching between them, as presented
in Figure 2. The calculation of the mutual interference
between PU, SU, and the relay is presented in the next
part.

2.2 Interference analysis

The mutual interference introduced to PU by the ith sub-
carrier in OFDM systems is presented in [23]. Assume
that ®; is the power spectrum density (PSD) of the ith
sub-carrier. The form of the PSD depends directly on
the multi-carrier wave form technique. In our case, when
an OFDM-based system is used, the PSD at the ith sub-
carrier band can be written as

o sin7fT \ >
q)i(f)—Psz <7TfTs) ’

where P; is the total transmit power emitted by the ith
sub-carrier, and T is the symbol duration. Hence, the
mutual interference introduced by the ith sub-carrier to
PU, I;(d;, P;), can be found by integrating the PSD of the
ith sub-carrier over the PU band, B, and can be obtained
using the following expression [8]:

1)

di+B/2
A .
Ii(d;, Py) = G;®;(fdf = P,

d;—B/2

2)

where d; and G; denote the spectral distance and the chan-
nel gain, respectively, between the ith sub-carrier and the
PU band, while Q! is the interference factor of the ith sub-
carrier to the PU band [24]®. Note that (2) expresses the
interference in terms of the total transmit power P; of the
ith sub-carrier linearly, which will be used to solve the
optimization problem in the next subsections.
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Figure 1 lllustration of a cooperative relay cognitive radio network with N = 4.
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Figure 2 Block diagram for the structure of an adaptive relay.

By the same analysis, the interference power intro-
duced by PU signal into the band of the ith sub-carrier is
expressed as [8]

di+Af/2

Ji= YW (f)df, 3)
di—Af/2

where W(f) is the PSD of PU signal, and Y; is the chan-
nel gain between the ith sub-carrier and the PU signal. By
completing the interference analysis of the different agents
of the cognitive system, we can formulate the optimization
problem before proceeding to the solution.

2.3 Capacity analysis and problem formulation

Let us first define the variables of the problem. Let
(PéR; Pf{D) be the power transmitted over the ith sub-
carrier in the (S-R;R-D) link. The ith sub carrier channel
gain over the (S-R;R-D) link is glven by (H. SR, f{D). Finally,
the noise variance is assigned by 6> = o2 Awen T+ /i where
O’KWGN is the variance of the additive white Gaussian noise
(AWGN), and J; is the interference introduced by the PU
signal into the ith sub-carrier which is evaluated using
(3). This interference can be modeled as an AWGN as
described in [2]. To make the analysis more clear, the noise
variance o2 is assumed to be the same for all sub-carriers
and both time slots.

2.3.1 Processing during the first time slot

Let x5; be the transmitted signal from S over the ith
channel. The received signal at the relay R over the ith
sub-carrier in the first time slot is given by

Yo = V Hp Plpxs,i + g, (4)

where ngR is the noise between S and R with a variance

O—SzRi =o?,andi = {1,2,...N} denote the ith sub-carrier.
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According to the Shannon capacity formula, the trans-
mission rate of the ith sub-carrier between the source and
the relay R; ; can be calculated as

1 PipHsy
Rl,i = 5 10g2 (1 + T . (5)

As it has been mentioned above, we should limit the
interference caused by the CS to the PU, which gives us
the following interference constraint [8]:

N
ZPLSRQlSP =< Ith: (6)
i=1

where QgP denotes the interference factor of the ith sub-

carrier to the PU band.

2.3.2 Capacity in the second time slot

In the second time slot, the relay decodes and re-encodes
or amplifies the signal over the ith channel depending on
the received SNR, then forwards it to the destination. This
means that the transmit signal from the relay over the ith

channel is
; v P{{D'xs,i for PéR)/ng = Vih
XRp = — o 7)
Biy/Pro-ysg  for Pepysg < Vins

where PgRysz = 1315571;[;'1{ is the received SNR via the
source-relay link, and yy, is the threshold SNR to ensure
successful decoding. We assume that we have successful
decoding when PgR VsiR is above yy,. In (7), B; is an amplifi-
cation factor used by the relay to amplify the signal using
the AAF mode. The choice of 8; should assure the normal-
ization of the total transmit power to the same value with
all the AAF channels. It is defined in ([25], Eq. (9)) as

1
RY PéRySiR +1

At the destination, the received signal over the ith chan-
nel can be written as

Yrp = V HipxRp + Mip.- )

Hiy H}
Let us define two variables: ySR = 2 R and yRD = 2.

