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Abstract

Relaying is standardized in 3rd Generation Partnership Project (3GPP) Long-Term Evolution (LTE)-Advanced
Release 10 as a promising cost-efficient enhancement to existing radio access networks. Relay deployments
promise to alleviate the limitations of conventional macrocell-only networks such as poor indoor penetration
and coverage holes. However, to fully exploit the benefits of relaying, power control (PC) in the uplink should
be readdressed. In this context, PC optimization should jointly be performed on all links, i.e., on the
donor-evolved Node B (DeNB)-relay node (RN), the DeNB-user equipment (UE) link, and the RN–UE link. This
ensures proper management of interference in the network besides attaining a receiver dynamic range which
ensures the orthogonality of the single-carrier frequency-division multiple access (SC-FDMA) system. In this
article, we propose an automated PC optimization scheme which jointly tunes PC parameters in relay
deployments. The automated PC optimization can be based on either Taguchi’s method or a meta-heuristic
optimization technique such as simulated annealing. To attain a more homogeneous user experience, the
automated PC optimization scheme applies novel performance metrics which can be adapted according to the
operator’s requirements. Moreover, the performance of the proposed scheme is compared with a reference
study that assumes a scenario-specific manual learn-by-experience optimization. The evaluation of the
optimization methods within the LTE-Advanced uplink framework is carried out in 3GPP-defined urban and
suburban propagation scenarios by applying the standardized LTE Release 8 PC scheme. Comprehensive results
show that the proposed automated PC optimization can provide similar performance compared to the
reference manual optimization without requiring direct human intervention during the optimization process.
Furthermore, various trade-offs can easily be achieved; thanks to the new performance metrics.

Keywords: LTE-Advanced, Decode-and-forward relay, Automated optimization, Uplink power control, Simulated
annealing, Taguchi’s method
1. Introduction
Relaying is considered an integral part of the Fourth
Generation (4G) radio access networks, namely IEEE
802.16 m and 3rd Generation Partnership Project
(3GPP) LTE Release 10 and beyond (LTE-Advanced).
Decode-and-forward relay nodes (RNs) are relatively
small nodes with low power consumption, which con-
nect to the core network with wireless relay link through
a donor-evolved Node B (donor eNB, DeNB). The wire-
less backhaul enables deployment flexibility and elimi-
nates the high costs of a fixed backhaul. Thanks to their
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compact physical characteristics and low power con-
sumption, RNs can be mounted on structures such as
lamp posts with power supply facilities. Furthermore,
RNs do not have strict installation guidelines with re-
spect to radiation, visual disturbance, and planning regu-
lation. Therefore, relaying is regarded a cost-efficient
technology [1]. Previous technical studies have further
shown that RNs promise to increase the network cap-
acity and to better distribute resources in the cell, or
extend the cell coverage area [2,3].
The uplink received power of a user equipment (UE)

depends on the path loss which can vary significantly
among different UE locations in a cell. Accordingly,
without uplink power control (PC), UEs would transmit
with the same power level which could yield a high
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difference between the uplink received powers of differ-
ent UEs. This would in turn cause a high receiver dy-
namic range which increases the susceptibility of single
carrier-frequency division multiple access (SC-FDMA)
to the loss of orthogonality and hence can cause intra-
cell interference [4]. In this context, PC decreases the
deviation between received power levels of different UEs
in the same cell ensuring that the receiver dynamic
range does not exceed a predetermined level. Besides,
PC is a vital means in the uplink, not only to compen-
sate for channel variations, but also to mitigate the
inter-cell interference, and to increase the cell edge and
system capacities.
Within the single-hop LTE Release 8 framework,

simulation-based performance evaluation of PC has been
well elaborated in the literature [5-9]. However, for LTE-
Advanced relay deployments PC parameter optimization
problems are not widely examined. Relay deployments
require a more detailed dimensioning and planning than
conventional single-hop networks. Furthermore, in con-
trast to eNB-only networks, PC is necessary for the relay
link (DeNB-RN) because the end-to-end throughput
(TP) of RN-served UEs (RUEs) depends on the qualities
of both the access (RN-UE) and relay links. As the ac-
cess and relay links have different propagation condi-
tions than that of the direct link (DeNB-UE), the
distribution of uplink transmit/received power in relay
networks can significantly be different than that in
macrocell-only networks.

1.1. Motivation for the work
In relay networks, PC parameters on the direct (DeNB-
UE), access, and relay links should be optimized jointly
in order to find the optimum solution which maximizes
a target performance metric. Nonetheless, given the
standardized PC parameter ranges in LTE, a brute-force
approach, which tests all of the combinatorial possibil-
ities of these parameters, is not feasible as it requires a
very large number of network trial runs.a One approach
for optimizing the PC parameters is provided in our pre-
vious work [10]. It is worth noting that to the best of the
authors’ knowledge, Bulakci et al. [10] provide the first
study which investigates the PC optimization in LTE-
Advanced relay networks. Therein, two PC parameter
optimization methods are suggested for urban and subur-
ban scenarios, where the parameters on one of the three
links, the direct (DeNB-UE), access, and relay links, are
tuned in each step according to the results obtained in the
preceding step. The described approaches of [10] can be
classified as manual learn-by-experience optimization
methods, since in each step a set of values is logically
selected for each PC parameter and evaluated against
target performance metrics. One difficulty that arises here
is that extensive skilled human intervention is required
after each optimization step. In addition, such a manual
optimization relies on logical rules which are designed
specifically for the considered scenario. That is, new rules
have to be defined each time the scenario or performance
metric is changed. Moreover, depending on the considered
scenario, the manual optimization may not always achieve
nearly optimum solutions because only a subset of the
search space is explored. To tackle these challenges, auto-
mated optimization methods, which can work irrespective
of the considered scenario and yet avoid a large number
of network trial runs, need to be investigated.
In our previous work [11], a joint optimization strategy

of PC parameters based on Taguchi’s method that exploits
the mutual dependencies of the different links without a
priori knowledge was proposed. Therein, the investigation
was carried out in urban scenario only considering full
compensation PC (FCPC) and two conventionally used
performance metrics, i.e., 5%-ile UE TP and harmonic
mean (HM) of the UE TP levels, were employed. Investi-
gations showed that similar or better performance was
achieved relative to the manual optimization depending
on the considered performance metric.

1.2. Contributions
In this study, we build upon the concepts presented in
[11] to provide a comprehensive framework for the auto-
mated PC optimization methodology in LTE-Advanced
relay deployments. The main contributions of this study
are then summarized as follows.

� In order to prevent direct skilled human
intervention with high effort, which is the case for
manual optimizations [10], we propose an
automated PC scheme. The proposed scheme is
thus expected to reflect in cost reductions during
the network planning phase, and faster response to
network and environment changes which require
revisiting the PC settings. In this context, the
proposed approach can be seen as yet another
feature of network planning.

� We investigate Taguchi’s method and simulated
annealing as two viable options for the proposed
automated PC optimization scheme. In this context,
simulated annealing is a well-known optimization
method which has extensively been used in many
engineering problems [12-14]. This meta-heuristic
search method significantly reduces the complexity
and network trial runs and still converges to a near-
optimum system state. Taguchi’s method is another
promising optimization method which was first
developed for the optimization of manufacturing
processes [15] and has recently been introduced in
the wireless communication field [11,16,17]. Unlike
simulated annealing that heuristically discovers the
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multi-dimensional parameter space of candidate
solutions, Taguchi’s method uses a so-called
orthogonal array (OA) [18], where a reduced set of
representative parameter combinations from the full
search space is tested. The number of selected
parameter combinations determines the number of
experiments being carried out and evaluated using a
performance metric. After considering all the
experiments’ results, a candidate solution is found
and the process is repeated till a desired criterion is
fulfilled. Herein, a nearly orthogonal array (NOA) is
used instead of an OA like in [19] to reduce
significantly the computational complexity at the
expense of a slight degradation in performance.

� We propose the performance steering concept as a
vital part of the automated PC scheme, which
enables a flexible adaptation to changing
optimization goals and target scenarios. This
concept is a necessity to adapt to the different
requirements of network operators for different
scenarios, e.g., high TP regime is favored over low
TP regime in hot-spot scenarios, whereas low TP
regime is more vital in coverage-oriented scenarios.
In particular, we introduce different novel
performance metrics for the automated optimization
to cover various optimization goals. We show that
these new performance metrics can effectively be
used as a means to tackle the increased
heterogeneity due to relay deployments especially in
scenarios with large inter-site distances (ISDs) such
as suburban scenarios. We further show that
conventionally used performance metrics cannot
yield the expected enhancements in suburban
scenarios, which proves the need for such
performance metrics.

