
Merwaday et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:189
http://jwcn.eurasipjournals.com/content/2014/1/189

RESEARCH Open Access

Capacity analysis of LTE-Advanced HetNets
with reduced power subframes and range
expansion
Arvind Merwaday1, Sayandev Mukherjee2 and Ismail Güvenç1*

Abstract

The use of reduced power subframes in LTE Rel. 11 can improve the capacity of heterogeneous networks (HetNets)
while also providing interference coordination to the picocell-edge users. However, in order to obtain maximum
benefits from the reduced power subframes, setting the key system parameters, such as the amount of power
reduction, carries critical importance. Using stochastic geometry, this paper lays down a theoretical foundation for the
performance evaluation of HetNets with reduced power subframes and range expansion bias. The analytic expressions
for average capacity and 5th percentile throughput are derived as a function of transmit powers, node densities, and
interference coordination parameters in a two-tier HetNet scenario and are validated through Monte Carlo
simulations. Joint optimization of range expansion bias, power reduction factor, scheduling thresholds, and duty cycle
of reduced power subframes is performed to study the trade-offs between aggregate capacity of a cell and fairness
among the users. To validate our analysis, we also compare the stochastic geometry-based theoretical results with the
real macro base station (MBS) deployment (in the city of London) and the hexagonal grid model. Our analysis shows
that with optimum parameter settings, the LTE Rel. 11 with reduced power subframes can provide substantially better
performance than the LTE Rel. 10 with almost blank subframes, in terms of both aggregate capacity and fairness.

Keywords: Fairness; FeICIC; HetNets; LTE-Advanced; Performance analysis; Poisson point process; PPP; Reduced
power ABS; Reduced power subframes

1 Introduction
Cellular networks are witnessing an exponentially increas-
ing data traffic from mobile users. Heterogeneous net-
works (HetNets) offer a promising way of meeting these
demands. They are composed of small-sized cells such
as micro-, pico-, and femtocells overlaid on the existing
macrocells to increase the frequency reuse and capacity
of the network. Since the base stations (BSs) of differ-
ent tiers use different transmission powers and typically
a frequency reuse factor of 1, analyzing and mitigating
the interference at an arbitrary user equipment (UE) is a
challenging task.
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1.1 Related work on evaluation methodology
Different approaches have been used in the literature
for the performance evaluation of HetNets. The tradi-
tional simulation models with BSs placed on a hexagonal
grid are highly idealized and may typically require com-
plex and time-consuming system-level simulations. On
the other hand, models based on stochastic geometry and
spatial point processes provide a tractable and compu-
tationally efficient alternative for performance evaluation
of HetNets [1-4]. Poisson point process (PPP)-based mod-
els have been recently used extensively in the literature
for performance evaluation of HetNets. However, as the
macro base station (MBS) locations are carefully planned
during the deployment process, PPP-based models may
not be viable for capturing real MBS locations, due to
some points of the process being very close to each other.
The Matern hardcore point process (HCPP) provides a
more accurate alternative spatial model for MBS loca-
tions. In HCPPs, the distance between any two points
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of the process is greater than a minimum distance pre-
defined by the hard core parameter. HCPP models are
relatively more complicated due to the non-existence of
the probability generating functional [1]. Also, HCPP has
a flaw of underestimating the intensity of the points that
can coexist for a given hard core parameter [5]. Hence,
HCPP models are not as tractable and simple as the PPP
models.
With PPPs, using simplifying assumptions, such as

Rayleigh fading channel model, and a path-loss exponent
of 4, we can obtain closed form expressions for aggre-
gate interference and outage probability. Therefore, use
of PPP models for performance evaluation of HetNets is
appealing due to their simplicity and tractability [6]. Fur-
thermore, the PPP-based models provide reasonably close
performance results when compared with the real BS
deployments. In particular, results in [3] show that, when
compared with real BS deployments, PPP- and hexagonal
grid-based models for BS locations provide a lower bound
and an upper bound, respectively, on the outage probabil-
ities of UEs. Also, the PPP-based models are expected to
provide a better fit for analyzing denser HetNet deploy-
ments due to higher degree of randomness in small-cell
deployments [2]. In this paper, due to their simplicity and
reasonable accuracy, we will use PPP-based models to
characterize and understand the behavior of HetNets in
terms of various design parameters.

1.2 Use of PPP-based models for LTE-Advanced HetNet
performance evaluation

The existing literature has numerous papers based on
the PPP model for analyzing HetNets. Using PPPs, the
basic performance indicators such as coverage probabil-
ity and average rate of a UE are analyzed in [7-10]. The
use of range expansion bias (REB) in the picocell enables
it to associate with more UEs and thereby improves the
offloading of UEs to the picocells. The effect of REB
on the coverage probability is studied in [11,12]. How-
ever, with range expansion, the offloaded UEs at the
edge of picocells experience high interference from the
macrocell. This necessitates a coordination mechanism
between theMBSs and pico base stations (PBSs) to protect
the picocell-edge UEs from the MBS interference. While
[2,3,13] consider a homogeneous cellular network, [12]
considers a HetNet with range expansion. The authors of
[2,3,12] have obtained the information of real BS loca-
tions in an urban area from a cellular service provider.
On the other hand, the authors of [13] have obtained the
BS location information from an open source project [14]
that provides approximate locations of the BSs around the
world.
To mitigate the interference problems in HetNets,

different enhanced inter-cell interference coordination
(eICIC) techniques have been specified in LTE Rel. 10 of

3GPP which includes time-domain, frequency-domain,
and power control techniques [15]. In the time-domain
eICIC technique, MBS transmissions are muted during
certain subframes and no data is transmitted to macro
UEs (MUEs). The picocell-edge users are served by
PBS during these subframes (coordinated subframes),
thereby protecting the picocell-edge users from MBS
interference. The eICIC technique using REB is studied
well in the literature by analyzing its effects on the rate
coverage [16,17] and on the average per-user capacity
[18,19]. However, in the simulations of [20], the MBS
transmits at reduced power (instead of muting the MBS
completely) during the coordinated subframes (CSFs) to
serve only its nearby UEs. Therein, the use of reduced
power subframes during CSFs is shown to improve the
HetNet performance considerably in terms of the trade-
off between the cell-edge and average throughputs. Later
on, reduced power subframe transmission has also been
standardized under LTE Rel. 11 of 3GPP and commonly
referred therein as further-enhanced ICIC (FeICIC).
In another study [21], simulation results show that the
FeICIC is less sensitive to the duty cycle of CSFs than the
eICIC. In [22], 3GPP simulations are used to study and
compare the eICIC and FeICIC techniques for different
REBs and almost blank subframe densities. Therein, the
amount of power reduction in the reduced power sub-
frames is made equivalent to REB and its optimality is not
justified.