Using (7) and (9), we derive the expression of the total SNR
delivered via the ith channel as

Bli] = (8)

: (10)

P koY if PépYiR = Vi
YARP = .
YAE otherwise,
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where VAF is the SNR for the set of channels that work on
amplify-and-forward, and it is given by

, 2
E [J’ i{D,AAF]

]E[(yi.iD,AAF)Z] *E[yi{D,AAF]Z

VAE
(11)
PipYrp+Pspri 1’
where E[Y] denotes the expected value of the random
variable Y.
Back to the Shannon capacity formula, we calculate the

rate of the channel in the second time slot for the two cases
as

Pi H
Rypar,i = 3 log, (1 + %) for the DAF case
Pi Vi Pi ]/i
R =1l 1 4+ —-RDYRD"SR¥SR
24AEi = 308 (145 RpYRD PR VSR 1
for the AAF case.
(12)
Note that Ry sar,; is not jointly concave in Pf{D and

PéR. To make the analysis simpler, we adopt the following
approximation:

PﬁDVéDPéRVsiR ) ' (13)

1
R i ~ —lo 1 — 2

PN 82 ( " Prp¥rp T PspYsr

This approximation is used in [26], and it is based on
the assumption that the system has a high SNR for the
amplified signal between the relay and the destination. It
is proved in [27] that this approximation is also accurate
even in the moderate-low SNR regime.

To make things more clear, a new binary variable ¢; is
defined in a way that it takes the values ‘0’ or ‘1’ to indicate
if the relay uses the DAF case (¢; = 0) or the AAF case
(o; = 1). We denote also by A the set of index of channels
that work on AAF, and D as the set of index of channels
that work on DAF

A={i,0;=1}; D ={i, a; =0}. (14)

As in the DAF case, we compute the interference caused
by the relay to the PU for the AAF case. Using the interfer-
ence analysis done above and the expression given in ([28],
Eq. (17-18)), we get the following interference constraint
in the second time slot (R — D):

ZPﬁDQi}P + ZPEDQEJ < Iy
ieA ieD

(15)

2.3.3 Total capacity

It is clear that the capacity has different expression in each
time slot and forwarding technique. Therefore, we need to
find a unified expression that will be used as the objective
function of the upcoming optimization problem. In fact,
the achievable rate in each sub-carrier is the minimum
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rate between both time slots. Thus, the transmission rate
is given by

R; = a;min {Ry j, Ry par,i} +(1—a;) min {Ry,;, Ry AF,i} -
(16)

The maximum capacity is achievable when the rate in
the first time slot is equal to the rate in the second time
slot for every sub-carrier if it is possible. Thus, from (16),
we should have the following capacity relation for the ith
sub-carrier to achieve maximum rate:

Rypar,; for ie D
Ry = ) (17)
RZ,AAF,i for i € A.

Hence, we get two cases. For the DAF case, the equality
is achievable by assembling (17), (5), and (12) to derive the
following relation between the transmission powers:

. PLH:
Prp = g fori e D.
RD

(18)

However, if we look to the formula of the rates in the
AAF case (12), we can see that the rate in the second time
slot is always less than the rate in the first time slot and
cannot reach it. In fact, we have

ipf{Dz/Il{DPLSIEVSLRi - PéRI;IéR foric A
PrpYrp + PsrVsr o

(19)

This means that the achievable rate of these channels
is equal to the rate in the second time slot. According to
these derivations, we find the total expression of the rate
in our model as

PrpYrp+PsrYsR

icA 1 ) , (20)
+ 'ZD 7 10g, (1+ Pgyey) -
e

2.3.4 Optimization problem of the sub-carrier matching
technique
Our objective is to maximize the total capacity of the
CR system while the interference introduced to the pri-
mary user is below the tolerated threshold. Therefore, the
optimization problem can be formulated as follows:
N
max }_ R;
PopoPrp i=1
Subject to

- (Interference at first time slot)

N , 21
5" Py < I 1
=1

- (Interference at second time slot)

2 PrpQp + 2 PrpQp =< Iy
icA . i€D

12 . L
Pep = 0; Ppp > 0.
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In this problem, the power constraints at each trans-
mitter (S and R) are missed. However, when we take
a look at the interference constraints, we note that the
power constraint is defined indirectly. Moreover, we use

the identity Qgp > mjin Q’SP to ensure the following

B Thus, the interference con-

min Qp

IA

N
inequality ) P:
i=1

straint implies, indirectly, a power constraint in the two
time slots; even if the resulting interference is too small,
the problem remains approximately the same without sig-
nificant change. This analysis can help us in this chapter
because the problem is relatively simple and is not a mixed
integer programming problem, so the power constraint
can be omitted. However, in the next section, the problem
is more complex, and we should define the power con-
straints at the transmitters to avoid non-convergence of
the algorithm.

We assume that all fading gains are perfectly known.
The channel gains between the CR system parts (S, R, and
D) can be obtained by channel estimation techniques; the
channel gains between the CR system and the PU can be
obtained by estimating the received signal power from the
primary terminal when it transmits [29]. At the end of this
part and by assembling the previous equations and rela-
tions, we can re-write the optimization problem given in
(21) as

P i
max ; Ly log, <1 Ra v Sy v PhoinPs ?ySIf )

PLoPhp zeA RDYRD PSR VSR

+5 2 logy (14 Plpvdy)
i€eD

s.t.
N ,
> Psr2%p < Iuss @2
i=1
> PrpQ%p + Yiep PSRzHSR Qkp < I
icA .
Pep = 0;
Pip > 0.