� We compare the performance of the automated PC
optimization based on Taguchi’s method and
simulated annealing with that of the manual
optimizations. A thorough evaluation of the
optimization strategies within the LTE-Advanced
uplink framework is carried out not only in urban
scenario, but also in suburban scenario by
considering both fractional PC (FPC) and FCPC.
Besides, the scope of the study includes a complexity
analysis where we show that the automated PC
optimization can significantly reduce the number of
network trial runs required to optimize the system
performance compared to brute-force approach.

The remainder of this article is organized as follows.
Section 2 provides the background discussion and defi-
nitions. In Section 3, the optimization problem and per-
formance steering along with performance metrics are
outlined. The optimization methods comprising manual
and automated optimizations are presented in Section
4. The system model and simulation assumptions are
given in Section 5. In Section 6, detailed performance
evaluation and analysis are carried out. Finally, Section 7
concludes the article.

2. Background and definitions
In this section, we first briefly recall the framework of
LTE uplink technology. Then, the open-loop FPC
scheme of LTE Release 8 is outlined, which is followed
by the discussion on the constraints of resource
allocation.

2.1. LTE uplink technology and frame structure
LTE uplink has adopted SC-FDMA [20]. The bandwidth
is divided into subbands which are called physical
resource blocks (PRBs). The PRB defines the resource
allocation granularity in LTE. Herein, a transmission
bandwidth of 10 MHz is allocated for uplink and thus
there are 48 PRBs available for data transmission on the
physical uplink shared channel (PUSCH) and 2 PRBs are
reserved to the uplink control channel.
In this study, we assume frequency-division duplex

(FDD) mode. Given the expected frequency reuse one in
LTE-Advanced networks, macrocell-served UEs (MUEs)
and RUEs are served on the same frequency bands by
DeNBs and RNs, respectively. Yet, considering the
resource allocation strategy defined for inband Type 1
RNs in [21], relay and access link transmissions are
time-division multiplexed. Moreover, users can be
scheduled on a subset of the total available PRBs in each
transmission time interval (TTI). A TTI (aka subframe)
duration is 1 ms and an LTE frame consists of 10 sub-
frames. During the backhaul subframes for the relay link,
RUEs are not scheduled, and thus they are experiencing
transmission gaps (Tx. gaps). An example frame struc-
ture is given in Figure 1, where two subframes are
reserved for the relay link. In particular, a maximum of
six backhaul subframes can semi-statically be allocated
for the relay link [21].
2.2. Uplink open-loop PC
The main task of PC mechanisms is to compensate the
long-term channel variations and to limit the amount of
generated inter-cell interference. Yet, the receiver dy-
namic rangeb of DeNBs and RNs should also be adjusted
via PC. Large dynamic range may lead to reduced or-
thogonality between time-frequency resources within a
cell and cause intra-cell interference [4]. To fulfill the
aforementioned objectives, FPC [22] is used for the
PUSCH to determine the UE transmit power. In this
study, FPC is also employed for the relay-specific PUSCH
(R-PUSCH) between RNs and DeNB. Accordingly, the



Figure 1 FDD uplink LTE-Advanced frame structure for Type 1 RNs.
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transmit power of a node u (UE or RN) that employs
open-loop FPC is given in dBm as

Pu ¼ min Pmax; P0 þ 10 log10Mu þ αL
� �

; ð1Þ

where Pmax is the maximum allowed transmit power
which has an upper limit of 23 dBm for UE power class 3
and 30 dBm for RN transmissions (optionally 37 dBm for
suburban scenarios) [21], P0 is the power offset
comprising cell-specific and node-specific components,
which is used for controlling the received signal-to-noise
ratio (SNR) target, and it can be set from −126 dBm to
Pmax with a step size of 1 dB, Mu is the number of PRBs
allocated to node u, α is a 3-bit cell-specific path loss com-
pensation factor that can be set to 0.0 and from
0.4 to 1.0 with a step size of 0.1, and L is the downlink
path loss estimate calculated at the receiving node.
Open-loop PC compensates slow channel variations,

i.e., path loss changes including shadowing. If α is set to
one in (1), the path loss is fully compensated and the
resulting scheme is called FCPC. For a given P0 value,
FCPC improves the cell-edge user performance at the
cost of increased inter-cell interference due to higher
transmit power levels. Yet, the inter-cell interference can
be reduced by using values smaller than one, which can
increase the cell-center performance at the cost of pen-
alizing the cell-edge performance [5,6]. Moreover, one
important motivation to study the applicability of the
existing FPC for the relay enhanced cells is the desired
backward compatibility between LTE Release 8 and LTE-
Advanced terminals.

2.3. Constraints on resource allocation
The main difference of SC-FDMA compared to ortho-
gonal frequency division multiple access (OFDMA) is the
single-carrier constraint, where only a set of adjacent
PRBs can be allocated to a user (LTE Release 8 constraint
for backward compatibility). Furthermore, the maximum
number of the UEs that can be scheduled in each TTI is
limited by the possible number of scheduling grants which
can be carried by the physical downlink control channel
(PDCCH). Typically, eight to ten UEs can be scheduled
per TTI because of PDCCH limitation (or PDCCH block-
ing) [23]. In this study, this number is set to eight. Besides,
we assume that, in the considered relay scenario, there is
no limitation on the relay-specific PDCCH (R-PDCCH) as
the relay link experiences good channel conditions due to,
e.g., higher elevation and antenna gains, and since a small
number of RNs are expected to be deployed per cell;
4-RN deployments are considered herein.
In addition, the maximum number of PRBs—denoted

by Mmax,u—which can be assigned to a UE depends on
the difference between Pmax and the per-PRB power
spectral density (PSD) of that UE. The per-PRB PSD of a
UE can be obtained via the open-loop component of (1)
by setting Mu = 1 such that

PSDu ¼ min Pmax; P0 þ αLf g: ð2Þ

The actual per-PRB PSD is given by (2) as long as the
UE is not power limited, otherwise Pmax will equivalently
be spread over the assigned PRBs resulting in decreased
signal-to-interference-plus-noise ratio (SINR) per PRB.
Such an assignment may result in outage especially
when the UE is experiencing poor channel conditions.
Then, Mmax,u is obtained as

Mmax;u ¼ round 100:1
: Pmax�PSDuð Þ

� �
: ð3Þ

This will limit the number of assigned PRBs per UE,
ensuring that power-limited UEs will not be scheduled
on more resources than what they can afford, and as a
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consequence, unused resources can be better utilized
by other users resulting in more efficient bandwidth
usage. This functionality is called adaptive transmission
bandwidth [24]. Moreover, in [25], it is shown that
adaptive transmission bandwidth is particularly advan-
tageous for suburban scenarios having large ISDs.
Therefore, adaptive transmission bandwidth is applied
only for suburban scenarios in this study. It is worth
noting that although adaptive transmission bandwidth
is necessary to prevent outage, it could yield a higher
inhomogeneity within the cell as cell-center UEs are
also scheduled on the resources left by power-limited
UEs.

3. Optimization problem and performance metrics
First, we introduce the relay scenario and the optimization
problem to be addressed. Then, the performance steering
concept along with different performance metrics is
presented.

3.1. Optimization problem
The considered relay deployment along with the differ-
ent link types is depicted in Figure 2. Cell selection for
the UEs is based on the strongest downlink received
signal power, whereas RNs are connected to the over-
laying macrocell. As shown in Figure 2, RUEs are
mostly those at the macrocell edge, whereas MUEs are
generally located in the cell center. Accordingly, in
order to enhance the overall system performance, the
PC parameter optimization should be done on all links
considering the interdependencies. Tuning Pmax and P0
on these links simultaneously is a challenging task given
the possible parameter range discussed in Section 2.2.
Therefore, a brute-force approach becomes infeasible
due to high computational complexity. A reasonable
optimization approach should take into account the
mutual dependencies of relay and access links, whereas
the end-to-end performance is determined by the qual-
ities of both links.
Figure 2 One-tier relay deployment shown in a sector; 4 RNs are dep
For the optimization problem, we define the following
four configuration parameters:

x1 ¼ Pdirect link
0 ; x2 ¼ Paccess link

0 ;

x3 ¼ Prelay link
0 ; x4 ¼ PRUE

max: ð4Þ

Here, Pdirect link
0 , Paccess link

0 , and Prelay link
0 are the values of

P0 on the direct, access, and relay links, respectively. Note
that the maximum RUE transmission power x4 ¼ PRUE

max

� �
is

added to the configuration parameter set since it is known
from [10] that further gain can be achieved by tuning it.
Concretely, in [10] it is observed that for this gain the
interference caused by RUEs should be reduced, and to

achieve this either Paccess link
0 or PRUE

max can be decreased. The
optimization problem is given by

x̂1; x̂2; x̂3; x̂4ð Þ ¼ argmax
x1;x2;x3;x4ð Þ

y TP1; . . . ; TPCð Þ;

ð5Þ
where y is the objective function defined by system level
performance metric, and C is the total number of UEs from
which the statistics are collected in the network.