1.3 Contributions
In the authors’ earlier work [7], analytic expressions for
coverage probability of an arbitrary UE are derived using
PPPs. Later, the analytical framework in [7] has been
extended to spectral efficiency (SE) derivations in [18,19]
by considering eICIC and range expansion. Reduced
power subframes, which are standardized in LTE Rel. 11
[23], are not analytically studied in the literature to our
best knowledge.
In the present work, generalized SE expressions are

derived considering the FeICIC which includes eICIC
and no eICIC as the two special cases. In this analytic
framework that uses reduced power subframes and range
expansion, expressions for the average SE of UEs and
the 5th percentile throughput are derived. These expres-
sions are validated through Monte Carlo simulations.
Details of the simulation model are documented explic-
itly, and the MATLAB codes can be accessed through
[24] for regenerating the results. The optimization of
key system parameters is analyzed with a perspective
of maximizing both aggregate capacity in a cell and
the proportional fairness among its users. Using these
results, insights are developed on the configuration of
FeICIC parameters, such as the power reduction level,
range expansion bias, duty cycle of CSFs, and scheduling
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thresholds. The 5th and 50th percentile capacities are
also analyzed to determine the trade-offs associated with
FeICIC parameter adaptation. Further, we compare the
5th percentile SE results from the PPP model with
the real MBS deployment [25] and the hexagonal grid
model.

2 Systemmodel
We consider a two-tier HetNet system with MBS, PBS,
and UE locations modeled as two-dimensional homoge-
neous PPPs of intensities λ, λ′, and λu, respectively. Both
the MBSs and the PBSs share a common transmission
bandwidth. We assume round robin scheduling in all the
downlinks of a cell. For analytical tractability, we also
assume that during a subframe, a BS allocates an entire
system bandwidth to a single UE. We also assume that
the cells have full buffer traffic and the thermal noise
is negligible when compared to interference. The MBSs
employ reduced power subframes, in which they transmit
at reduced power levels to prevent high interference to the
picocell UEs (PUEs). On the other hand, the PBSs transmit
at full power during all the subframes.
The frame structure with reduced power subframes

is shown in Figure 1. During uncoordinated subframes
(USFs), the MBS transmits data and control signals at full
power Ptx, and during CSFs, it transmits at a reduced
power αPtx, where 0 ≤ α ≤ 1 is the power reduction
factor. The PBS transmits the data, control signals, and
cell reference symbol with power P′

tx during all the sub-
frames. Setting α = 0 corresponds to eICIC, and α = 1
corresponds to the no eICIC case. A list of all the nota-
tions and symbols used in this paper are described in
Table 1.
Define β as the duty cycle of USFs, i.e., ratio of the

number of USFs to the total number of subframes in a
frame. Then, (1 − β) is the duty cycle of CSF/reduced
power subframes. LetK and K ′ be the factors that account
for geometrical parameters such as the transmitter and
receiver antenna heights of the MBS and the PBS, respec-
tively. Then, the effective transmitted power of MBS dur-
ing USFs is P = PtxK , MBS during CSFs is αP, and PBS
during USF/CSF is P′ = P′

txK ′. For an arbitrary UE, let
the nearest MBS at a distance r be its macrocell of interest
(MOI) and the nearest PBS at a distance r′ be its picocell
of interest (POI). Then, assuming Rayleigh fading channel,

the reference symbol received power from theMOI and the
POI are given by

S(r) = PH
rδ

, S′ (r′) = P′H ′

(r′)δ
, (1)

respectively, where δ is the path-loss exponent, and the
random variables H ∼ Exp(1) and H ′ ∼ Exp(1) account
for Rayleigh fading. Define an interference term, Z, as the
total interference power at a UE during USFs from all
the MBSs and the PBSs, excluding the MOI and the POI.
Similarly, define Z′ as the total interference power during
CSFs. We assume that there is no frame synchronization
across theMBSs, and therefore irrespective of whether the
MOI is transmitting a USF or a CSF, the interference at UE
has the same distribution in both cases and is independent
of both S(r) and S′(r′). Then, an arbitrary UE experiences
the following four SIRs:

� = S(r)
S′(r′) + Z

,→ USF SIR fromMOI (2)

�′ = S′(r′)
S(r) + Z

,→ USF SIR from POI (3)

�csf = αS(r)
S′(r′) + Z

,→ CSF SIR fromMOI (4)

�′
csf = S′(r′)

αS(r) + Z
. → CSF SIR from POI (5)

2.1 UE association
In (4) and (5), it can be noted that �csf and �′

csf are directly
affected by α, and hence, their usage will make the cell
selection process dependent on α. Thus, we consider �

and �′ to minimize the dependence of the cell selection
process on α.
The cell selection process using �, �′, and the REB τ

can be explained with reference to Figure 2. If τ�′ is less
than �, then the UE is associated with theMOI, otherwise
with the POI. After the cell selection, the UE is scheduled
either in USF or in CSF based on the scheduling thresh-
olds ρ (for MUE) and ρ′ (for PUE). In a macrocell, if � is
less than ρ then the UE is scheduled to USF, otherwise to
CSF. Similarly, in a picocell, if �′ is greater than ρ′ then
the UE is scheduled to USF, otherwise to CSF (to pro-
tect it frommacrocell interference). The cell selection and

Figure 1 Frame structure with reduced power subframes, transmitted with a duty cycle of β = 0.5.
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Table 1 Notations and symbols

Symbol Description

λ, λ′ , λu Intensities of the MBS, PBS, and UE nodes,
respectively

Ptx, P′
tx Maximum transmit powers of MBS and PBS,

respectively

K , K ′ Signal attenuation factors that account for
geometrical parameters such as the
transmitter/receiver antenna heights of the
MBS and the PBS, respectively

P, P′ Effective maximum transmit powers of MBS
and PBS, respectively, after considering the
attenuation factors K and K ′

α Power reduction factor for MBS during the
transmission of CSFs

β Duty cycle for the transmission of USFs

τ Range expansion bias for picocells

ρ , ρ′ Scheduling thresholds for MUEs and PUEs,
respectively

r, r′ Distances of a UE from its MOI and POI,
respectively

δ Path-loss exponent

S(r), S′(r′) RSRPs from the MOI and the POI, respectively

H,H′ Exponentially distributed random variables
that account for Rayleigh fading for the
transmissions from MBS and PBS, respectively

Z, Z′ Total interference power at a UE during USF
and CSF, respectively

γ , γ ′ SIRs from MOI and POI, respectively, during
USFs

γcsf, γ ′
csf SIRs from MOI and POI, respectively, during

CSFs

Nusf,N′
usf,Ncsf, N′

csf Mean number of USF-MUEs, USF-PUEs,
CSF-MUEs, and CSF-PUEs, respectively, in a cell

Cusf, C′
usf, Ccsf, C

′
csf Mean aggregate SEs for USF-MUEs, USF-PUEs,

CSF-MUEs, and CSF-PUEs, respectively, in a cell

Cu,usf, C′
u,usf, Cu,csf, C

′
u,csf Per-user SEs for USF-MUEs, USF-PUEs,

CSF-MUEs, and CSF-PUEs, respectively, in a cell

Csum, Clog Sum of capacities and sum of log capacities in
a cell

scheduling conditions can be combined and formulated as
follows:

If � > τ�′ and � ≤ ρ → USF-MUE, (6)

If � > τ�′ and � > ρ → CSF-MUE, (7)

If � ≤ τ�′ and �′ > ρ′ → USF-PUE, (8)

If � ≤ τ�′ and �′ ≤ ρ′ → CSF-PUE. (9)