Under the previous assumption of perfect knowledge of
the channel coefficient and the noise variance, the prob-
lem is a convex optimization problem with the parameter
Pf{D and PgR. In the next part, we solve this problem using
the Lagrangian method and the Karush-Kuhn-Tucker
(KKT) conditions. Moreover, using the fact that the prob-
lem is convex, the dual solution and the primal solution
are the same, so the problem can be solved using the dual
formulation.

2.4 Solution
For simplicity reasons and for making the mathematical
notation easy to follow, we denote the following: PSR by Pl,

Pip by Py, vég by vi, Yip bY 73, Q5p by 27, and Qgp by 2.
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2.4.1 Dual problem
The Lagrangian function with Lagrangian multipliers X,
can be written as presented in (23).

1 N
£=22|:O{l' 10g2 (1

i=1

N
+ u (Ith — ZPZ

i=1

Pi yipi Y.
pi ;L:_IZ)L JZ/L)_HI ai)log, (1 +P1V1):|
1

N
‘) +)»<Ith—ZaP2§2’

i=1

(23)

Note that we substitute .4 and D by their definition,
and we include ¢; in the Lagrangian to simplify the com-
putation. We develop the Lagrangian to get the following
expression:

N . . . .

1 PiyiPlys o o

L= a;| =log, |1+ 2222 ) _APLQL —uP Q)
o s (A

rd-w 1 PiHéR i pigi
—aj) | 5 logy (1+Pyyf) —A— Q) —uPi Q)
Hyp

+ A+ Wiy,
(24)
Now, we solve this problem using the dual approach. But

first, let us define the dual problem and the dual function
as

i })\' ’ 25
o g1, ) (25)
where
g2 max L. (26)
P1>0,Py>0,0;

From (24) and for a given set of ;, the problem can
be divided into N independent problems. Thus, we divide
the dual function (the Lagrangian) into N dual functions
(Lagrangian), such that g; (£;). For each sub-carrier i, for
given X and w, and according to the value of ¢; (which can
take two values, 0 or 1), it appears that there are two cases:

e Case «; = 1. In this case, the relay is working on AAF
for the ith sub-carrier. As we have in (23), only the
terms related to the AAF approach. Hence, the dual
function can be simplified as follows:

gi(u,A) = max L;

P’ P‘ >0
1 Pi iPi i
= max Slog, (14 A2
Pi,pi>0 2 Pyl + Pyy,
— APLQL — P Q.
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The maximum of £; can be found by searching the
partial derivative of £; subject to P4 and P which

leads to

Ly (P ()71 L0
—Haa

8Pl (Plzyz + Pi yl)(P )/2 + P1y1 + PlzyzlPlyl)
(27)
Ly P> (v)?y) i
v - 2¢

0Py (Pyys + PiyD)(Piys + Pyl + PhyiPly))
(28)

We then equal both (27) and (28) to zero. Th¢
solution of these equations leads to P{* = ¢; Py,

}’2)L
L Ql

where ¢; = Thus, the new value of P’ is

i 1 17"
Py = %— i~ 29
neiQ (v, +civ)) vy ¥

where [x]T = max(0, x).

e Case o; = 0. For this case, the relay switches to the
DAF technique at the ith sub-carrier having i € D.
The problem of the DAF relaying has been solved in
[8]. We just have to know the value of Pi* which can

be obtained from the following relation P5* =

The solution is found to be given, in this case, by the
following expression:

+
1 1

P = - — (30)

i SR i )/l
nQ + a2t Q 1

By obtaining the optimal values of the transmitted pow-
ers Pi* and Pé*, the dual function is now a function of
and X. In the next subsection, we use an algorithm named
sub-gradient algorithm [12] that proceeds to the search of
the optimum values of  and X iteratively.

2.4.2 Sub-gradient method to solve the dual problem

With the obtained optimal values of primal variables
(Pi*, P&), the dual problem can be solved using the sub-
gradient method [12-14]. In fact, our algorithm is based
on the calculation of the Lagrangian multipliers A and u
in each iteration. The decision about the type of relaying
mode over each sub-carrier is made using (10). The imple-
mentation procedures is described in the power allocation
algorithm depicted in Algorithm 1.