3.2. Performance steering
By using a proper performance metric as objective func-
tion in (5), the system performance can flexibly be
steered. In the following, we provide the utilized per-
formance metrics along with their usage within the per-
formance steering context.
• Γq%: The qth%-ile level of the user TP cumulative dis-

tribution function (CDF) targets a certain level on the TP
CDF, i.e., the objective function is given by

y ¼ Γq% ¼ F�1
s

q
100

� �
; ð6Þ

where Fs
–1 (q/100) is the inverse of the CDF level at the

q/100-quantile, called as q-percentile (%-ile). For in-
stance, Γ5% reflects the cell-edge bit rate or equivalently
the cell coverage performance and Γ50% is the median
loyed at the cell-edge.
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TP level. This set of performance metrics can be adopted
for propagation scenarios where targeting a specific q%-ile
in the optimization does not harm other percentiles
significantly.

• ΓQ%
HM: This is the HM of the user TP levels which are

higher than the Qth%-ile of user TP CDF. The corre-
sponding objective function is defined as

y ¼ ΓHM
Q% ¼ C�

XC�

c¼1

1
TPc

s:t: TPc > F�1
s

Q
100

� 	
;

ð7Þ
where C* is the total number of users whose TP levels
(TPc) satisfy the given condition, which depends on the
selected cut-off percentile Q. Furthermore, it obviously
follows that C* ≤ C, where the description of C is given
after (5). This metric prioritizes the performance of cell-
edge UEs and thus an optimization using this metric
leads to a more homogeneous user experience in the
network. For the considered propagation scenario, the
parameter Q should be adjusted in such a way that the
TP levels of cell-edge UEs, which are in outage or ex-
periencing too low TP levels for some applied parameter
settings, can be omitted from the metric calculation. In
particular, such low TP levels bias the HM in a negative
way by giving much more priority to those users with
low TP levels and neglecting other users. Nevertheless,
Q should not be set to a large value, e.g., Q > 15%,
because otherwise the performance of cell-edge UEs
would be neglected. Accordingly, Q > 0 should especially
be considered for propagation scenarios with large ISDs,
e.g., suburban scenario. Note that as a special case, if
Q = 0 this performance metric corresponds to the con-
ventional HM of the user TP levels, which is denoted by
ΓHM.

• Γ w1;w2;...;wLð Þ
AM : This metric is the weighted arithmetic

mean (AM) of the normalized Γqj% values as defined in
(6), for j = (1, 2,. . .,L). The objective function is

y ¼ Γ w1; w2; ...;wLð Þ
AM ¼

XL

j¼1
wj :

Γqj%
κqj%XL

j¼1
wj

; ð8Þ

where κqj% is the normalization factor which corre-
sponds to qj%-ile of the UE TP CDF of the reference
eNB-only deployment. This normalization is necessary
to ensure a proper calculation of the weighted AM in
relay deployments as the TP levels at different UE TP
CDF percentiles can significantly be different. That is,
without normalization the low UE TP CDF percentiles
would be drowned in the high UE TP CDF percentiles,
and thus the impact of low UE TP CDF percentiles
would be negligible. This performance metric provides a
high parametric flexibility through the selection of the
weights and percentiles such that the priority of certain
CDF percentiles can be increased by increasing the cor-
responding weights. As the cell coverage along with a
more homogeneous user experience is the target of relay
deployments, we focus on lower percentiles, i.e., we se-
lect (q1, q2, q3) = (5, 25, 50)%-ile for the performance
metric. Then, the performance metric reads as

y ¼ Γ w1; w2; w3ð Þ
AM

¼
w1 :

Γ5%
κ5%

þ w2 :
Γ25%
κ25%

þ w3 :
Γ50%
κ50%X3

j¼1
wj

: ð9Þ

For instance, if the cell coverage is to be prioritized,
w1 in (9) is selected to be larger than the other weights.
We will mainly utilize Γq% and ΓHM for urban scena-

rios while Γ w1;w2;w3ð Þ
AM and ΓQ%

HM are more appropriate for

suburban scenarios. In particular, Γ w1;w2;w3ð Þ
AM is considered

instead of Γq% for suburban scenarios to better cope with
the inhomogeneity of user experience, i.e., diverse user
TP levels in the cell, which is due to larger ISD. Further-

more, as briefly explained above ΓQ%
HM is preferred over

ΓHM in suburban scenarios as it avoids too low TP levels.
Recall that Γq% is a conventional performance metric
used in literature for performance evaluation, whereas

ΓQ%
HM and Γ w1;w2;...;wLð Þ

AM are the newly proposed perform-
ance metrics in this study.

4. Optimization methods
Herein, we describe PC optimization methods in detail.

4.1. Manual optimization
In manual optimization, the logical steps and parameter
ranges are determined by using the network knowledge
that is obtained through performance metrics and the
targets, e.g., cell coverage enhancement and more homo-
geneous user TP distribution. In the following, according
to [10] we describe two manual optimization approaches
that differ in terms of adaptation to the considered
deployment scenario. For further details on manual
optimization, interested readers are referred to [10].

4.1.1. Urban scenario-specific optimization method
This method, referred to as 4-step optimization, is par-
ticularly considered for urban scenarios where inter-cell
interference due to small ISD is the main limiting factor
for the performance [10]. The parameter tuning in each
step is based on the performance results from the pre-
ceding step. Namely, the four steps are given as follows.
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1. Simulations are carried out to optimize PC
parameters of UEs in eNB-only scenario. Basically,
this step aims at obtaining a trade-off between cell
edge and cell center UEs. Accordingly, two
parameter settings are determined depending on the
prioritization strategy. Namely, the cell coverage-
oriented setting (based on FCPC) prioritizes the
5%-ile user TP and the cell capacity-oriented setting
(based on FPC) prioritizes the aggregate user TP (aka
cell capacity) at the cost of the reduced 5%-ile user
performance.

2. Relay scenario is adopted and parameters resulting
from Step 1 are applied for both MUEs and RUEs.
Simulation results of this step are used as a starting
point for Steps 3 and 4.

3. PC parameters of the RUEs are optimized. After RNs
are deployed in the network the inter-cell
interference increases. More concretely, RUEs
experience very high TP levels while causing
interference to MUEs. As we focus on achieving a
homogeneous user performance over the whole cell
area, being a requirement for LTE-Advanced, the
performance of MUEs is prioritized. In particular, the
interference imposed by RUEs is reduced by
adequately adjusting their PC parameters such that
the impact of the interference due to RUEs on the
performance of MUEs becomes minimal.

4. Keeping PC parameters of the RUEs fixed, the PC
parameters of MUEs are optimized. This step aims at
further improvement of the performance of MUEs by
readjusting their PC parameters. Thus, 50%-ile and
5%-ile UE TP CDF levels are taken as performance
criteria. We note that these percentiles are
considered because they mainly reflect MUE
performance.

We note that due to stepwise optimization process in
this method, the PC parameters for RUEs may not be
optimal after Step 4. Nevertheless, simulation results in
Section 6.2 will show that automated optimization
methods, which jointly optimize PC parameters, and
this manual optimization method can achieve similar
performances.
Following these steps, the parameter configurations

for MUEs and RUEs are tuned. Further, the PC param-
eter setting for the relay link is as well optimized. Rela-
tively better link towards DeNB and the requirement for
high capacity suggest the cell capacity-oriented setting
found in Step 1 as an appropriate starting point. Then,

the P0 value on the relay link Prelay link
0 is optimized such

that 50%-ile user TP level is maximized. It is worth
noting that the relay link performance is highly
interference-limited and the fine tuning of the P0 value
does not yield a significant performance enhancement.
4.1.2. Suburban scenario-specific optimization method
This method, referred to as 3-metric optimization, is
particularly considered for suburban scenarios where,
contrary to urban scenarios, due to larger ISD the im-
pact of inter-cell interference decreases drastically. On
the other hand, path loss of cell edge UEs may not be
compensated for and they can easily be driven to power
limitation even if one PRB is assigned. The result is in-
homogeneous user experience over the coverage area
where cell center UEs experience high TP levels because
of reduced inter-cell interference and cell edge UEs suf-
fer from high path loss. In this regard, this optimization
method takes into account the inhomogeneity of the
user experience via jointly optimizing several perform-
ance metrics [10]. The method comprises three steps:

1. Simulations are carried out to tune PC parameters of
UEs in eNB-only scenario via jointly optimizing
aggregate, 50%-ile and 5%-ile user TP levels. In this
step, a setting (based on FPC) which enables a good
trade-off between the aforementioned performance
metrics is attained. We note that these performance
metrics are conventionally used in LTE-Advanced
performance evaluation [21].

2. Relay scenario is adopted and parameters resulting
from Step 1 are applied to both macro- and RUEs.
Simulation results of this step are used as a starting
point for Step 3.