A sample layout of MBSs and PBSs with their cover-
age areas for the four different UE categories is illustrated
in Figure 3. Note that in the related work of [16], the
UE association criteria are based on the average refer-
ence symbol received power at UE, where as our model is
based on the SIR at UE, it also encompasses the FeICIC
mechanism. In [16], the boundary between the USF-PUEs
(picocell area) and the CSF-PUEs (range expanded area)
is fixed due to the fixed transmit power of PBS. On the
other hand, in our approach, the boundary between USF
and CSF users can be controlled using ρ in the macro-
cell and ρ′ in the picocell, the parameters which play an
important role during optimization as will be shown in
Section 5.3.
Using (1) to (5), it can be shown that the two SIRs �csf

and �′
csf could be expressed in terms of � and �′ as

�csf = α�,�′
csf = �′(1 + �)

1 + � [α (�′ + 1) − �′]
. (10)

Hence, knowing the statistics of � and �′, particularly
their joint probability density function (JPDF), would pro-
vide a complete picture of the SIR statistics of the HetNet
system. We first derive an expression for joint comple-
mentary cumulative distribution function (JCCDF) of �

and �′ in Section 3.1. Then, we differentiate the JCCDF
with respect to γ and γ ′ to get the expression for JPDF in
Section 3.2, which will then be used for spectral efficiency
analysis.

Figure 2 Illustration of UE association criteria.
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Figure 3 Illustration of two-tier HetNet layout. In picocells, the
coverage regions for USF- and CSF-PUEs are colored in orange and
green, respectively, whereas in macrocells, the coverage regions for
USF- and CSF-MUEs are colored in white and blue, respectively.

3 Derivation of joint SIR distribution
3.1 JCCDF of � and �′
From (1), we know that S(r) and S′(r′) are exponentially
distributed with mean P/rδ and P′/(r′)δ , respectively. For
brevity, substitute S(r) = X and S′(r′) = Y in (2) and (3):

� = X
Y + Z

,�′ = Y
X + Z

. (11)

Using (11), it can be easily shown that the product ��′
has a maximum value of 1.
Let, R and R′ be the random variables denoting the dis-

tances of MOI and POI from a UE. Then, the JCCDF of �
and �′ conditioned on R = r,R′ = r′ is given by

P
{
� > γ ,�′ > γ ′ ∣∣R = r,R′ = r′

}
= EZ

[
P
{
X > γ (Y + Z),Y > γ ′(X + Z)

}]
,

= EZ

[∫ +∞

y1
fY (y)

∫ y/γ ′−Z

γ (y+Z)

fX(x) dx dy
]
,

(12)

for γ > 0, γ ′ > 0, and γ γ ′ < 1. Here, fX(x) = rδ
P

exp
(
− rδ

P x
)
, fY (y) = (r′)δ

P′ exp
(
− (r′)δ

P′ y
)
, and the inte-

gration limit y1 = γ ′Z
(

1+γ
1−γ γ ′

)
. The integration region

of (12) is graphically represented in Figure 4. By solving

Figure 4 Illustration of the integration region in the JPDF of X
and Y. The shaded region indicates the integration region in order to
compute the JCCDF.

the integration as shown in Appendix 1, we can obtain a
closed form expression for the conditional JCCDF as

P
{
� > γ ,�′ > γ ′|R = r,R′ = r′

}

=
(1 − γ γ ′)LZ

(
1

1−γ γ ′
(

γ (1+γ ′)rδ
P + γ ′(1+γ )(r′)δ

P′
))

[
1 + γ P′

P
( r
r′
)δ] [1 + γ ′ P

P′
(
r′
r

)δ
] ,

(13)

for γ > 0, γ ′ > 0, and γ γ ′ < 1, whereLZ(s) is the Laplace
transform of the total interference Z.
Expression for LZ(s) can be derived as follows. We

assume that the interfering MBSs of a UE are frame
asynchronous and subframe synchronous. Essentially, we
wanted to assume no synchronization at all. However, this
would permit part of a subframe from an interfering trans-
mitter to interfere with part of another subframe at the
receiver, and the complications for analysis would be too
much. To simplify the interference scenario, we would not
account for, or model, any interference by partially over-
lapping subframes. In other words, if a subframe partially
overlaps another subframe, it is assumed to overlap com-
pletely. This is equivalent to the ‘subframe-synchronized
but frame-asynchronous’ assumption.
The locations of the USFs and CSFs are uniformly ran-

domly distributed, with a USF duty cycle of β for all the
MBSs. Hence, each interfering MBS transmits USFs with
probability β and CSFs with probability (1 − β). There-
fore, the tier of MBSs can be split into two tiers: one tier of
MBSs transmitting only USFs and other transmitting only
CSFs. These two tiers are independent PPPs with intensi-
ties λβ and λ(1 − β). Therefore, the FeICIC scenario can
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be modeled using three independent PPPs as illustrated in
Table 2.
Let Iusf(r), Icsf(r), and I ′(r′) be the interference at UE

from all interfering USF-MBSs, CSF-MBSs, and PBSs.
Then, the total interference is Z = Iusf(r) + Icsf(r) +
I ′(r′). Using ([26], Corollary 1), parameters in Table 2, and
assuming δ = 4, we can derive the Laplace transform of Z
in (13) to be

LZ(s) = exp
{
−πβλ

√
Ps
[

π

2
− tan−1

(
r2√
Ps

)]

− π(1 − β)λ
√

αPs
[

π

2
− tan−1

(
r2√
αPs

)]

−πλ′√P′s
[

π

2
− tan−1

(
(r′)2√
P′s

)]}
.

(14)

3.2 JPDF of � and �′
The conditional JPDF of � and �′

f�,�′|R,R′
(
γ , γ ′ ∣∣r, r′ ) = P

{
� = γ ,�′ = γ ′|R = r,R′ = r′

}
(15)

can be derived by differentiating the JCCDF in (13) with
respect to γ and γ ′. Detailed derivation of conditional
probability JPDF is provided in Appendix 2. Using the
theorem of conditional probability, we can write

f�,�′,R,R′
(
γ , γ ′, r, r′

) = f�,�′|R,R′
(
γ , γ ′ ∣∣r, r′ ) fR (r) fR′

(
r′
)
,

(16)

where the PDFs of R and R′ are fR(r) = 2πλre−λπr2

and fR′(r′) = 2πλ′r′e−λ′π(r′)2 , respectively. We can then
express the unconditional JPDF of � and �′ as

f�,�′
(
γ , γ ′) =

∫ ∞

dmin

∫ ∞

d′
min

f�,�′ ,R,R′
(
γ , γ ′, r, r′

)
dr′ dr

=
∫ ∞

dmin

∫ ∞

d′
min

f�,�′|R,R′
(
γ , γ ′ ∣∣r, r′ ) fR(r)fR′(r′) dr′ dr,

(17)

where we assume that a UE is served by a BS only if it
satisfies the minimum distance constraints: UE should be
located at distances of at least dmin from theMOI and d′

min
from the POI.