The parameter §°) appears in lines 14 and 15 of
Algorithm 1, denoting the step size of the kth iteration.
This algorithm is well described in [12-14], where many
types of step size can be used in the sub-gradient algo-
rithm. In our model, we tried different step sizes and then
used the best one in terms of best performance and less
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Algorithm 1 Power Allocation Algorithm

1: Initialize A = Ao and u = o
2 fork =1to Itermax do ‘
3. Compute ¢;, P and P] using (29), V i

4:  Set ; by the decision rule presented in (10)
5. Compute P’ and P’ using (30), Vj
6:  Setajby the dec1510n rule presented in (10)
7: ifo; = o = 1 then
8: Choose P; and P, according to Step-3
9: elseifo; = aj = 0 then

10: Choose P; and P, according to Step-5

11: else

12: Choose o that maximize the capacity

13:  endif

14 pktD o sk, — ZPl Q)
z_

15 Ak 0 sk, Z PiQb)
i=1

16: end for

complexity. In the proposed scheme, the optimal power
requires (N2) function evaluations for every sub-carrier to
be matched in the second time slot. Therefore, the com-
plexity of the proposed algorithm is O(TN?), where T is
the number of iterations required for convergence. A com-
parison between the different schemes used in this paper
is derived in Section 3.3.

2.5 Simulation results

The simulations are performed under the scenario given
in Section 2.1. An OFDM system of N sub-carriers (N €
{16,32, 64}) at the source and destination and one relay
system is assumed. The values of T, Af, and Iy, are
assumed to be 4 ps, 0.3125 MHz, and —20 dBm, respec-
tively. The channel gains are outcomes of independent
Rayleigh distributed random variables with mean equal
to 1.

Figure 3 plots the average capacity using the different
schemes (AAF, DAF, and ARP) vs. the SNR and using
different values of total number of sub-carriers with
N = {16,32,64}. It is shown that for low values of SNR
(20% < 7) and for each value of N, the DAF relay decod-
ing procedure is not perfect. Therefore, the AAF performs
better than the DAF and provides higher capacity. How-
ever, at high SNR (> 7) values, the behavior of the system
become inverse to the previous situation. Here, decoding
can be done ‘perfectly; and the propagation of errors due
to the amplification in AAF process has more chances to
occur. Thus, in this SNR region, the performance achieved
by the DAF mode is higher than that achieved by the AAF.

It can be also shown that the ARP relaying protocol
achieves, for the different depicted values of SNR, the best



Soury et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:259

http://jwcn.eurasipjournals.com/content/2013/1/259

Capacity (Bits/Hz/sec)

—8— Amplify And Forward
—©— Decode And Forward
—#— Adaptive Relaying Protocol

7 7.5 8 8.5 9

-

202
Figure 3 Effect of sub-carrier number on the capacity. Achieved
capacity for different SNR values and different numbers of
sub-carriers, [, = 107> W.

results. This can be explained by the fact that the ARP
protocol is able to switch (in an adaptive way) from one
relaying mode to another (AAF or DAF) using in each
moment the relaying mode that achieves the best perfor-
mance. In other words, the ARP tends to use the AAF
relaying protocol for low values of SNR, and use the DAF
for higher SNRs. Thus, ARP is able to take advantage of
each relaying mode, depending on the SNR range. Figure 3
shows, finally, how the system capacity scales as func-
tion of the increase in the total number of carriers of the
system.

Figure 4 depicts the average capacity using all the relay-
ing schemes (AAF, DAF, and ARP) having two interference
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threshold values which are 107> and 3 x 107> W. It can be
shown that the crossing point between the DAF and the
AAF curves occurs at different SNR values when the sys-
tem has different interference constraints. Note that for
high values of interference threshold, the source and the
relay will be able to transmit with more power than with
small interference constraints (I, is small). This result
implies that the decode procedure can be done correctly
at the relay phase even for a high noise variance.

Figure 5 shows the capacity of the system versus the
SNR having the relay system at different distances from
the source. A general observation is that the ARP achieves
higher capacity when relay is near the destination, then
the performances decrease as soon as we have the relay
at middle distance between the S and D, and near to the
source, respectively. It can be shown that the crossing
point between the use of the AAF or the DAF appears
at lower values of SNR if the relay system is located near
the source. This can be explained by the fact that the
relay receives data at high SNR in this case, which means
that decoding can be done correctly and as such the relay
switches to DAF mode. However, when the relay is near
the destination, the intersection point appears at high
SNR. In this case, the received signal at the relay has a low
SNR, which favors AAF since AAF performs better than
DAF for low and moderate values of SNR.

As a general observation from Figures 3, 4, and 5, it can
be shown that the ARP scheme behavior always reaches
the optimal scheme for different SNR values. However, the
major limitation of the proposed scheme is its complex-
ity. Thus, a new algorithm with much less complexity is
required to make a step towards possible real implemen-
tation. Further, work should focus on the development of

Capacity (Bits/Hz/sec)

—&— Amplify And Forward
—©— Decode And Forward
—#— Adaptive Relaying Protocol

5 5.5 6 6.5 7 7.5 8 8.5
1
257
Figure 4 Performance of ARP for different interference
threshold. Achieved capacity for different SNR, 32 sub-carriers, and
two values of the interference threshold: /, = 10~ and
Iy = 3.107> W.