3. PC parameters of MUEs and RUEs are reconfigured
both at DeNBs and RNs, respectively, in relay
scenario. In this step, a fine tuning of parameter
settings (Pdirect link

0 , Paccess link
0 , PRUE

max ) is done around
the PC setting found in Step 2. Here, 50%-ile and
5%-ile user TP levels are taken as the performance
criteria and the obtained PC setting is referred to as
the trade-off setting. Similar to urban scenario-
specific optimization method, these performance
metrics are targeted in this step to achieve a
homogeneous user performance over the whole cell
area.

After having found the PC configurations for MUEs
and RUEs, the optimum parameter setting for the relay
link is determined. The trade-off setting found in [10] is
used as the starting point. The P0 value on the relay link

Prelay link
0 is then optimized such that 50%-ile user TP

level is maximized. Furthermore, in contrast to urban
scenarios, the fine tuning of Prelay link

0 can yield notable
performance enhancement.

4.2. Simulated annealing
Simulated annealing is a local search-based optimization
method that provides a means to escape local maxima
[12]. The method starts by selecting an initial candidate
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solution vector x = (x1, x2, x3, x4) ∈ Ω, where Ω is the so-
lution space of all candidate solutions and x1, x2, x3, x4
are the PC configuration parameters as defined in (4).
Let f(x) be the value of the performance metric y evalu-
ated for the parameters in x. We recall that the defini-
tions of the performance metric y are outlined in
Section 3.2. In each step, a new candidate solution x’ is
generated randomly from the neighborhood N(x) of the
current solution x. The neighborhood structure N(x) is
typically defined as the set of candidates that slightly dif-
fer from x [12,26]. In this study, a new candidate solu-
tion x’ is generated by adding a random displacement
value between [−δ, +δ] to each configuration parameter
in x [16]. If f(x’) ≥ f(x), x’ is accepted as current solution
in the next step, otherwise it is accepted with some
probability depending on the so-called temperature par-
ameter T and the magnitude of decrease Δx,x’ in the per-
formance metric. More concretely, a random number n
is generated from a uniform distribution between 0 and
1, and it is compared to exp (−Δx,x’/T). If n is lower than
exp (−Δx,x’/T), x’ is accepted as current solution, other-
wise, it is rejected. The higher the temperature T, the
higher the acceptance probability is. Moreover, the
higher Δx,x’, the lower the probability of accepting the
newly generated candidate solution is. During the search,
the temperature T is decreased slowly until the algo-
rithm converges into a steady state. The simulated
annealing algorithm is described in Table 1.
As simulated annealing is a heuristic approach, deci-

sions have to be made on the initial temperature T0 and
the reduction function R(T) [13]. The initial temperature
is set such that a candidate solution yielding a predefined
decrease Δmax in the optimization function is accepted
with a predefined probability p = exp(−Δmax/T0) [14].
That is, having defined p and –Δmax,T0 can be obtained as
Table 1 Pseudo-code for the description of simulated
annealing [12,17]

1: Select an initial solution x = (x1, x2, x3, x4) = x0 ∈Ω;
2: Select an initial temperature T = T0 > 0;
3: Select a neighborhood structure N(x);
4: Select a temperature reduction function R(T);
5: Select the number G of iterations executed at each temperature T;
6: Select the number of times U the temperature is reduced;
7: Set the counter u of the number of times the temperature is

reduced to 0;
8: Repeat
9: Set the repetition counter g = 0;
10: Repeat
11: Generate a solution x’ ∈ N(x);
12: Calculate Δx,x’ = f(x) – f(x’);
13: if Δx,x’ ≤ 0, then x← x’;
14: if Δx,x’ > 0, then x← x’ with probability exp(−Δx,x’/T);
15: g← g + 1;
16: Until g = G;
17: T← R(T);
18: u← u + 1;
19: Until u = U
T0 = −Δmax/ln(p) where ln(·) is the natural logarithm oper-
ator. To lower the temperature T a geometric temperature
reduction function is used [13], i.e., R(T) = λT, where λ is a
constant less than one.
4.3. The optimization procedure based on Taguchi’s
method using NOA
Let us next introduce Taguchi’s method [16]. The
optimization approach is depicted in Figure 3 and will
be discussed in detail in the following.
4.3.1. Construct the proper NOA
Originally, Taguchi’s method uses an OA which contains
a reduced set of N parameter combinations from the full
search space [18]. Every parameter xt has a set of testing
values corresponding to a set of levels, i.e., level 1 is
mapped to the first testing value of a parameter, level 2
to the second value, and so on (see Section 4.3.2). Each
of the N parameter combinations is tested in a corre-
sponding experiment i where the objective function,
equivalently the performance metric (see Section 3.2),
y is evaluated resulting in a measured response yi. In an
OA, each testing value of a parameter xt is tested at least
once with every other value of parameter xj≠t. This prop-
erty of the OA accounts for the interactions that might
exist between the configuration parameters. In order to
reduce the number of experiments, an OA is replaced by
an NOA [19]. Considering an NOA, each testing value
of a parameter xt is not necessarily tested with every
other value of parameter xj≠t. Therefore, NOA considers
only partially the interactions among the parameters and
is easier to construct. An NOA can be constructed for
any number of parameters and number N of experi-
ments at the expense of considering partially the interac-
tions among the configurations parameters. Various
algorithms exist for constructing NOA. In this study, the
NOA is built using the algorithm described in [27].
Therefore, the first step in the optimization procedure

is to construct a proper NOA. For this purpose, the
number of configuration parameters has to be deter-
mined. In our case, the total number of configuration
parameters is k = 4 as given in (4). Thus, an NOA having
four columns should be constructed with a predefined
number of experiments N and levels s. In this study, we
construct an NOA having N = 36 experiments and s = 9
levels (see Table 2). Using this NOA, each parameter will
be tested with nine different values at each iteration of
the algorithm. Every column of the NOA corresponds to
a configuration parameter. For example, the first column
can be assigned to x1, the second to x2, and so on. Hav-
ing constructed the required NOA, the levels of each
parameter should be mapped to parameter values in
order to conduct the experiments.



Figure 3 The iterative optimization procedure based on
Taguchi’s method using NOA.

Table 2 An NOA having k = 4 configuration parameters,
N = 36 experiments, s = 9 levels with the measured
responses and their corresponding SN ratios

Experiment # i x1 x2 x3 x4 Measured response SN ratio

1 1 1 9 6 y1 SN1

2 1 2 7 1 y2 SN2

3 1 3 4 9 y3 SN3

4 1 4 1 8 y4 SN4

5 2 5 9 1 y5 SN5

6 2 6 7 2 y6 SN6

7 2 7 1 5 y7 SN7

8 2 8 5 4 y8 SN8

: : : : : : :

36 9 9 2 2 y36 SN36
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4.3.2. Map each level to a parameter value
Let min{xt} and max{xt} be the minimum and the
maximum feasible values for parameter xt, respectively.
In the first iteration, m = 1, the center value of the
optimization range for parameter xt is defined as

V mð Þ
t ¼ min xtf g þ max xtf g

2
: ð10Þ

In any iteration m, the level ℓ ¼ s=2d e is mapped to
V mð Þ
t . The other s – 1 levels are distributed around V mð Þ

t
by adding or subtracting a multiple integer of a step size
β mð Þ
t . For m = 1, the step size is defined as

β mð Þ
t ¼ max xtf g � min xtf g

sþ 1
: ð11Þ

In iteration m, the mapping function f mð Þ
t ℓð Þ for a level ℓ

to a dedicated value of the parameter xt can be described as

f mð Þ
t ℓð Þ ¼

V mð Þ
t � s=2d e � ℓð Þ :β mð Þ

t 1≤ℓ≤ s=2d e � 1

V mð Þ
t ℓ ¼ s=2d e

V mð Þ
t þ ℓ� s=2d eð Þ :β mð Þ

t s=2d e þ 1≤ℓ≤s

:

8><
>:

ð12Þ
For instance, consider the parameter x4 ¼ PRUE

max having
a minimum value of min{x4} = 7 dBm and a maximum
max{x4} = 23 dBm. If x4 is tested with 9 levels, i.e., s = 9,
level ℓ= 5 is mapped in first iteration to (7 + 23)/2 = 15 dBm,

level 4 to 15 – β 1ð Þ
4 = 13.4 dBm, level 6 to 15 + β 1ð Þ

4 = 16.6
dBm, and so on. As the power setting xt cannot be decimal,

the mapped value f mð Þ
t ℓð Þ of a level ℓ is further quantized to

the nearest integer. The values of V mð Þ
t and β mð Þ

t are updated
at the end of each iteration if the termination criterion, see
Section 4.3.5, is not met.