Table 2 PPP parameters for USFMBSs, CSFMBSs, and PBSs

BS type PPP Intensity Tx. power Distance of UE to
nearest BS

USF-MBSs �usf βλ P r

CSF-MBSs �csf (1 − β)λ αP r

PBSs �′ λ′ P′ r′

4 Spectral efficiency analysis
In this section, the expressions for aggregate and per-user
SEs for different UE categories are derived. Considering
the JPDF of an arbitrary UE in (17), first, the expressions
for the probabilities that the UE belongs to each category
are derived. Then, these expressions are used to derive the
mean number of UEs of each category in a cell. These are
followed by the derivation of the aggregate SE. Then, per-
user SE expressions are obtained by dividing the aggregate
SE by the mean number of UEs.

4.1 MUE and PUE probabilities
Depending on the SIRs � and �′, a UE can be one of
the four types: USF-MUE, CSF-MUE, USF-PUE, or CSF-
PUE. Given that the UE is located at a distance r from its
MOI and r′ from its POI, probabilities of the UE belonging
to each type can be found by integrating the conditional
JPDF over the regions whose boundaries are set by the cell
selection conditions in (6) to (9). Based on these condi-
tions, the integration regions for different UE categories
are shown in Figure 5.
The probability that a UE is a CSF-MUE can be found

by integrating the JPDF over the region R1,

Pcsf = P
{
� > τ�′,� > ρ

} =
∫ ∞

ρ

∫ min
(
1
γ
, γ
τ

)
0

f�,�′
(
γ , γ ′) dγ ′ dγ .

(18)

To form concise equations, let us define an integral
function

G
(
g, Ri

) =
∫ ∫

Ri
g
(
γ , γ ′) f�,�′

(
γ , γ ′) dγ ′ dγ , (19)

Figure 5 Illustration of the integration regions in the JPDF of �
and �′. Shaded regions indicate the integration regions to compute
the probabilities of a UE belonging to different categories.
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where g is a function of γ and γ ′, and Ri for i = 1, 2, 3, 4
is the integration region as defined in Figure 5. Then, (18)
can be written as

Pcsf = P
{
� > τ�′,� > ρ

} = G (1, R1) . (20)

Similarly, the conditional probabilities that a UE is a
USF-MUE, USF-PUE, or CSF-PUE are respectively given
as

Pusf = P
{
� > τ�′,� ≤ ρ

} = G (1, R2) , (21)
P′
usf = P

{
� ≤ τ�′,�′ ≥ ρ′} = G (1, R4) , (22)

P′
csf = P

{
� ≤ τ�′,�′ < ρ′} = G (1, R3) . (23)

4.2 Mean number of MUEs and PUEs
Since the MBS locations are generated using PPPs, the
coverage areas of all the MBSs resemble a Voronoi tessel-
lation. Consider an arbitrary Voronoi cell. Let the number
of UEs in the cell be N and the number of CSF-MUEs in
the cell beM. Then,M is a random variable, and the mean
number of CSF-MUEs is given by

Ncsf = E[M]= E
[ N∑
n=1

1 {UE n is a CSF-MUE}
]

= EN

{
E
[ N∑
n=1

1 {UE n is a CSF-MUE} |N
]}

= EN

{ N∑
n=1

E [1 {UE n is a CSF-MUE}]
}
,

(24)

where in (24) we use the fact that the probability that any
of the N UEs in a cell being a CSF-MUE is independent
of N . However, it is important to note that this is itself a
consequence of our assumption that there is no limit on
the number of CSF-MUEs per cell. Further, the event that
any of the UEs in a cell is a CSF-MUE is independent of
the event that any other UE in that cell is a CSF-MUE, and
all such events have the same probability of occurrence,
namely Pcsf given in (20). Then,

Ncsf = EN

{ N∑
n=1

Pcsf

}
= EN [N Pcsf] = Pcsf E[N] . (25)

Using ([27], Lemma 1), it can be shown that the mean
number of UEs in a Voronoi cell is λu/λ. Therefore, the
mean number of CSF-MUEs in a cell is given by

Ncsf = Pcsfλu
λ

. (26)

Similarly, the mean number of USF-MUEs, USF-PUEs,
and CSF-PUEs is respectively given by

Nusf = Pusfλu
λ

,N ′
usf = P′

usfλu

λ′ ,N ′
csf = P′

csfλu

λ′ . (27)

4.3 Aggregate and per-user spectral efficiencies
We use Shannon capacity formula, log2(1 + SIR), to find
the SE of each UE type. The mean aggregate SE of an
arbitrarily located CSF-MUE can be found by

Ccsf
(
λ, λ′, τ ,α, ρ,β

)= (1−β)
E
[
log2 (1+�csf) |UE is a CSF-MUE

]
Pcsf

= (1−β)
G
(
log2 (1 + γcsf) , R1

)
Pcsf

,

= (1−β)
G
(
log2 (1 + αγ ) , R1

)
Pcsf

.

(28)

Similarly, the mean aggregate SEs for USF-MUEs, USF-
PUEs, and CSF-PUEs can be respectively derived to be

Cusf
(
λ, λ′, τ ,α, ρ,β

) = β
G
(
log2(1 + γ ), R2

)
Pusf

, (29)

C′
usf
(
λ, λ′, τ ,α, ρ′,β

) = β
G
(
log2

(
1 + γ ′) , R4)
P′
usf

, (30)

C′
csf
(
λ, λ′, τ ,α, ρ′,β

) = (1 − β)
G
(
log2

(
1 + γ ′

csf
)
, R3
)

P′
csf

,

(31)

where γ ′
csf = γ ′(1+γ )

1+γ [α(γ ′+1)−γ ′] . Then, the corresponding
per-user SEs are

Cu,usf
(
λ, λ′, τ ,α, ρ,β

) = λ Cusf
(
λ, λ′, τ ,α, ρ,β

)
λu Pusf

, (32)

Cu,csf
(
λ, λ′, τ ,α, ρ,β

) = λ Ccsf
(
λ, λ′, τ ,α, ρ,β

)
λu Pcsf

, (33)

C′
u,usf

(
λ, λ′, τ ,α, ρ′,β

) = λ′ C′
usf
(
λ, λ′, τ ,α, ρ′,β

)
λu P′

usf
,

(34)

C′
u,csf

(
λ, λ′, τ ,α, ρ′,β

) = λ′ C′
csf
(
λ, λ′, τ ,α, ρ′,β

)
λu P′

csf
.

(35)

4.4 5th percentile throughput
The 5th percentile throughput reflects the throughput
of cell-edge UEs. Typically, the cell-edge UEs experience
high interference, and analyzing their throughput pro-
vides important information about the fairness among the
users in a cell and the system performance.
Consider the JPDF expression in (17). The integration

regions of the JPDF for different UE categories are shown
in Figure 5. The SIR PDF of USF-MUEs can be evaluated
by integrating the JPDF over γ ′ in region R2,

f�(γ ) = P {� = γ |UE is a USF-MUE }

=
∫ min

(
γ
τ
, 1
γ

)
0

f�,�′
(
γ , γ ′) dγ ′, (36)
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for 0 ≤ γ ≤ ρ. The CDF expression can be derived as

F� (γusf) = P {� ≤ γusf |UE is a USF-MUE }

=
∫ γusf

0
f�(γ ) dγ =

∫ γusf

0

∫ min
(

γ
τ
, 1
γ

)
0

f�,�′
(
γ , γ ′) dγ ′ dγ,

(37)

for 0 ≤ γusf ≤ ρ, and the CDF of throughput of the USF-
MUEs can be derived as a function of F�(γusf) in (37) as

FCusf(cusf) = P {Cusf ≤ cusf |UE is a USF-MUE }
= P

{
log2(1 + �usf) ≤ cusf |UE is a USF-MUE

}
,

= P
{
�usf ≤ (2cusf − 1) |UE is a USF-MUE

}
= F�(2cusf − 1),

(38)

for 0 ≤ cusf ≤ log2(1+ρ). By using the CDF plots, the 5th
percentile throughput of USF-MUEs can easily be found
as the value at which the CDF is equal to 0.05. Similarly,
the 5th percentile throughput of other three UE categories
can also be found.