Capacity (Bits/Hz/sec)

—&— Amplify And Forward
—6— Decode And Forward
—#— Adaptive Relaying Protocol

7 8 9 10 1
€
202
Figure 5 Performance of ARP for different positions of the relay.
Achieved capacity for different SNR, different position of the relays,
Iy = 107> W, and 32 sub-carriers. NS, near source; MD, middle
distance; ND, near destination.
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suboptimal algorithm that achieves a near optimal perfor-
mance with affordable complexity of implementation.

Figure 6 shows capacity performance comparison using
the matching and random pairing techniques for differ-
ent values of SNR. In matching pairing technique, the
same carrier k is used in both time slots (in S-R and
R-D links). However, with random pairing technique, the
assigned carrier in the second time slot will be chosen ran-
domly. It can be shown in this figure that higher capacity is
achieved by matching carrier pairings than using the ran-
dom assignment process of the carriers from S-R to R-D.
It can be also observed that the ARP relaying technique
achieves the best performances in both cases, matching
and random pairing for different values of SNRs. We can
conclude that using the matching pairing technique with
ARP relaying strategy, higher capacity performance could
be achieved for a wide range of SNR values.

The goal of Section 2 is to compare achieved perfor-
mances between three relaying schemes, namely, the AAF,
DAF, and ARP in a cognitive radio environment, using the
matching sub-carrier technique. Given the superior per-
formance of ARP, the next section focuses on the ARP
scheme for a more complicated problem which includes
the research of the best sub-carrier pairing to maximize
the capacity under interference and power constraints.

3 Sub-carrier pairing for adaptive relaying
protocol

As it was mentioned in the previous section, there are

many types of pairing techniques to switch the sub-

carriers from the first link to the second link. It has been

shown that the pairing strategy has an important impact

on the resulting capacity. Therefore, in order to reach

Capacity (Bits/Hz/sec)

—&— Amplify And Forward
—6— Decode And Forward 1
—#— Adaptive Relaying Protocol

7 72 74 76 78 8 82 84 86 88
1
202

Figure 6 Impact of the sub-carrier pairing on the system
capacity. Achieved capacity for different SNR, /i, = 107> W, 32
sub-carriers, and two types of sub-carrier pairing: sub-carrier
matching and random pairing.
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maximum capacity, with limited resources, we should
carefully choose the pairing technique. One solution is to
introduce the sub-carrier pairing in the final optimization
problem in order to find the optimum pairing distribu-
tion that maximizes the capacity without increasing the
complexity too much.

3.1 System architecture

The same OFDM cooperative system described in
Section 2.1 is used in this section with some modifica-
tion. In fact, a SU is present in the same coverage area of
the PU and can communicate through the PU spectrum
without causing harmful interference to the adjacent PUs.
We assume the absence of a direct link between S and D.
Thus, the SU is reaching the destination using the ARP
technique of relaying through one relay R. It is assumed
that the data is multiplexed into OFDM with several sub-
carriers whose total number is equal to N. Thus, the used
spectrum by the CS is divided into N sub-carriers, each
having a Af bandwidth. Both S and R can transmit over
the PU spectrum and interfere with its signal without
exceeding the maximum interference power tolerated by
PU, Iy,. As mentioned before, the source and the relay
transmit in two different time slots in a way that the link
(S-R) is active at the first time slot, while the link (R-D) is
active in the second time slot.

Figure 7 illustrates the analyzed system. The main
change in this model is at the relay side which has to dis-
tribute the sub-carriers to maximize the total rate. In fact,
different pairs of sub-carrier (k, /) that assure the trans-
mission in both time slots are created, the kth sub-carrier
in the first time slot is paired with the /th sub-carrier in
the second time slot.

The interference calculations are the same as the ones
done in Section 2.2, and the interference introduced by
the kth sub-carrier to PU, I (dy,Py), can as such be
expressed as

A
Ii (dy, Pr) = Pi&. (31)

Also, the interference introduced by the PU is modeled
as AWGN with a variance J;. In what follows, the noise
variance is denoted by 0? = o2, and it is assumed to be
the same for all sub-carriers and in both time slots.

3.2 Problem formulation

3.2.1 Total capacity

The variables of the problem are defined as follows: Pll‘
(Pé) is the power transmitted over the kth (/th) sub-carrier
in the S-R (R-D) link, respectively. The kth (/th) sub-
carrier channel gain over the S-R (R-D) link is given by
H{‘ (Hé), respectively. Using the same notation used in the
previous section for the transmitted and received signals
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in the different system hops, we can show that the capacity
in the first time slot can be written as follows:

1
Cix = 3 log, (1 + P’f)/lk). (32)

However, in the second time slot, we get two possible
formulas that depend on the type of forwarding technique
used at the relay. Hence, if the sub-carriers pair (k,/) is
used for transmission, the achieved capacity in the second
time slot is given by

Corlk, ) = }1ogy (1+ Phyf)
if DAF is used
Colk, ] = kpl kol
1 PPy vy
CAF[k, l] =3 10g2 <1 + Pé}/2l+Pll<)/1k+1)
if AAF is used.