4.3.3. Apply Taguchi’s method
To interpret the experimental results, Taguchi’s method
converts the measured responses to the so-called signal-
to-noise (SN) ratios [13] which are not to be confused
with the SNRs of the received signals. The SN ratio is
computed for each experiment i as

SNi ¼ 10 : log10 yi
2

� �
: ð13Þ

Then, the average SN ratio is computed for each par-
ameter and level. In the example of Table 2, the average
SN ratio of x1 at level ℓ = 1 is computed by averaging the
SN ratios of the experiments where x1 is tested at level
1, i.e., SN1, SN2, SN3, and SN4. The best level of each
parameter is the level having the highest average SN

ratio. According to the mapping function f mð Þ
t ℓð Þ , the

best setting of a parameter xt in iteration m is found and

denoted by V best;mð Þ
t .

4.3.4. Shrink the optimization range
At the end of each iteration, the termination criterion is
checked. If it is not met, the best values found in iter-
ation m are used as center values for the parameters in
the next iteration m + 1:

V mþ1ð Þ
t ¼ V best;mð Þ

t : ð14Þ
It may happen that the best value of a parameter xt

found in iteration m is close to min{xt} or max{xt}. In
this case, there is a need for a procedure to consistently
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check if the mapped value of a level is within the
optimization range. Moreover, the optimization range is
reduced by multiplying the step size of each parameter
xt by a reduction factor ξ < 1:

β mþ1ð Þ
t ¼ ξ :β mð Þ

t : ð15Þ

4.3.5. Check the termination criterion
With every iteration, the optimization range is reduced
and the possible values of a parameter get closer to each
other. Hence, the set used to select a near-optimal value
for a parameter becomes smaller. The optimization pro-
cedure terminates when all step sizes of the parameters
are less than a predefined threshold ε, i.e.,

β mð Þ
t < ε ∀t: ð16Þ

In this study, the algorithm ends when the mapped
values of levels 1 and 9 do not differ by more than 1 dB
for each parameter. To this end, ε is set as a rough
approximation to 1/(s – 1) = 1/8.

5. System model
This section describes essential features of the system
model such as applied resource sharing techniques and
the channel models that pertain to the propagation sce-
narios. The simulation parameters complying with the
latest 3GPP guidelines within the LTE-Advanced frame-
work [21] are given at the end of the section.

5.1. Resource sharing
The performance of relay-enhanced networks depends
significantly on the resource allocation strategy. For
RUEs, the experienced end-to-end TP, TPe, is defined as
the minimum of the TPs on the relay and access links as
given in (17).

TPe ¼ min TPeNB�RN;TPRN�UEð Þ: ð17Þ

In this study, a resource fair round robin scheduling is
applied for all UEs. We assume that subframes config-
ured for the relay link are assigned exclusively to RNs at
the DeNB, i.e., co-scheduling of MUEs and RNs is not
considered. For the resource allocation on the backhaul
subframes and access link, we utilize the scheme in [28],
where resource shares of the RNs on the relay link are
proportional to the number of attached RUEs. The avail-
able capacity on the relay link is then distributed among
RUEs utilizing max–min fairness. Moreover, the number
of backhaul subframes to be allocated to RNs is chosen
such that the overall system performance is optimized;
two and four subframes are configured in case of urban
and suburban 4-RN deployments, respectively [28].
5.2. Simulation parameters
The simulated network is represented by a regular hex-
agonal cellular layout with 19 tri-sectored sites, i.e.,
57 cells. RNs admit regular outdoor deployment at the
sector border and indoor users are assumed, where
25 uniformly distributed UEs are dropped per sector and
the full buffer traffic model is applied. In total, 50 user
drops (or snap-shots) are simulated using a Matlab-based
system level semi-static simulator, where results are col-
lected from the inner most sector only, to ensure proper
modeling of interference (two tiers of tri-sector sites). It is
worth noting that for the final CDF plots 200 snap-shots
are simulated. The number of snap-shots is selected to be
large enough such that the difference between the
repeated tests is ignorable. Simulation parameters follow
the latest parameter settings agreed in 3GPP [21] and are
summarized in Table 3. Moreover, all available resources
in a cell are assumed to be used and hence a rather pes-
simistic interference modeling is considered at the access
link.

R ¼ S :
0; SINR < SINRmin

BW :SEmax; SINR≥SINRmax

BW :Beff : log2 1þ Aeff :SINRð Þ; otherwise
:

8<
:

ð18Þ

The SINR to link TP mapping is carried out by the ap-
proximation given in (18), where the bandwidth effi-
ciency (Beff ) and SINR efficiency (Aeff ) given in Table 3
are utilized to adapt the mapping to LTE specifications.
The approximation is based on Shannon’s capacity for-
mula adjusted by the two parameters Beff and Aeff [29].
Further, a minimum SINR level SINRmin = −7 dB is con-
sidered, below which data detection is not possible. This
limit is introduced due to control channel requirements.
In (18), R is the per PRB TP, BW is the bandwidth per
PRB, SEmax is the maximum spectral efficiency depend-
ing on the highest modulation and coding scheme
(MCS) for a given SINRmax and S is the overhead scaling
accounting for LTE uplink overhead. TP is computed
from SINR using the Shannon approximation similarly
as described in [30]. An overhead of 25% is assumed,
which accounts for control symbols and pilots. Such a
mapping of SINR is used to model the adaptive MCS
applied in a system.
Relay site planning is assumed as modeled in [21]. In

particular, an increased line-of-sight (LOS) probability is
considered and a bonus of 5 dB is added on the relay
link when experiencing non-LOS (NLOS) propagation
conditions. Two antenna sets are considered for RNs.
Directional antennas are assumed at the DeNBs and
RNs for backhaul transmission, while omni-directional
antennas are assumed for the RN access link transmis-
sion. Log-normal shadow fading is modeled as well and



Table 3 Simulation parameters

System parameters

Carrier frequency 2 GHz

Bandwidth 10 MHz

Number of PRBs 48 for data + 2 for control channel

PRB bandwidth 180 kHz

Highest MCS 64-QAM, R = 9/10 (SEmax = 5.4 bps/Hz)

Penetration loss 20 dB on DeNB-UE and RN-UE links

Bandwidth efficiency (Beff) 0.88

SINR efficiency (Aeff) 1/1.25

Overhead scaling (S) 0.75

Thermal noise PSD −174 dBm/Hz

SINR lower bound −7 dB

Normalization factors

(κ5%, κ25%, κ50%) Urban Scenario: (120.8, 279.6, 428.3)

Suburban Scenario: (16.6, 96.0, 334.0)

eNB/DeNB Parameters

Transmit power 46 dBm

Antenna gain (incl. cable
loss)

14 dBi

Antenna configuration Tx-2, Rx-2

Noise figure 5 dB

Antenna pattern (horizontal) A(θ) = −min[12 (θ/θ3dB)2, Am] θ3dB = 70°
and Am = 25 dB

UE parameters

Maximum transmit power 23 dBm

Antenna configuration Tx-1, Rx-2

Antenna gain 0 dBi

Noise figure 9 dB

RN parameters

Maximum transmit power 30 dBm

Antenna configuration Tx-2, Rx-2

Antenna gain (incl. cable
loss)

Relay Link 7 dBi

Access Link 5 dBi

Relay link antenna pattern
(horizontal)

A(θ) = −min[12 (θ/θ3dB)2, Am] θ3dB = 70°
and Am = 20 dB

Access link antenna pattern Omni-directional

Noise figure 5 dB

Channel models

Distance & path loss R [km] & PL [dB]

Direct link (eNB/DeNB – UE)

PL(LOS): 103.4 + 24.2log10(R), PL(NLOS): 131.1 + 42.8log10(R)
ISD 500 m—urban model
Pr(LOS) =min(0.018/R, 1) (1 – exp(−R/0.063)) + exp(−R/0.063)
ISD 1732 m—suburban model
Pr (LOS) = exp(−(R – 0.01)/0.2)

Access link (RN – UE)

PL(LOS): 103.8 + 20.9log10(R), PL(NLOS): 145.4 + 37.5log10(R)

Table 3 Simulation parameters (Continued)

ISD 500 m—urban model
Pr(LOS) = 0.5 – min (0.5, 5exp(−0.156/R)) + min (0.5, 5exp(−R/0.03))
ISD 1732 m—suburban model
Pr(LOS) = 0.5 – min (0.5, 3exp(−0.3/R)) + min (0.5, 3exp(−R/0.095))

Relay link (DeNB – RN) {a & b account for the site planning gain}

PL(LOS): 100.7 + 23.5log10(R), PL(NLOS): 125.2 + 36.3log10(R) – b
ISD 500 m—urban model
Pr (LOS) = 1 – (1 – (min(0.018./R, 1)(1 – exp(−R/0.072)) + exp(−R/0.072)))a

ISD 1732 m—suburban model
Pr(LOS) = 1 – (1 – exp(−(R – 0.01)/0.23))a

a = 3 & b = 5 towards DeNB, whereas a = 1 & b = 0 towards other DeNBs

Shadowing

Shadow fading Log-normal

Standard deviation 8 dB (direct link), 10 dB (access link), 6 dB
(relay link)

De-correlation distance 50 m

Correlation factor 0.5 between sites & 1.0 between sectors

Bulakci et al. EURASIP Journal on Wireless Communications and Networking 2013, 2013:8 Page 11 of 19
http://jwcn.eurasipjournals.com/content/2013/1/8
applied for NLOS propagation conditions only, while
fast fading is not simulated.