5 Numerical and simulation results
The average SE and 5th percentile throughput expressions
derived in the earlier sections are validated using a Monte
Carlo simulation model built in MATLAB. Validation of
the PPP capacity results for a HetNet scenario with range
expansion and reduced power subframes is a non-trivial
task. In this section, details of the simulation approach
used for validating the PPP analyses are explicitly doc-
umented to enable reproducibility. MATLAB codes for
the simulation model, and the theoretical analysis can be
downloaded from [24].

5.1 Simulation methodology for verifying PPPmodel
The algorithm used in the simulation to find the aggregate
and per-user SEs is described below.

1. The X- and Y -coordinates of MBSs, PBSs, and UEs
are generated using uniformly distributed random
variables. The mean number of MBS and PBS
location marks is λA and λ′A, respectively, where A
is the assumed geographical area that is square in
shape as illustrated in Figure 6.

2. In the PPP analysis, the geographical area is assumed
to be infinite. In such case, it is important to account
for edge effects in the simulations. In a tessellation
that is defined on an unbounded region, what
happens outside a bounded simulation window may
effect what happens within the window [28]. As the
simulation area is limited, if a UE is located at the
edge of the simulation area, the BSs around it will not
be symmetrically distributed. Hence, to avoid the
edge effects, the UE locations are constrained within
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Figure 6 Simulation layout.

a smaller area Au that is aligned at the center of the
main simulation area A to avoid the UEs from being
located at the edges. The mean number of UEs in the
area Au is λuAu.

3. The MOI (closest MBS) and POI (closest PBS) for
each UE are identified. The minimum distance
constraints are applied by discarding the UEs that are
closer than dmin(d′

min) from their respective MOIs
(POIs).

4. The SIRs �, �′, �csf, and �′
csf are calculated for each

UE using (2) to (5).
5. The UEs are classified as USF-MUEs, CSF-MUEs,

USF-PUEs, and CSF-PUEs using the conditions in (6)
to (9).

6. The MUEs (PUEs) which share the same MOI (POI)
are grouped together to form the macro- and
picocells.

7. The SEs of all the UEs are calculated. In a cell, SE of a
USF-MUE i is calculated using β log2(1+�i)

(No. of USF-MUEs in the cell) .
The SEs of other UE types are calculated using
similar formulations.

8. The aggregate capacity of each UE type is calculated
in all the cells.

9. Mean aggregate capacity and mean number of UEs of
each type are calculated by averaging over all the cells.

10. The per-user SE of each UE type is calculated by
(mean aggregate capacity)/(mean number of UEs).

5.2 Per-user SEs with PPPs andMonte Carlo simulations
The system parameter settings are shown in Table 3. The
per-user SE results obtained using the analytic expressions
of (32) to (35) are compared with the simulation results
in Figure 7a,b for macrocell and picocell, respectively. The
averaging process in the simulations is not straightfor-
ward, and it can be explained as follows. With reference
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Table 3 Parameter settings

Parameter Value

P, P′ 46 dBm, 30 dBm

K , K ′ −11 dBm

dmin, d′
min 35 m, 10 m

λ, λ′ , λu (marks/km2) 4.6, 3λ, 200

Fading model, path-loss exponent (δ) Rayleigh, 4

β , ρ , ρ′ 0.5, 4 dB, 0dB

A, Au 10 × 10 km2, 7 × 7 km2

to Figure 6, the inner simulation area Au where the UEs
are distributed consists of a random number of macrocells
and picocells in each simulation instance. On average, it
contains λAu macrocells and λ′Au picocells. Since the sim-
ulation results are obtained by averaging over the macro-
cells and picocells, we can say that the simulation results
were obtained by averaging over approximately λAuNsim
macrocells and λ′AuNsim picocells, whereNsim is the num-
ber of simulation instances. Using the parameter values in
Table 3 and Nsim = 20, we can say that the simulation
results were obtained by averaging over approximately
4,508 macrocells and 13,524 picocells.
The analytic and simulation plots in Figure 7a,b match

with sufficient accuracy. However, there exists a slight dis-
agreement between the analytic and simulation results
which could be due to the fact that the calculation of
analytic results involves four nested integrals. Since the
numerical integration in MATLAB has certain tolerance
limits, the results could be off the ideal values. Another
source for disagreement could be due to the fact that in
theoretical analysis, the BSs are assumed to be distributed
over an infinite geographical area. However, the simula-
tions are performed using a finite area of 10 × 10 km2.
Nevertheless, Figure 7 provides the following insights.

5.2.1 USF- and CSF-MUEs
Referring to Figure 2, USF-MUEs form the outer part
and CSF-MUEs form the inner part of the macrocell. As
the REB increases, some of the USF-MUEs at the macro-
pico boundary which have worse SIRs are offloaded to the
picocell. Consequently, the mean number of USF-MUEs
decreases and their per-user SE increases as shown in
Figure 7a.
The mean number of CSF-MUEs are not affected by τ

as long as
√

τ ≤ ρ. Considering Figure 5, it can be noted
that if

√
τ = ρ, the line γ = τγ ′ intersects the bound-

ary of region R1. Hence, if τ is increased further such that√
τ > ρ, the area of R1 decreases and thereby decreases

the mean number of CSF-MUEs. Therefore, the per-user
SE of CSF MUEs remains constant as long as

√
τ ≤ ρ and

increases if τ crosses this limit as shown in Figure 7a.

On the other hand, as the α increases, the trans-
mit power of all the interfering MBSs increases dur-
ing CSFs; hence, it increases the interference power
Z at all the UEs. This causes the SIRs of USF-MUEs
(�), USF-PUEs (�′), and CSF-PUEs (�′

csf) to decrease,
which can be noted in (2), (3), and (5), respectively.
However, the SIRs of CSF-MUEs (�csf) would increase
(despite of increased interference) because of the increase
in received signal power (due to higher α) which can
be noted in (4). Considering (6) and (7), since ρ is a
constant, the degradation in � causes the number of
USF-MUEs to increase and CSF-MUEs to decrease. Con-
sequently, the per-user SE of USF-MUEs decreases and
that of CSF-MUEs increases for increasing α, as shown in
Figure 7a.