(33)

Note that the same amplification factor defined in (8)
is used by the relay in the AAF case. The variable y was
given in Section 2.3 and is defined as

K H
e (34)
| _ H
Yo = 52

For each channel couple (k, [), the total rate is the min-
imum rate between both time slots. If the couple (k, /) is
using the DAF, the rate can be obtained by simply equal-
izing Cy1 ¢ to Cprlk,[]. This equality reduces the number
of variables by making a relation between the power allo-

k
" pk
Wpl for

2
the channel couple (k,/). However, if (k,/) is operating

cation in the first and second links as Pé

under the AAF mode, the following inequality solves the

problem, but does not reduce the number of variables
.kl

PPy 73

pkyk o —1°27172
1)/1 > .
Phyl+ Piyf

(35)

As defined in (14), we can use the binary variable « to
combined the two values of the capacity according to the
forwarding technique. In fact, we know that o; = 1 indi-
cates that the /th sub-carrier is operating on AAF, and
a; = 0 means that the /th sub-carrier forwards by DAF.
Furthermore, we introduce a new parameter # , to obtain
the optimal possible combination (k, /) in pairing at R. In
fact #; takes the values ‘0’ and ‘1. The ‘1’ means that the
couple (k, [) exists, and ‘0’ in the case the couple (k, [) does
not exist. If we model # ; by an (N x N) matrix T, the con-
straints on #;; imply that the sum over each column of T
equals to 1, and the sum over each row of T equals also
to 1. The simplest choice of T is the identity. In this case,
R forwards the signal over the same received sub-carrier
(see Section 2). To get a closed form of the total rate of
the cognitive system, we introduce the previous changes
to get the following expression:

N N

C=">"tcs (@Carlk, 1+ — a))Cprlk, 1]) . (36)
k=1 I=1

By writing the final expression of the total system capac-
ity, a new constraint on the indicators appears. The first
relates to the sub-carrier pairing constraint about # ;, and
the second is about «;:

N N
Ztk,z =1,V Ztk»l =1, Vk
k=1 =1

oy=0orl, Vi
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3.2.2 Optimization problem

Our objective is to maximize the CR system through-
put by optimizing the sub-carrier pairing and the power
allocation at the source and the relay among assigned sub-
carrier pairs by taking care of the instantaneous interfer-
ence introduced to PU which should be below a maximum
limit. The interference constraints can be defined using
the interference analysis developed in Section 2.2 to get
the following equations:

N
> PQt < Iy, (37)
k=1
N
Y P <y, (38)
=1

where Qll‘ and 5212 are the interference factors in each slot.
Therefore, we can formulate the optimization problem
as follows:

max C
Pll(,Pé,al,th

s.L.
—(C1: Source power constraint)

N
kz Pk < ps C1
=1
—(C2: Relay power constraint)

N
> Ph< Py C2
k=1

—(C3: First time slot interference)

N
3 Prok < 1y, C3
k=1
—(C4: Second time slot interference)

N
L Py <1y o
=1
—(C5: Forwarding technique constraint)
a;€{0,1}, VI C5
—(C6: Sub-carrier pairing constraint)

N N

Stry=1, V5 Yty =1, Vk. C.6

k=1 =1

Ps and PR are the available power budgets in the

source and the relay, respectively. The instantaneous fad-
ing gains are assumed to be perfectly known. The channel
gains can be estimated using classical channel estimation
techniques.

3.3 Optimal power allocation

Solving problem (39) with respect to the optimization
variables Pll‘ , Pé, and f;; is a mixed binary integer pro-
gramming problem. The problem in (39) is satisfying the
time sharing condition presented in [30] for larger N. By
consequence, the duality gap of the problem is negligi-
ble as the number of sub-carrier is sufficiently large (i.e.,
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N > 8) regardless of the convexity of the problem. By solv-
ing the dual problem, we get an asymptotically optimal
solution [30]. To formulate and solve the dual problem, we
need to find the Lagrangian of the primal problem which
is given in (40).