6. Simulation results and analysis
6.1. Evaluation methodology
The automated PC optimization based on either Taguchi’s
method or simulated annealing and manual optimization
are compared with respect to achieved TP performances.
Moreover, computational complexities are given in terms
of the number of network trial runs necessary for the
optimization methods. The complexity of the manual
optimization is not addressed since extensive skilled
human intervention is required during the optimization
process. Furthermore, it is shown that a brute-force
approach is not feasible and the proposed automated PC
optimization achieves substantially lower complexity.

6.1.1. Performance evaluation
The performance evaluation is carried out assuming the
3GPP urban (ISD 500 m) and suburban (ISD 1732 m)
scenarios where four RNs are deployed per cell. For the
eNB-only deployment, the cell capacity-oriented setting
with P0 = −55 dBm and α = 0.6 (FPC), i.e., the resultant
setting of Step 1 in four-step manual optimization in
urban scenario, and the trade-off setting with P0 = −63
dBm and α = 0.6 (FPC), i.e., the resultant setting of Step 1
in three-metric optimization in suburban scenario [10] are
applied. Recall that the eNB-only deployment is taken as a
benchmark to determine the relative gains of different
optimization strategies.
The performances of the automated and manual

optimization methods are compared via UE TP CDFs in
terms of achieved TP levels at different CDF percentiles.
Recall that 5%-ile UE TP CDF reflects the cell edge user
performance, while 50%-ile UE TP CDF is the median
TP level and it as well gives an intuition about the mean



Table 4 Input parameters for simulated annealing and
Taguchi’s method

Γ5% Γ25% Γ50% ΓHM
Q% (Q > 0) Γ w1 ;w2 ;w3ð Þ

AM

Simulated annealing

p 0.5 0.5 0.5 0.5 0.5

T0 7.2 12.3 17.3 14.4 0.07

Δmax 5.0 kbps 8.5 kbps 12 kbps 10 kbps 0.05

δ 3 dB 3 dB 3 dB 3 dB 3 dB

λ 0.95 0.95 0.95 0.95 0.95

G 4 4 4 4 4

U 135 135 135 135 135

Taguchi’s method

ε 1/8 1/8 1/8 1/8 1/8

ξ 0.8 0.8 0.8 0.8 0.8

N 36 36 36 36 36

M 15 15 15 15 15
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UE TP. Besides, the impact of using FPC (α = 0.6) and
FCPC (α = 1.0) on the system performance of urban sce-
narios is addressed while only FPC is considered in sub-
urban scenarios since it is shown that FCPC renders a
suboptimum system performance in suburban scenarios
[10]. Furthermore, the numerical results for both joint
P0 and joint P0 and Pmax optimizations are analyzed. In
case of joint P0 optimization, the P0 values on all links
are jointly optimized while fixing Pmax of UEs and RNs
to the upper bounds. Note that to perform joint P0
optimization for Taguchi’s method, it is enough to drop
the column of x4 ¼ PRUE

max from the NOA and follow the
optimization algorithm as described in Section 4.3.
Moreover, for FCPC and FPC the ranges of P0 ∈ [−113,
–83] dBm and P0 ∈ [−73, –43] dBm are considered, re-
spectively, while the range of PRUE

max . ∈ [7,23] dBm is con-
sidered for both. Within these ranges, the PC
parameters selected by Taguchi’s method and simulated
annealing are rounded to the nearest integers before any
network trial run, whereas different step sizes, e.g., 2 and
6 dB, depending on the logical step are used for manual
optimization.

6.1.2. Evaluation of computational complexity
The criterion used for complexity is the number of times
the performance metric y is evaluated [17]. In case of
simulated annealing, the performance metric y is evalu-
ated G times in the inner loop of the pseudo-code given in
Table 1, i.e., between lines 10 and 16, and this process is
repeated U times in the outer loop defined in lines 8 and
19. Therefore, the total number of evaluations performed
by simulated annealing is G ·U. In case of Taguchi’s
method, N experiments are performed at each iteration
and the algorithm terminates after M iterations when the
termination criterion in (16) is met. Note that Taguchi’s
method decides on a new move after conducting N
evaluations of the performance metric y in contrast to
simulated annealing that decides on a move after each
evaluation. The total number of evaluations performed by
Taguchi’s method is then N ·M.
In order to have a fair comparison between the two

optimization methods in terms of TP performance, the
same computational complexity is applied: Simulated
annealing and Taguchi’s method are run for the same
number of evaluations and the TP performances of their
optimized configuration parameters are compared, i.e.,
G ·U =N ·M.
Then, to visualize the convergence rate of each algo-

rithm, the value of the performance metric y is plotted
as a function of the number of evaluations. The para-
meters used by Taguchi’s method and simulated anneal-
ing are summarized in Table 4. Besides, considering the
parameter ranges given in the previous section and the
optimization problem in (5), a brute-force approach
requires 29,791 and 506,447 network trials for joint P0
and joint P0 and Pmax optimizations, respectively. More-
over, each network trial run still requires significant time
to collect reliable statistics. Therefore, such an approach
is not feasible. In addition, according to the selected
parameters for the automated PC optimization given in
Table 4, G ·U =N ·M = 540 network trials are required
in the worst case, which implies less than 2 and 0.2% of
the total network trial runs needed in the brute-force ap-
proach for joint P0 and joint P0 and Pmax optimizations,
respectively.
6.2. Simulation results
In this section, the simulation results are first analyzed
for urban scenarios. Then, the simulation results of sub-
urban scenarios are presented.
6.2.1. Urban scenario
First, the numerical results of joint P0 optimization are
analyzed, where Γ5% and ΓHM are used as the perform-
ance metrics. In addition, the results are presented for
joint P0 and Pmax optimization, where Γ5% is used as the
performance metric to exemplify the impact of this
optimization. A comparison of both optimizations is as
well given. Second, it is illustrated how the resultant per-
formance is impacted via different performance metrics
within the performance steering context.

6.2.1.1. Joint P0 optimization versus joint P0 and Pmax

optimization
In Figure 4, the joint P0 optimization is considered. The
convergence curves of the optimization procedures are
shown with respect to the number of evaluations for
both performance metrics Γ5% and ΓHM. Besides, the



Figure 5 The UE TP CDFs for Taguchi’s method and simulated
annealing for joint P0 optimization in urban scenario; the
curves for manual optimization, which are the same in both
figures, are as well given; (a) using Γ5% and (b) using ΓHM as
performance metrics.
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corresponding UE TP CDFs are depicted in Figure 5
along with the curves of manual optimization.
In Figure 4a, it is observed that utilizing Γ5% as the

performance metric both Taguchi’s method and simu-
lated annealing converge to similar 5%-ile UE TP CDF
values when either FPC or FCPC is adopted. Neverthe-
less, as it is noticed in Figure 5a, FCPC has a slightly
better performance for the TP CDF percentiles below
5%-ile. On the other hand, FPC yields significant gains
at the higher TP levels within a wide range of percen-
tiles. Moreover, it can be observed that Taguchi’s method
slightly outperforms both simulated annealing and
manual optimization, where manual optimization lies
between the two. In addition, Figure 4b depicts that for
both FPC and FCPC Taguchi’s method and simulated
annealing converge to the same value when ΓHM is used
as the performance metric. Besides, using FPC a higher
final HM of the UE TP values is reached, thanks to the
higher TP levels achieved on a wide range of CDF per-
centiles as shown in Figure 5b. Another important ob-
servation in Figure 5b is that for each PC optimization
strategy, namely FPC and FCPC, the curves of all three
methods almost overlap. This justifies the statement that
ΓHM provides a trade-off performance between higher
and lower TP CDF percentiles for Taguchi’s method and
simulated annealing noting that the logical steps of man-
ual optimization aims at such a trade-off.
Figure 4 The convergence of Taguchi’s method and simulated
annealing for joint P0 optimization in urban scenario; (a) using
Γ5% and (b) using ΓHM as performance metrics.
The obtained parameter settings are tabulated in
Table 5. It can be seen that different parameter combina-
tions can yield similar performances. Especially, the par-
ameter values for the access (in RN cells) and relay links
could be noticeably different. This stems from two facts.
First, the end-to-end TP values of the RUEs are mainly
determined by the relay link capacity as it is the bottle-
neck on the UE-DeNB end-to-end link. Thus, a PC par-
ameter change on the access link does not affect the
end-to-end TP provided that the access link capacity
remains larger than that of the backhaul link. Second,
in urban scenario due to smaller ISD the relay link per-
formance is also interference-limited. Accordingly, an in-
crease or decrease in transmit power level of RNs on the
relay link does not result in a significant performance
change provided that wanted signal power remains much
higher than the thermal noise power. It is as well worth
noting that relay deployment significantly outperforms
eNB-only deployment, e.g., using FPC along with ΓHM, the
methods achieve, respectively, 123 and 61% gains at 5%-ile
and 50%-ile TP CDF levels (see Figure 5b).
Next, we adopt Γ5% performance metric to illustrate

the impact of the joint P0 and Pmax optimization. The
convergence of the method is then depicted in Figure 6.
Moreover, the corresponding UE TP CDFs are shown
in Figure 7. Note that the CDF curves of manual