5.2.2 USF- and CSF-PUEs
As the REB increases, the mean number of USF-PUEs
remains constant if ρ′ > 1/

√
τ because the area of

region R4 in Figure 5 is unaffected by the value of τ .
Therefore, the per-user SE of USF-PUEs also remains
constant for increasing REB as shown in Figure 7b.
With increasing REB, some MUEs are offloaded to
the picocell and become CSF-PUEs. But these UEs
are located at cell-edges and have low SIRs. Hence,
the per-user SE of CSF-PUEs decreases as shown in
Figure 7b.
On the other hand, as the α increases, the transmit

power of all the interfering MBSs increases during CSFs
causing �, �′, and �′

csf to decrease and �csf to increase,
as explained previously. Considering (8) and (9), since ρ′
is a constant, the degradation in �′ causes the number of
USF-PUEs to decrease and CSF-PUEs to increase. Con-
sequently, the per-user SE of USF-PUEs increases and
that of CSF-PUEs decreases for increasing α, as shown in
Figure 7b.

5.3 Optimization of system parameters to achieve
maximum capacity and proportional fairness

The five parameters τ , α, β , ρ, andρ′ are the key system
parameters that are critical to the satisfactory perfor-
mance of the HetNet system. The goal of these param-
eter settings is to maximize the aggregate capacity in
a cell while providing proportional fairness among the
users.
Consider an arbitrary cell which consists of N UEs. Let

Ci be the capacity of an arbitrary UE i ∈ {1, 2, . . . , N}. The
sum of capacities (sum-rate) and the sum of log capacities
(log-rate) in a cell are respectively given by

Csum =
N∑
i=1

Ci, Clog =
N∑
i=1

log(Ci) = log
( N∏
i=1

Ci

)
.

(39)
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Figure 7 Per-user SE in (a) macrocell and (b) picocell. For the case with β = 0.5, ρ = 4 dB, and ρ′ = 0 dB.

Maximizing the Csum corresponds to maximizing the
aggregate capacity in a cell, while maximizing the Clog
corresponds to proportional fair resource allocation to
the users of a cell ([29], App. A) [30]. There can be
trade-offs existing between aggregate capacity and fair-
ness in a cell. Maximizing the Csum may reduce the Clog
and vice versa. In this section, we try to understand
these trade-offs by analyzing the characteristics of Clog
and Csum with respect to the variation of key system
parameters.
We attempt to maximize the aggregate capacity and

the proportional fairness among the users by jointly

optimizing the five key system parameters which can be
mathematically formulated as

max
ρ,ρ′ ,α,τ ,β

Csum = max
ρ,ρ′ ,α,τ ,β

N∑
i=1

Ci, (40)

and

max
ρ,ρ′,α,τ ,β

Clog = max
ρ,ρ′ ,α,τ ,β

log
( N∏
i=1

Ci

)
. (41)

We solve the optimization problem numerically
with brute-force search technique. As there are five
optimization parameters, this problem involves searching
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for an optimum solution in a five-dimensional space. The
variation of Clog with respect to ρ, ρ′, α, and τ is shown
in Figure 8, for β = 0.5. These plots are obtained through
the Monte Carlo simulations, and each plot is the varia-
tion of Clog with respect to ρ for fixed values of ρ′, α, and
τ . The optimum scheduling thresholds ρ∗ and ρ′∗ that
maximize the Clog are dependent on the values of α and τ .
In this paper, we have used a simple brute-force search

technique to optimize the system parameters, while it is
also possible to use non-linear optimization techniques.
For example, reinforcement learning method is used in
[31,32] to optimize the downlink transmission strategies
in HetNets such as the transmit power and the REB. In
[33], a game theoretic approach and distributed learn-
ing algorithm are used to optimize the downlink trans-
mit power, REB, and the ON/OFF states of individual
BSs to minimize the system cost which includes energy
and load expenditures. Typically, these optimization tech-
niques use distributed approach and are developed to be
efficient from the implementation perspective. In addi-
tion, some information exchange among the BSs is typ-
ically required for these optimization methods to work.
For example, in [33], estimated traffic load, transmission
power, and REB are broadcasted by the BSs for optimiza-
tion of the operating parameters at each individual small
cell BS. On the other hand, the brute-force search tech-
nique does not require any information exchange among

the BSs. In this paper, our focus is to understand the char-
acteristics of the optimum system parameters, rather than
the implementation efficiency of the optimizationmethod
used. Brute-force search method is also used, for exam-
ple, in [16] to find the optimum REB and duty cycle of
almost blank subframes that maximize the rate coverage
in HetNets.
Figure 9 shows the plots of ρ∗ and ρ′∗ as the functions of

α and τ . The markers show the simulation results, while
the dotted lines show the smoother estimation obtained
using the curve fitting tool in MATLAB. For small α

values, the optimum threshold ρ∗ has higher values as
shown in Figure 9a, and according to (7), this causes very
few MUEs that have � > ρ∗ to be scheduled during
CSFs. This makes sense because MBS transmit power
during CSFs is very low for small α, and hence, the num-
ber of CSF-MUEs which can be covered is also less. On
the other hand, for higher α values, MBS transmits with
higher power level during CSFs and can cover a larger
number of CSF-MUEs. Therefore, to improve the fair-
ness proportionally, the optimal ρ∗ value decreases with
increasing α so that more MUEs are scheduled during
CSFs.
In the picocell, with increasing α, the CSF-PUEs at

the cell edges will experience higher interference from
the MBSs. Then, more PUEs should be scheduled dur-
ing USFs to improve proportional fairness. Likewise,
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decreasing ρ′∗ in Figure 9b indicates that more PUEs are
scheduled during USFs as per (8).
The Clog with optimum scheduling thresholds ρ∗ and

ρ′∗ is plotted in Figure 10. The higher the Clog, the better
is the proportional fairness. It is important to note that the
range expansion bias, τ , has a significant effect on propor-
tional fairness. The Clog increases from −40 to −28 when
τ is increased from 0 to 12 dB.
Compared to τ , α has a smaller effect on the propor-

tional fairness.When α is set to zero which corresponds to
the eICIC,Clog is at its minimum. It shows that eICIC pro-
vides minimum proportional fairness. Figure 10 moreover
shows that setting α = 1, which corresponds to no
eICIC, also does not provide maximum Clog. An α setting
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Figure 10 Clog versus α with optimum scheduling thresholds ρ∗
and ρ′∗.With λ = 4.6 marks/km2 and λ′ = 13.8 marks/km2.

between 0.125 and 0.5 maximizes the Clog and hence the
proportional fairness.
The characteristics of Csum with optimum scheduling

thresholds are shown in Figure 11. As the τ increases,
Csum decreases, which is the opposite effect when com-
pared to the Clog in Figure 10. This shows the trade-off
between the aggregate capacity and the proportional fair-
ness. Increasing the τ would increase the proportional
fairness but decrease the aggregate capacity, and vice
versa.
Comparing Figures 10 and 11 also explains the trade-

off associated with setting α. A very small value, 0 <

α < 0.125, provides larger Csum but smaller Clog, which
is better from an aggregate capacity point of view. Set-
ting 0.125 ≤ α ≤ 0.5 is better from a fairness point of
view. Any value of α > 0.5 is not recommended since
it degrades the aggregate capacity as shown in Figure 11,
decreases the proportional fairness as shown in Figure 10,
and consumes higher transmit power by the MBSs. Set-
ting α = 0 as in the eICIC case would reduce both Csum
and Clog drastically.
The effects of α and τ on the 5th percentile, 50th per-

centile, and average SEs are shown in Figure 12. Here
again, optimum scheduling thresholds ρ∗ and ρ′∗ are
used. Figure 12a shows that as the REB increases from 0
to 6 dB, some of the MUEs at the border of the macrocell
are offloaded to the picocell. Since these offloaded UEs are
served by picocell during the CSFs, they would have better
throughput, resulting in the improvement in the 5th per-
centile SE. However, if the REB increases to 12 dB, more
MUEs are offloaded and the picocell becomes crowded
resulting in poor SEs for the PUEs. Hence, the 5th per-
centile SE decreases when the REB increases from 6 to
12 dB. Figure 12a also shows that with τ = 6 dB, setting
α = 0.125 maximizes both the 5th and 50th percentile
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SEs. Figure 12b shows the characteristics of average SE
of an arbitrary UE, which is similar to the characteristics
of Csum in Figure 11. By comparing Figure 12a,b, it can
be noted that the 50th percentile SE and the average SE
have opposite behaviors with respect to the REB. As the
REB increases, the 50th percentile SE increases while the
average SE decreases.

