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Abstract

In this paper, we present a new queueing model providing the accurate average system time for packets transmitted
over a cognitive radio (CR) link for multiple traffic classes with the preemptive and non-preemptive priority service
disciplines. The analysis considers general packet service time, general distributions for the channel availability periods
and service interruption periods, and a service-resume transmission. We further introduce and analyze two novel
priority service disciplines for opportunistic spectrum access (OSA) networks which take advantage of interruptions to
preempt low priority traffic at a low cost. Analytical results, in addition to simulation results to validate their accuracy,
are also provided and used to illustrate the impact of different OSA network parameters on the average system time.
We particularly show that, for the same average CR transmission link availability, the packet system time significantly
increases in a semi-static network with long operating and interruption periods compared to an OSA network with
fast alternating operating and interruption periods. We also present results indicating that, due to the presence of
interruptions, priority queueing service disciplines provide a greater differentiated service in OSA networks than in
traditional networks. The analytical tools presented in this paper are general and can be used to analyze the traffic
metrics of most OSA networks carrying multiple classes of traffic with priority queueing service differentiation.
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1 Introduction
Opportunistic spectrum access (OSA) is considered an
important technology to address current and predicted
exponential traffic growth in wireless networks [1-4].
Such growth is predominantly driven by multimedia traf-
fic, such as video streaming [4]. Thus, it is expected
that OSA networks will carry several traffic classes
with different quality of service (QoS) requirements and
importance.
The research objective of this paper is to obtain ana-

lytical tools to analyze traffic metrics, such as the packet
system time, for differentiated services in opportunistic
spectrum access networks. Such tools are required to eval-
uate the packet-level impact of OSA network parameters,
novel medium access control (MAC) algorithms, channel
sensing order strategies, etc. Moreover, those analytical
tools can be used as a decision-making process for multi-
media MAC algorithms [5], for OSA networks employing
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cognitive radio (CR) nodes, which possess learning and
decision-making capabilities.

1.1 Related work
Queueing models are the preferred approach to derive
analytical results to analyze traffic metrics, and in [6],
the authors argue that queueing models can be the best
choice to analyze delay in a cognitive radio network.
Priority service disciplines, such as the preemptive and
non-preemptive service disciplines, are the most common
approaches to implement service differentiation in com-
munication networks. Furthermore, in an OSA network,
the CR users must stop transmitting on an operating
channel if the channel’s primary user (PU) is detected or
if the channel quality is unacceptable due, for example, to
deep fading or interference. In the queueing model, the
operating channel is the server of the queue. To achieve
our objective, we must therefore analyze queueing mod-
els with priority service disciplines in the presence of
frequent queue server interruptions.
Queueing models with preemptive priority service dis-

cipline and interruptions have been previously studied
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[7-11]. Some of that work considered that interruption
periods are server busy periods generated by higher pri-
ority classes of traffic. For this approach, the interruption
periods are not generally distributed since they depend on
the arrival rate and service rate of higher priority classes.
Obtaining the interruption period distribution is therefore
not always straightforward. Inversely, given an interrup-
tion period distribution, it is not easy to find the appro-
priate arrival and service processes whose busy period has
this distribution. The other articles that studied generally
distributed interruption periods only considered a single
traffic class and only provided bounds.
Few have attempted to provide queueing models for

opportunistic spectrum access networks. In [6,12-14],
queueingmodels for anOSA network with a single class of
traffic were derived using a similar approach as in [7-11],
whereby the server interruption periods for the cognitive
radio users are busy periods generated by the preemptive
primary traffic. This approach has several major defi-
ciencies. First, those models are limited to exponential
operating period length. Also, as previously discussed,
they cannot address arbitrary interruption period lengths
before the transmission can resume. This is particularly
important for OSA networks since the interruption period
length depends on several factors such as theMAC policy,
the number of available channels, the number of compet-
ing CR users, etc. Even for the simple case where CR users
wait until the PU releases the channel, the interruption
period is not necessarily distributed as the busy period
of a PU Poisson traffic [15]. The approach of simply con-
sidering the interruption periods as a preemption from
PU traffic is therefore not accurate and general enough to
analyze OSA networks.
In [16], we addressed several of those problems in a new

queueing model for a single class of CR traffic for gen-
eral operating and interruption period lengths. However,
this model was limited to constant service time. In [17], an
optimal threshold for the queue length to decide whether
a packet should join the queue or not is derived. How-
ever, the model is again not general and cannot be used to
analyze traffic metrics.
To the best of our knowledge, [18] is one of the few

papers discussing a queueing system with multiple classes
of traffic in cognitive radio networks. The authors analyze
a T-preemptive scheme and, similarly to the other work
on opportunistic spectrum access networks, the queueing
analysis does not consider general interruption lengths,
and it is specific to the priority service disciplines consid-
ered. In [19], the authors consider a queueing model with
multiple classes and a single priority service discipline
for cognitive radios to address the problem of channel
selection.
It is also important to note that there have been

efforts to analyze a cognitive radio network from other

perspectives using other performance metrics such as
energy consumption [20] and throughput [21]. As the
focus of this paper is limited to the cognitive radio net-
work delay analysis, those other works are not discussed
here.