Table 5 Parameter configurations for joint P0 optimization in urban scenario

Metric Method PC Scheme P0 (dBm) Pmax (dBm)

Direct link Access link Relay link MUEs RUEs RNs

NA Manual optimization FPC (α = 0.6) −51 −61 −55 23 23 30

FCPC (α = 1.0) −95 −101 −83 23 23 30

Γ5% Taguchi’s method FPC (α = 0.6) −51 −68 −57 23 23 30

FCPC (α = 1.0) −90 −102 −85 23 23 30

Simulated annealing FPC (α = 0.6) −53 −71 −71 23 23 30

FCPC (α = 1.0) −91 −102 −103 23 23 30

ΓHM Taguchi’s method FPC (α = 0.6) −55 −72 −54 23 23 30

FCPC (α = 1.0) −95 −107 −85 23 23 30

Simulated annealing FPC (α = 0.6) −55 −72 −50 23 23 30

FCPC (α = 1.0) −95 −108 −85 23 23 30
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optimization are obtained as well by considering joint
P0 and Pmax optimization. In addition, the optimized PC
parameters are tabulated in Table 6.
Comparing Figure 6 with Figure 4a, it can be seen that

taking Pmax optimization into account some improve-
ment is obtained at 5%-ile UE TP CDF level where the
improvement is more pronounced for FCPC (around
2.3% relative to joint P0 optimization) while it reads as
marginal for FPC (around 1.3% relative to joint P0
optimization). However, joint P0 and Pmax optimization
tends to have a slower convergence than joint P0
optimization. For instance, simulated annealing with FPC
requires 40 and 60 evaluations to converge for joint P0
optimization, and joint P0 and Pmax optimization, respect-
ively. Besides, as it is observed in Figure 6, for FPC both
Taguchi’s method and simulated annealing converge to the
same 5%-ile UE TP CDF level, whereas for FCPC Taguchi’s
method converges to a larger value. On the other hand,
Figure 7 depicts that using FCPC, Taguchi’s method shows
slightly poorer performance at high percentiles compared
to manual optimization. Moreover, simulated annealing
yields substantial performance degradation compared to
Figure 6 The convergence of Taguchi’s method and simulated
annealing using Γ5% as performance metric for joint P0 and
Pmax optimization in urban scenario.
both Taguchi’s method and manual optimization. Accord-
ingly, compared to joint P0 optimization, Taguchi’s method
enables a trade-off between high and low percentiles if joint
P0 and Pmax optimization along with FCPC is considered.
However, joint P0 and Pmax optimization is not justified for
simulated annealing compared to joint P0 optimization
because of the aforementioned performance degradation
(see Figure 7).
It is worth noting that, in urban scenario, simulated

annealing converges faster than Taguchi’s method within
the context of PC parameter optimization in relay
deployments as observed in Figures 4 and 6.

6.2.1.2 Performance steering
Unlike large-ISD scenarios power limitation and user out-
age are less pronounced in urban scenario, which translates
into a more homogeneous user performance over the cell
area. As a result, the performance metrics which are target-
ing a specific UE TP CDF level, i.e., Γq%, can be utilized to
steer the performance toward the desired performance level
without causing significant performance degradation at
other performance levels. This is illustrated in Figure 8
Figure 7 The UE TP CDFs for Taguchi’s method and simulated
annealing using Γ5% as performance metric for joint P0 and
Pmax optimization in urban scenario.



Figure 8 The UE TP CDFs for simulated annealing using FPC
and different performance metrics for joint P0 optimization in
urban scenario.
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where joint P0 optimization along with simulated annealing
is considered in case of FPC. Therein, the curve of manual
optimization is utilized as a reference to compare achieved
gains. It can be seen that via Γ50% the 50%-ile UE TP CDF
can be further increased at the cost of a performance deg-
radation below 20%-ile, whereas via Γ5% the best 5%-ile UE
TP CDF can be achieved with worse performance at higher
percentiles. Furthermore, compared to ΓHM (see Figure 5b),

using ΓQ%
HM for Q > 0 the priority can be given to higher per-

centiles. For example, using Γ10%HM marginal gains can be
achieved as of 30%-ile; however, the performance degrades
below 18%-ile (see Figure 8). In addition, similar to ΓHM, a
trade-off between lower and higher UE TP CDF percentiles
is observed when ΓAM

(1,1,1) is used as performance metric. Be-
sides, because of homogeneity of urban scenario, employing
different weights, e.g., (w1, w2, w3) = {(2, 1, 1), (1, 1, 2)}, for

Γ w1;w2;w3ð Þ
AM still yields comparable performances (UE TP

CDFs not shown herein for simplicity). As a result, Γq% is
more appropriate for targeting a specific performance level
without degrading other UE TP CDF percentiles signifi-
cantly. In Table 7, the optimized PC parameter settings are
tabulated for different performance metrics also including
the ones of which UE TP CDFs are not shown.

6.2.2. Suburban scenario
First, the numerical results for joint P0 optimization and
joint P0 and Pmax optimization are analyzed and a com-
parison is provided. Second, the effectiveness of perform-
ance steering is presented by means of different
performance metrics. In particular, within the perform-
ance steering context it is shown how proposed perform-
ance metrics differ from using conventional performance
metrics, i.e., Γq%, and how they address the inhomogeneity
of suburban scenario, which is due to large ISD.

6.2.2.1. Joint P0 optimization versus joint P0 and Pmax

optimization
The performances of joint P0 and joint P0 and Pmax opti-
mizations are compared in Figure 9 for Taguchi’s method

using Γ 1;1;1ð Þ
AM as the performance metric. Note that setting

all the weights to one implies that the target UE TP CDF
percentiles have the same priority level. According to UE
Table 6 Parameter configurations for joint P0 and Pmax optim

Metric Method PC Scheme P0 (dBm)

Direct link

NA Manual optimization FPC (α = 0.6) −51

FCPC (α = 1.0) −95

Γ5% Taguchi’s method FPC (α = 0.6) −51

FCPC (α = 1.0) −98

Simulated annealing FPC (α = 0.6) −53

FCPC (α = 1.0) −99
TP CDFs, it can be seen that joint P0 and Pmax

optimization does not bring additional gain compared to
joint P0 optimization. A similar result is as well obtained
when simulated annealing is employed. Thereby, we focus
on joint P0 optimization in what follows.

6.2.2.2. Performance steering
Suburban scenario is characterized by its large ISD and
hence by the high inhomogeneity in the user performance.
In particular, cell edge UEs usually experience low received
SNR values at the access node and they can easily be driven
into power limitation, which implies a limited resource allo-
cation to prevent outage (see Section 2.3). On the other
hand, cell center UEs can make use of the additional
resources which cannot be used by the cell edge UEs and at
the same time they experience less interference levels,
thanks to large ISD. Consequently, cell edge UEs experi-
ence low TP levels while cell center UEs can achieve very
high TP levels. In this regard, performance steering takes
such factors into account and increases the flexibility in
achieving target performance levels. In the following, we
illustrate this concept in detail. Specifically, we show the
performance difference between conventional performance
metrics, e.g., 5%-ile and 50%-ile UE TP CDF levels, and
proposed performance metrics. We also exemplify how the
adjustment of proposed performance metrics can prioritize
different UE TP CDF percentiles.
ization in urban scenario

Pmax (dBm)

Access link Relay link MUEs RUEs RNs

−61 −55 23 15 30

−101 −83 23 15 30

−69 −57 23 16 30

−108 −90 23 9 30

−71 −65 23 12 30

−109 −99 23 7 30



Table 7 Parameter configurations for different
performance metrics for joint P0 optimization and FPC in
urban scenario

Metric Method P0 (dBm)