5.4 Impact of the duty cycle of uncoordinated subframes
In the results of Figures 9, 10, 11, and 12, β was set to
0.5 and we next show the effect of varying β on Clog and

Csum. Introducing β into the optimization problemmakes
it difficult to visualize the results due to the addition of
one more dimension. Therefore, we use the optimized
scheduling thresholds, ρ∗ and ρ′∗, and analyze Clog and
Csum as the functions β , α, and τ . Figures 13 and 14 show
the Clog versus β and the Csum versus β , respectively, for
different values of α and τ . The variation of Clog with
respect to β is not significant, except for α = 0, whereas
the variation of Csum with respect to β is significant.
When α = 0, the Clog value decreases rapidly for

β < 0.5. Nevertheless, α = 0 is shown to have poor
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performance in the previous paragraphs, and hence, it is
not recommended. For other values of α, variation in β

does not affect the Clog significantly, which shows that
by using a fixed value of β , proportional fairness can be
achieved by optimizing (to maximize Clog) the scheduling
thresholds. Figure 14 shows that fixing β approximately to
0.43 maximizes the Csum irrespective of α and τ , provided
the scheduling thresholds are optimized to maximizeClog.
In [16], the boundary of CSF-PUEs that form the inner

region of picocell (excluding the range expansion region)
is fixed due to the fixed transmit power of PBS. The asso-
ciation bias and resource partitioning fraction parameters
are used as the variables to be optimized. It is analogous
for us to have a fixed ρ′ and optimize β and τ . But in con-
trast, we fix the β for simplicity and optimize the other
four parameters, since coordinating β among the cells
through the X2 interface is complex and adds to com-
munication overhead in the backhaul. The X2 is a type
of interface in LTE networks which connects neighboring
eNodeBs in a peer-to-peer fashion to assist handover and
provide a means for rapid coordination of radio resources
[34].

5.5 5th percentile throughput
Using the expressions derived in Section 4.4, the 5th per-
centile throughput versus α for different τ is shown in
Figure 15a for MUEs and in Figure 15b for PUEs. As the
α increases, MBSs transmit at a higher power level dur-
ing CSFs, and the UEs of all types experience a higher
interference power. However, the received signal power
at CSF-MUEs increases with α and results in improved
5th percentile throughput as shown in Figure 15a. But
the SIRs of USF-MUEs and USF/CSF-PUEs degrade due
to higher interference, and therefore, their 5th percentile
throughput decreases with increase in α as shown in
Figure 15a,b.
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Increasing the REB, τ , causes the USF-MUEs with poor
SIR, located at the edge of the macrocell, to be offloaded
to the picocell and thereby increasing the 5th percentile
throughput of USF-MUEs as shown in Figure 15a. The
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offloaded UEs in the picocell are scheduled during CSFs,
and due to their poor SIR, the 5th percentile throughput
of CSF-PUEs decreases as shown in Figure 15b.

5.6 Comparison with real BS deployment
We obtained the data of real BS locations in United King-
dom from an organization [25] where the mobile network
operators have voluntarily provided the information of
location and operating characteristics of individual BSs.
The data set in [25] was last updated in May 2012, and
it provides exact locations of the BSs. Also, the BSs of
different operators can be distinguished.

In this section, we compare the 5th percentile SE results
from the PPP model with that of the real BS deployment
and hexagonal grid model. The real MBS locations of two
different operators in a 15 × 15 km2 area of London city
were obtained from [25] as shown in Figure 16. In this
area, the average BS densities of the two operators were
found to be 1.53 and 2.04 MBSs/km2. To have a fair com-
parison, the MBS locations for hexagonal grid and PPP
models were also generated with the same densities. The
PBS locations were generated randomly using another
PPP model. The parameters τ = 6 dB, α = 0.5, β = 0.5,
ρ = 4 dB, ρ′ = 12 dB, and Ptx = 46 dBm were fixed, while
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Figure 16 Real base station locations of two different operators
in a 15 × 15 km2 area of London city.

the PBS density λ′ was varied to analyze its effect on the
5th percentile SE.
The plots of 5th percentile SE versus PBS density are

shown in Figure 17 for the two operators. The 5th per-
centile SE of operator-2 is better than that of operator-1
since the former has higher MBS density. As expected,
the 5th percentile SE improves with the increase in PBS
density. It can also be observed that increasing the PBS
transmit power P′ from 10 to 30 dBm will result in almost
twice the 5th percentile SE. Since the hexagonal grid
model is an ideal case, it has the best 5th percentile SE
and forms an upper bound. The PPP model has a worse
5th percentile SE and forms a lower bound. The real MBS
deployment is usually planned, and hence, it is not com-
pletely random in nature. On the other hand, it is also not
equivalent to the idealized hexagonal grid model due to
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Figure 17 5th percentile SE versus PBS density.

the practical constraints involved during the deployment.
Hence, the 5th percentile SE of real MBS deployment lies
in between the two bounds of hexagonal grid and random
deployments.

6 Conclusions
In this paper, spectral efficiency and 5th percentile
throughput expressions are derived for HetNets with
reduced power subframes and range expansion. These
expressions are validated using the Monte Carlo simula-
tions. Joint optimization of the key system parameters,
such as range expansion bias, power reduction factor,
scheduling thresholds, and duty cycle of reduced power
subframes, is performed to achieve maximum aggregate
capacity and proportional fairness among users. Our anal-
ysis shows that under optimum parameter settings, the
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HetNet with reduced power subframes yields better per-
formance than that with almost blank subframes (eICIC)
in terms of both aggregate capacity and proportional fair-
ness. However, transmitting the reduced power subframes
with greater than half the maximum power proved to be
inefficient because it degrades both the aggregate capacity
and the proportional fairness. Increasing the range expan-
sion bias improves the proportional fairness but degrades
the aggregate capacity. In the case of eICIC, the duty
cycle of almost blank subframes has a significant effect
on the fairness, but with reduced power subframes and
optimized scheduling thresholds, duty cycle has a lim-
ited effect on fairness. Hence, fixing the duty cycle and
optimizing the scheduling thresholds is preferable since it
avoids the overhead of coordinating the duty cycle among
the cells through the X2 interface. We also compared
the 5th percentile SE results from the PPP model with
those from the real BS deployment and hexagonal grid
model. We observed that the hex grid model forms the
upper bound while the PPPmodel forms the lower bound.
Increasing the PBS density or the PBS transmit power
would improve the 5th percentile SE.
In this paper, we considered SIR as the only deciding fac-

tor for UE association. However in real LTE networks, UE
association criteria also include factors such as UE veloc-
ity, load conditions in cells, and backhaul capacity. Our
future work includes taking such factors into account for
capturing a wider range of deployment scenarios.