1.2 Contributions
In this paper, we consider real server interruptions dis-
tinct from the service times for a high priority class as
well as general service time. We thus present, to the
best of our knowledge, the first queueing model pro-
viding the accurate average system time for a Poisson
packet arrival process with general service time trans-
mitted over a CR link with general interruption periods
and exponentially distributed operating periods for both
a single traffic class and for multiple traffic classes with
the preemptive and non-preemptive priority service dis-
ciplines. We also derive an approximate analysis for gen-
eral operating period distributions. We further introduce
two novel priority service disciplines which are specific
to OSA networks with service interruptions. In the first
novel OSA service discipline that we name exceptional
non-preemptive, the service is in general non-preemptive
except for low priority arrivals in an empty queue dur-
ing an interruption period, which can be preempted by
high priority packet arrivals during the same interruption
period. In the second novel OSA service discipline that
we name preemptive in case of failure, the service is non-
preemptive during the operating periods but high priority
packets can preempt low priority packets at the end of
an interruption period. We provide an accurate analysis
for the first novel OSA priority service discipline while
approximate results are provided for the second (exact
results are derived for the preemptive in case of failure ser-
vice discipline for exponential service times). To limit the
analysis complexity and presentation, in the preemptive
models, we only study a two-class traffic model; however,
we provide guidelines on extension of those results to
more general scenarios. Since no specific assumptions are
made regarding the nature of the operating and interrup-
tion periods, the results and derivations presented in this
paper can be used to analyze the traffic metrics of most
OSA networks with different MAC protocols. The final
contributions of this paper are new insights on OSA net-
works based on the average system time analysis. Particu-
larly, we show that, for the same average CR transmission
link availability (ratio between average channel availabil-
ity period length and average interruption period), the
packet system time significantly increases as the operat-
ing and interruption periods average length exceeds the
packet service time. We also present results emphasiz-
ing the critical importance of minimizing the interruption
period lengths to minimize the packet system time in
OSA networks. Another conclusion that we present is that
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priority queueing service disciplines provide a greater dif-
ferentiated service in OSA networks than in traditional
networks.
The reminder of the paper is organized as follows. In

Section 2, we present the cognitive radio system and the
queue model. In Section 3, an M/G/1 queue with inter-
ruptions and with a single class of CR traffic is discussed.
The results are then used in Section 4 to analytically
solve four priority queueing disciplines in the presence of
interruptions. We also present in Section 5 an alternative
approach to analyze the preemptive and non-preemptive
disciplines for exponential operating periods. Analytical
and simulation results are presented in Section 6, and
finally, Section 7 concludes the paper with some remarks
on future research directions. All the parameters and
notations used throughout the paper are summarized in
Table 1.

2 Cognitive radio queuemodel
The cognitive radio queue model can be summarized
as follows. We consider a pair of cognitive radio users
operating using opportunistic spectrum access over one
or more wireless channels. During an operating period,
packets that are in one of the CR nodes queue are trans-
mitted to the other CR node according to a chosen service
discipline. As illustrated in Figure 1, the CR nodes oppor-
tunistically operate over a channel for a random duration
Y until the channel becomes unavailable. When the chan-
nel becomes unavailable, the packet transmission is inter-
rupted for a random length R until an available operating
channel can be used by the CR pair, at which time the
packet transmission is resumed.
We now describe the details of the model. The OSA net-

work assigns a channel to the pair of CR users according
to its MAC protocol and channel assignment algorithm.
Transmission over the assigned channel can be multi-
plexed with other CR users, the only assumption for our
model is that during channel availability periods, the pair
of CR users have access to a constant service rate over the
assigned channel (the packet length defines the distribu-
tion of the real service time). If, as in IEEE 802.22, periodic
quiet periods are required to sense the channel or perform
other OSA network tasks, the channel service rate can be
scaled accordingly. Channels are assumed to be homoge-
neous with the same service rate. The CR nodes commu-
nicate over the assigned channel for a random operating
duration Y until the channel becomes unavailable and
packet transmissions must be stopped. We denote the
instant where the channel becomes unavailable for oper-
ation as a failure event [22]. To illustrate the generality of
this model, we now give a few examples of failure events.
A failure can be due to the appearance of the primary
user, a false detection of the primary user, a link failure
due to excessive transmission loss (fading, shadowing, or