Prykply!
L= ZZ tk1|:a110g2 <1+Pk1k1 272 )

1= i+ Py
N
+ (1 — ) log, (1 +P’1‘)/1k> } +B (Pg - pr)
k=1
N N
+0 (PR - Zpg) + A (Qh - Zp’;sz’;)
=1 k=1
N
+u <1th - Zpgszg) .
=1
(40)

The dual problem associated to the primal problem is
given by

mm

&(B, 0,4, ), (41)

where 8 and 6 are the Lagrangian multipliers (dual vari-
ables) related to the power constraints at the source and
the relay, and A and p represent the dual variables associ-
ated to the interference constraints. The dual function g is
defined as

max L

8.0, 0, ) =
Pk>0.PL>0,0t1;

s.t. (C5), (Ce).
We can rewrite the dual function from (42) as follows:

g(:B’Q:)"; M) =

(42)

max
P]f>0,Pé >0,ap,tk,

N N
3> Y tr (Dar (P, Ph) + (1 — apDor(Ph))  (43)

k=11=1
+BPs + OPR + Iy, (A + 1)
s.t. (C5), (Ce),

where we introduced two new functions in the dual func-
tion to simplify the computation, given by

N ykPLyl
Dar(P, Ph) = ilogz 1+ m

(44)

— BPX — 0P, — ) PkQk — uPiQl,

and
1 phyk
Doe(P,)) =  log, (1+Phyt) - gt -0 ;11
2
Pk)/k
— AP — 70
Y2

(45)
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Moreover, for a given values of the different dual vari-
ables, we get two cases depending on the value of the
variable o;:

® Case 1: The pair (k, ) is used for amplify and
forward, i.e., oy = 1. Assume (k, /) to be a valid
sub-carrier pair; the optimal power allocation can be
evaluated by solving the following sub-problem for
every (k, ) assignment:

max Dap(Pk, Py st PX>o0, P,>o.

1’P2

(46)

Hence, we obtain the optimal power by equating

dDAp(PK, P dDAp(PK, P
AE( ! 5) _ AE( : 5) _o 47)
Pk 9P,

The optimal power in (46) can be expressed as
follows:

ks __ |: " _ 1 1]+
L of e @0+ud) vk ouvd
Plz* — Ck,lPk:
(48)

k k
AQ .
where ¢ = M Hence, the power variable
’ Vo (0+12y)

in (43) can be eliminated by substituting the optimal
power allocation found in (48). Then, the dual
function can be easily found by searching the optimal
pair (k,[) that maximizes the dual function.

e (Case 2: The pair (k, [) is used for decode and forward,
i.e., a; = 0. In this case, we assume that the pair (k, /)
is a valid pair that forwards by DAF technique. The
following problem should be solved for each valid pair

max Dpg (P, 1)

s.t. Pll‘ > 0.
)

(49)

By differentiating the previous function over P;, we
obtain the optimal power allocation in this case:

+

k k k
o pakpudal N
7 72

kx __ 1 1
Py =

(50)

I« _ Y1 pk
Py = Zpy.
2

Like case 1, we substituted the power variable by its
optimal value to get a new problem without power
parameter. Therefore, the best pair (k, ) is chosen so
it maximizes the dual function.
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At this stage, we get the power allocation and sub-
carrier pairing in function of the dual variables so that the
dual function can be written as follows:

g(B.6, 1) =
L ks pl sk
max Y 3t (e Dar(P*, PY) + (1 — ) Doe (PY"))
tel k=11=1
+BPs + 0Pr + Iy (A + 1)
s.t. (Ce6).

(51)

The problem in (51) is a linear optimization problem
which can be simply solved. The sub-gradient method can
be used to solve the dual problem with guaranteed con-
vergence. At this state, we get all the optimal solution, i.e.,
Pik,z’ t;(k, ! and «; of the dual function for a given dual points
B, 6, A, and w. The dual variables at the (i + 1)th iteration
are then updated as

N
ﬂ(l+1) — ﬁ(l) — 50 (PS _ Zplf*)

k=1

N
gD — g _ 5O (PR - Zpé*)

=1
(52)

N
AHD = 0 5O (Ith —~ ZP’{*Q’{)

k=1

N
pHY = p -0 (Ith - ZPQ*QQ) :
=1

where 8¢ is the step size that can be updated according to
the non-summable diminishing step size policy [12-14].

As shown before, the complexity to get the optimal
power in the source side is N? for every sub-carrier.
The pairing scheme requires N more operation to get
the total power allocation. Therefore, the complexity of
the proposed algorithm in the pairing mode is O(TN?)
where T is the number of iteration required for conver-
gence. Table 1 summarizes the complexity of the different
schemes used in this paper.

3.4 Simulation results

According to the scenario given in Section 3.1, a multi-
carrier system of N = 32 sub-carrier and single relay is
assumed. The values of the symbol duration T, Af, and

Table 1 Complexity of the used algorithms

Scheme Complexity
Sub-gradient algorithm O(TN)
ARP with sub-carrier mathcing OTN?)
ARP with sub-carrier pairing O(TN?)
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o2 are assumed to be 4 s, 0.3125 MHz, and 107, respec-
tively, as it was the case in Section 2.5. The channel gains
are outcomes of independent Rayleigh distributed random
variables with a mean equal to 1.