Direct
link

Access
link

Relay
link

NA Manual optimization −51 −61 −55

Γ5% Taguchi’s method −51 −68 −57

Simulated annealing −53 −71 −71

Γ25% Taguchi’s method −47 −70 −57

Simulated annealing −48 −64 −60

Γ50% Taguchi’s method −44 −65 −44

Simulated annealing −44 −65 −52

HM ΓHM Taguchi’s method −55 −72 −54

Simulated annealing −55 −72 −50

ΓHM10% Taguchi’s method −47 −67 −53

Simulated annealing −47 −67 −60

Weighted
AM

ΓAM(1,1,1) Taguchi’s method −52 −68 −58

Simulated annealing −52 −68 −54

ΓAM
(2,1,1) Taguchi’s method −53 −71 −52

Simulated annealing −53 −71 −59

ΓAM
(1,1,2) Taguchi’s method −52 −68 −54

Simulated annealing −52 −68 −54

Figure 10 The UE TP CDFs using ΓHM and Γ10%HM as performance
metrics in suburban scenario; (a) for Taguchi’s method and (b)
for simulated annealing.
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• Using ΓHM
Q% as performance metric:

For different propagation scenarios, the cut-off per-
centile Q can be adapted according to the target per-
formance requirements. Therefore, the cut-off percentile
can be considered as a means of performance steering;
however, its flexibility is rather limited by the considered
scenario. The 10%-ile UE TP CDF is selected as the cut-
off percentile for suburban scenario because it provides
a good trade-off between low and high percentiles. This
trade-off is illustrated for both Taguchi’s method and
simulated annealing in Figure 10 where the results of
manual optimization are also presented as a reference.
Figure 9 The UE TP CDFs for Taguchi’s method using Γ 1;1;1ð Þ
AM as

performance metric for comparison of joint P0 and Pmax

optimization, and joint P0 optimization in suburban scenario.
In Figure 10, it is observed that for both Taguchi’s
method and simulated annealing, compared to using
Γ10%HM as the performance metric, using ΓHM yields slightly
better performance up to 15%-ile UE TP CDF at the cost
of reduced performance for higher percentiles. This be-
havior is more pronounced for Taguchi’s method where
the performance degradation at higher percentiles
becomes significant as depicted in Figure 10a. Thus, the
use of Γ10%HM is preferred over ΓHM.
In addition, the convergence curves for Taguchi’s

method and simulated annealing are depicted in
Figure 11 where Γ10%HM is used as performance metric. It is
Figure 11 The convergence of Taguchi’s method and simulated
annealing using Γ10%HM as the performance metric in suburban
scenario.



Table 8 Parameter configurations for different
performance metrics in suburban scenario

Metric Method P0 (dBm)

Direct
link

Access
link

Relay
link

NA Manual optimization −63 −63 −59

Γ5% Taguchi’s method −66 −69 −63

Simulated annealing −66 −73 −66

Γ25% Taguchi’s method −61 −69 −61

Simulated annealing −61 −71 −63

Γ50% Taguchi’s method −57 −60 −46

Simulated annealing −57 −67 −50

HM ΓHM Taguchi’s method −64 −72 −60

Simulated annealing −63 −65 −49

ΓHM10% Taguchi’s method −62 −73 −54

Simulated annealing −62 −73 −51

Weighted
AM

ΓAM(1,1,1) Taguchi’s method −63 −71 −58

Simulated annealing −63 −72 −56

ΓAM
(2,1,1) Taguchi’s method −65 −73 −57

Simulated annealing −65 −73 −57

ΓAM
(1,2,1) Taguchi’s method −62 −72 −58

Simulated annealing −62 −72 −56

ΓAM(1,1,2) Taguchi’s method −62 −71 −51

Simulated annealing −62 −70 −53

Figure 13 The UE TP CDFs for Taguchi’s method using

Γ w1 ;w2 ;w3ð Þ
AM as the performance metric with different weights in
suburban scenario.
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observed that both optimization strategies converge to
similar values. This observation is also supported by the
similar PC parameter settings which are tabulated in
Table 8. Crucially, in contrast to urban scenario, it is
observed that when the performances of different
optimization strategies are similar the PC parameter set-
tings also come out to be similar especially for the access
link (RUEs) and relay link. The reason is twofold. First,
due to increased RN cell range, see different path loss
models in Table 3, the access link capacity can be lower
than that of the relay link and thus it can determine the
Figure 12 The UE TP CDFs for Taguchi’s method using Γ 1;1;1ð Þ
AM

and conventional metrics as performance metrics in suburban
scenario.
end-to-end TP level of the RUEs. Second, due to the
increased ISD, the relay link performance is not strictly
interference limited and an adjustment in transmit
power level can increase or decrease the performance
significantly.

• Using Γ w1;w2;w3ð Þ
AM as performance metric:

We first compare the performance difference between
conventional performance metrics, namely, Γ5%, Γ25%,
and Γ50%, and weighted AM. Among different weight
combinations ΓAM

(1,1,1) is used for illustration. Moreover, as
Taguchi’s method and simulated annealing exhibit si-
milar performances (cf. Table 8), Taguchi’s method is
selected for comparison. The UE TP CDFs are plotted in
Figure 12, where the curve of manual optimization is
also shown as a reference. It can be seen that the con-
ventional performance metrics optimize their targeted
UE TP CDF levels; however, performance degradation is
observed at other UE TP CDF levels. On the other hand,
when ΓAM

(1,1,1) is employed as the performance metric, the
three UE TP CDF percentiles are equally prioritized and
a trade-off can be reached. Moreover, the performances
of manual optimization, which already targets a trade-off
between different UE TP CDF percentiles, and Taguchi’s
method using ΓAM

(1,1,1) are similar.
In order to demonstrate how performance steering is

employed, the UE TP CDFs of Taguchi’s method using

Γ w1;w2;w3ð Þ
AM with different weights are plotted in Figure 13

along with the curve of Taguchi’s method using Γ10%HM as a
reference. The weight combinations of (w1, w2, w3) = {(1,
1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2)} are selected. Since

Taguchi’s method using Γ10%HM and Γ 1;2;1ð Þ
AM show similar per-

formances, the latter is not drawn for the clarity of the
figure. Furthermore, Taguchi’s method is selected for the
illustration because it performs similarly compared to
simulated annealing. It can be seen that increasing a given
weight relative to other weights the performance of the
corresponding UE TP CDF percentile can be increased



Figure 14 The convergence of Taguchi’s method and simulated

annealing using Γ w1 ;w2 ;w3ð Þ
AM as the performance metric with

different weights in suburban scenario.
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at the cost of performance degradation at other per-
centiles. Nevertheless, compared to conventional metrics

(cf. Figure 12), using Γ w1;w2;w3ð Þ
AM results in less performance

degradation at less prioritized percentiles since their per-
formances are as well taken into account. Besides, Tagu-
chi’s method using ΓAM

(1,1,2) marginally outperforms the case
where ΓHM

10% is utilized. Note that the optimized PC param-
eter settings are given in Table 8.
The convergence curves pertaining to Taguchi’s method

and simulated annealing using Γ w1;w2;w3ð Þ
AM with different

weights are shown in Figure 14, where for each weight
combination the converged values of both optimizations
are similar. Note that the converged values of different
weight combinations cannot be compared with each other
as they have different scaling values as introduced in (9).
That is, a higher converged value compared to another
weight combination does not necessarily mean a better
performance.
We note that, like in urban scenario, simulated anneal-

ing converges faster than Taguchi’s method in suburban
scenario as observed in Figures 11 and 14.
7. Conclusion
In this study, we have proposed an automated optimization
of PC parameters and investigated Taguchi’s method and
simulated annealing as two viable options. In comparison
to current studies, which depend on manual learn-by-
experience optimization, the automated PC scheme does
not require extensive skilled human intervention during the
optimization process, and thus significantly reduces the
complexity along with reduced cost and optimization time.
More crucially, it enables a flexible performance steering by
defining novel performance metrics adhering to the opera-
tor’s requirements and goals.
The evaluation of the optimization methods within the

LTE-Advanced uplink framework was carried out in
3GPP-defined urban and suburban propagation scenar-
ios. The performance evaluation is supported by a thor-
ough simulation campaign. It is shown that using the
HM or the equally weighted AM in urban scenario, and
the equally weighted AM in suburban scenario for the
automated optimization lead to similar performances as
the manual optimization which already aims at a trade-
off between worse and best performing users. Further, it
is seen that using a cut-off percentile different than zero
for HM and different weights for weighted AM, the
resultant TP performance can flexibly be steered.
Comparing both automated techniques, it is found

that both simulated annealing and Taguchi’s method
converge to similar values of the considered perform-
ance metrics. Nevertheless, it is as well observed that
Taguchi’s method yields sets of PC parameters which
provide a better overall performance in the user TP CDF
as compared to simulated annealing and manual
optimization in urban scenario.

Endnotes
aIn this study, trial runs refer to simulations with dif-

ferent parameter configurations. bThe receiver dynamic
range is defined as the difference in dB between the 5th
%-ile and 95th%-ile of the CDF of the total received
power.
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