Appendix 1
Derivation of JCCDF expression
This part of the appendix derives closed form equation for
the JCCDF in (12). Let us start by rewriting the JCCDF
expression

P
{
� > γ ,�′ > γ ′|R = r,R′ = r′

}
= EZ

[∫ +∞

y1
fY (y)

∫ y/γ ′−Z

γ (y+Z)

fX(x) dx dy
]
, (42)

where

fX(x) = λx exp(−λxx) and fY(y) = λy exp(−λyy); (43)

λx = rδ

P
and λy = (r′)δ

P′ . (44)

The inner integral in (42) can be derived as

∫ y/γ ′−Z

γ (y+Z)

fX(x) dx = exp
[−λxγ (y + Z)

]− exp
[
−λx

(
y
γ ′ − Z

)]
.

(45)

Then, the outer integral in (42) can be derived as
∫ +∞

y1
fY(y)

∫ y/γ ′−Z

γ (y+Z)

fX(x) dx dy =λy

∫ +∞

y1
exp

[−λyy − λxγ (y + Z)
]
dy

−λy

∫ +∞

y1
exp

[
−λyy − λx

(
y
γ ′ − Z

)]
dy.

(46)

The first term in right-hand side (RHS) of (46) can be
evaluated as

λy

∫ +∞

y1
exp

[−λyy − λxγ (y + Z)
]
dy

= 1
1 + γ λx

λy

exp
[−λxγZ(1 + γ ′) − λyγ ′Z(1 + γ )

1 − γ γ ′

]
.

(47)

The second term in RHS of (46) can be evaluated as

λy

∫ +∞

y1
exp

[
−λyy − λx

(
y
γ ′ − Z

)]
dy

= 1
1 + λx

γ ′λy
exp

[
−λxγZ

(
1 + γ ′)− λyγ ′Z(1 + γ )

1 − γ γ ′

]
.

(48)

By substituting (47) and (48) in the first and second
terms of (46) respectively, we get
∫ +∞

y1
fY(y)

∫ y/γ ′−Z

γ (y+Z)

fX(x) dx dy

=
⎛
⎝ 1
1 + γ λx

λy

− 1
1 + λx

γ ′λy

⎞
⎠exp

[
−λxγZ

(
1 + γ ′)− λyγ ′Z(1 + γ )

1 − γ γ ′

]
.

(49)

Substituting (49) in (42) and using (44), we get

P
{
� > γ ,�′ > γ ′|R = r,R′ = r′

}

=
⎛
⎜⎝ 1
1 + γ P′

P
( r
r′
)δ − 1

1 + γ ′ P
P′
(
r′
r

)δ

⎞
⎟⎠

× EZ

⎡
⎣exp

⎛
⎝−Z

γ (1+γ ′)rδ
P + γ ′(1+γ )(r′)δ

P′
1 − γ γ ′

⎞
⎠
⎤
⎦
(50)

Using the definition of Laplace transform, EZ[
exp(−Zs)

] = LZ(s), and further simplification, we get

P
{
� > γ ,�′ > γ ′|R = r,R′ = r′

}

=
(1 − γ γ ′)LZ

(
1

1−γ γ ′
(

γ (1+γ ′)rδ
P + γ ′(1+γ )(r′)δ

P′
))

[
1 + γ P′

P
( r
r′
)δ] [1 + γ ′ P

P′
(
r′
r

)δ
] .

(51)
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Appendix 2
Derivation of JPDF expression
Assuming δ = 4, the JCCDF expression in (51) can be
rewritten as

P
{
� > γ ,�′ > γ ′|R = r,R′ = r′

} = M1M2, (52)

where

M1 = 1 − γ γ ′[
1 + γ P′

P

(
r
r′
)4] [

1 + γ ′ P
P′
(
r′
r

)4] , (53)

M2 = LZ

(
1

1 − γ γ ′

(
γ
(
1 + γ ′) r4

P
+ γ ′(1 + γ )(r′)4

P′

))
.

(54)

After some tedious but straightforward algebraic steps,
it can be shown that

M1 = 1

1 + γ
(

ã
1−ã

) + 1

1 + γ ′
(
1−ã
ã

) − 1, (55)

M2 = exp
{
g
(√

ã,βμ̃
)

+ g
(√

ã/α, (1 − β)μ̃
√

α
)

+ g
(√

1 − ã, 1 − μ̃
)}

, (56)

where ã = 1
1+ P

P′
(
r′
r

)4 , μ̃ = 1
1+ λ′

λ

√
P′
P

. The function g in (56)

is defined as

g(b, ν) = −νcB
(

π

2
− tan−1 b

c

)
, (57)

where

B = πr2√
Pã

(
λ
√
P + λ′√P′

)
and

c =
√

γ (1 + γ ′)ã + γ ′(1 + γ )(1 − ã)
1 − γ γ ′ . (58)

We can derive the JPDF by differentiating the JCCDF (52)
with respect to γ and γ ′,

f�,�′|R,R′
(
γ , γ ′ ∣∣r, r′ ) = ∂2

∂γ ∂γ ′M1M2, (59)

whereM1 andM2 are given by (55) and (56), respectively.
By solving (59), it can be shown that the conditional JPDF

f�,�′ |R,R′
(
γ , γ ′ ∣∣r, r′ ) =M2h

(
∂M1
∂γ

∂c
∂γ ′ + ∂M1

∂γ ′
∂c
∂γ

+ ∂2c
∂γ ∂γ ′ M1

)

+ M1M2
∂c
∂γ

∂c
∂γ ′

(
h2 + ∂h

∂c

)
,

(60)

where

h = lnM2
c

− Bc
[

βμ̃
√
ã

c2 + ã
+ (1 − β)μ̃α

√
ã

c2α + ã
+ (1 − μ̃)

√
1 − ã

c2 + 1 − ã

]
,

(61)

∂M1
∂γ

= − ã (1 − ã)
(1 + ãγ − ã)2

, (62)

∂M1
∂γ ′ = − ã(1 − ã)[

γ ′(1 − ã) + ã
]2 , (63)

∂c
∂γ

= 1
2γ (1 − γ γ ′)

(
c − γ ′(1 − ã)

c

)
, (64)

∂c
∂γ ′ = 1

2γ ′ (1 − γ γ ′)

(
c − γ ã

c

)
, (65)

∂2c
∂γ ∂γ ′ = 1

4 (1 − γ γ ′)2

[
3c + 1

c
− ã(1 − ã)

c3

]
, (66)

∂h
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= −2B
[

βμ̃ã3/2

(c2 + ã)2
+ (1 − β)μ̃ã3/2α

(c2α + ã)2
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(c2 + 1 − ã)2

]
.

(67)
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