Figure 8 shows the achieved capacity for different inter-
ference and power constraints using the adaptive relay-
ing protocol. From the figure, it can be observed that
the capacity increases as the other constraints increase.
However, by fixing one of the constraints, the capacity
does not change and becomes constant when some value
of the other constraint is reached; this can be justified
by the fact that the power allocation reaches its maxi-
mum value allowed by the changeable constraint and can
not move beyond this constraint. An example of this case
is clearly shown in Figure 9, where the evolution of the
average capacity versus the interference threshold for two
values of the power constraint is drawn. Note that for
a fixed power constraint, the system capacity becomes
constant because the interference introduced to the PU
using the fixed power budget is less than the interference
threshold. On the other hand, the figure shows us also
that the optimal pairing strategy has the best performance
compared to the matched pairing strategy studied in the
previous chapter or any random pairing scheme. In fact,
in the optimal pairing strategy, the algorithm chooses the
best combination of sub-carrier pairs to be used while
relaying which is, as expected, better than using the same
sub-carrier for relaying or using a randomly picked set of
sub-carrier couples.

The system used above assumes that the relay is located
in the middle between the source and the destination
because the channel gains have the same power. The posi-
tion of the relay can be changed by modifying the channel
power (CS to R) and (R to D). The results in Figure 10 con-
firm that the position of the relay has an impact on the

40

Capacity (Bit/Hz/S)

-60 40 30 _pg

10 0 10
dBm)

-20 —

Ps=Pr
I, € (dBm)
Figure 8 Performance of ARP with sub-carrier pairing. Achieved
capacity as function of the allowed interference threshold and power
budget constraints.
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Figure 9 Effect of interference threshold and power budget on
the ARP. Achieved capacity vs allowed interference threshold (Solid
lines for Ps = Pr = 10 dBm and dashed lines for Ps = Pg = 30 dBm).

system capacity. From this figure, it is shown that the best
performance appears when the relay is near the source
and the worst case when the relay is near the destination.
Indeed, the relay receives a signal with high SNR when it is
near the source. As such what ever the deployed forward-
ing technique (DAF or AAF), the relay transmits a signal
with good quality, very near to the original signal for the
DAF case and without an important noise amplification
for the AAF case. However, as the relay moves away from
the source, the quality of the received signal at R degrades,
and the processing becomes more difficult which affects

Pairing Subcarrier:

Capacity (Bit/Hz/S)
N

Relay Near Source
—O— Relay in Middle
—A— Relay Near Destination

0L A & i i i i i
—-60 -50 -40 -30 -20 -10 0 10
Interference threshold Ith (dBm)

Figure 10 Performance of ARP with pairing for different
positions of relay. System capacity for different values of
interference threshold, different positions of the relay, and

Ps = Pg = 10 dBm. Solid lines represent the pairing sub-carrier
technique, and the dashed lines, the matching technique.
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the capacity of the system and decreases it. Therefore,
the worst case appears when the relay is near the desti-
nation since the DAF will cause error propagation, while
AAF will cause an important noise amplification because
of the low received SNR. Moreover, the curves in this
figure confirm the efficiency of the proposed scheme of
pairing. Note that whatever the position of the relay, the
system reaches the same maximum capacity allowed by
the power budget for high interference threshold. This
issue can be explained by the fact that for high interfer-
ence threshold, the received SNR at the relay is very high
even if the relay is far from the source. Therefore, the
capacity increases as the interference threshold increases
until it saturates when the power reaches its maximum
value.

4 Conclusion

In this paper, we considered a near optimal power allo-
cation algorithm for an OFDM-based system with adap-
tive relaying protocol using a single relay. In the first
part, the problem is solved for the simple case of sub-
carrier matching to compare the performance of the
ARP scheme to the classical AAF and DAF techniques.
However, in the second part, the goal was to maximize
the capacity by jointly optimizing the sub-carrier pair-
ing, the power allocation, and the relaying technique
(AAF or DAF). In our framework, we assumed a lim-
ited power budget at each transmitter, and because it
is a cognitive scenario, the introduced interference to
the primary user was required not to exceed a predeter-
mined tolerated threshold. The problem was formulated
with the different constraints as a mixed integer program-
ming problem. We used the dual method to solve the
optimization problem iteratively using the sub-gradient
algorithm.

Some selected simulation results confirmed the effi-
ciency of the proposed relaying scenario (ARP), which
offers better performance in comparison to the AAF and
DAF techniques. These results showed also that the per-
formance has a considerable dependence on the adopted
sub-carrier pairing techniques at the relay. The simula-
tion results showed finally the effects of the interference
threshold tolerated by the PU and the impact of the power
budget set at the transmitters.

Endnote

2This formula assumed a perfect knowledge of the CSI.
The outdated CSI scenario is studied in [24], when the
average interference is expressed in terms of the
interference factor ¢, the channel gain H' i and the
correlation coefficient p ([24], Eq. (16)). This case can be
integrated in our model by changing the interference
factor by the new outdated CSI factor.
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