Table 1 Notations

Notation Description

Y Length of operating periods (RV)

R Length of recovery (interruption) periods (RV)

C C =Y + R

λ Packet arrival rate

A packet inter-arrival time (RV)

X Completion time (RV)

X∗ Completion time in alternative model (RV)
(Section 3.4)

Index b For packets entered a busy system

Index e For packets entered an empty system

Index a For packets entered an empty-available system

Index u For packets whose service started at the beginning
of a Y

B HP busy periods (RV)

Bb Busy period started with Xb

BZ Busy period started with Z + Xb

T Real service time (RV)

J Remaining completion time of the packet in service

Ẑ(s) LST of a continuous random variable Z

fZ(t) PDF of a random variable Z

FZ(t) CDF of a random variable Z

m(t) Average number of renewals until time t

ma|b|u(t) m(t) for packets of type a, b, or u

m2(t) Second moment of the number of renewals until
time t

ρ λE[ X]

ρb λE[ Xb]

Pae Probability of system being available when empty
(arrival point)

W Waiting time in the queue

W∗ Waiting time for the alternative model

D Total time spent in the system

PaiC|Y|R Probability of HP arrival in a cycle (C), Y, or R

K Local parameter to count the number of an event

i = 1, 2 Subindex represents the traffic class

α Exponentially distributed parameter when FY = 1 −
e−αt

β Exponentially distributed parameter when FR = 1 −
e−βt

F̃Z(). Min. of random variable Z and an exponentially
distributed (Eq. 4)

γ Exponentially distributed parameter when FT = 1 −
e−γ t

Np Number of priority classes

Tv Service time of virtual packets which form the
interruptions

PA<C Probability of arrival in C=Pr(A < C)

Rr Remaining of R after an arrival in R
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Table 1 Notations (Continued)

Cr Remaining of C after an arrival in C

Z<Z2
1 Z1|(Z1 < Z2) (for two RVs)

S Initial setup time (RV) (Section 3.5)

P0 Probability of system being empty

PL|NH Probability of system being empty of HP but not LP

distance), or interference from other secondary users. A
failure event can also be due to the OSA protocol. For
example, CR users might have to release a channel after a
fixed period of time, even if no primary user appears. Note
that it is also implicitly assumed that no miss-detection
may occur, so there will be no performance degradation
for primary users to be analyzed. For the queueing model
analysis, we are only looking at transmission operation
from a marked user point of view, so the interactions of
different users (cooperation or competition) is not explic-
itly considered in the model. In other words, we have no
assumption on the interaction of the users. Indeed, the
type of interaction affects the distributions of Y and R, and
the same model that we are using will be applicable.
For the model and its analysis, only the distribution of

Y is required and the exact reason for the failure event
is irrelevant as long as it is independent of the packet
transmission process (e.g., the pair of CR users are not
reassigned to a new channel after each packet transmis-
sion or when the packet queue is empty). Note that when
the CR users start using a channel, unless it is immediately
after a channel unavailability period, they generally have
no knowledge about how long this channel has been avail-
able. Therefore, Y is a function of the residual time of the
availability period of the channel [16].
The recovery or interruption period denotes the period

of time R during which the CR users cannot transmit
and try to recover the transmission [22]. The length of R
depends on the OSA network model, but only its distribu-
tion is relevant for the queue analysis. We will use a few
examples of recovery periods to demonstrate the gener-
ality of the proposed model. For OSA MAC protocols in
which the CR users buffer the packets until the operating
channel becomes available again [23], the distribution of
R is identical to the channel unavailability period distribu-
tion. For network with a channel switching policy in which
when the channel becomes unavailable, the CR users enter

a competition with other CR users to be granted access
to a new channel [23], the distribution of R will depend
on the MAC competition protocol (e.g., slotted Aloha),
the number of users, the number of available channels,
etc. Even if the user is blocked due to other users trans-
mitting on all channels, the total time of blocking until a
successful channel reservation is included in the recovery
time. For OSA networks where a channel is granted by a
spectrum server, the length of R can be a fixed period of
time (query and service time, radio switching time, etc.). A
methodology to find the recovery period distribution for
two baseline multichannel opportunistic spectrum access
MAC protocols is provided in [24].
To summarize, determining the distribution of Y and R

according to the OSA network model under study is out-
side the scope of this paper. But once the distributions are
known, the queue model that we are presenting can be
used to find the traffic metrics for the OSA network CR
users.
As illustrated in Figure 2, we consider a CR system with

N traffic classes where each class i, i = 1, . . . ,N , has an
independent Poisson packet arrival process with rate λi
and the total arrival rate is λ = ∑

λi. We also denote
by Ai the inter-arrival time between packets of class i,
i = 1, . . . ,N , and define A = min{A1, ...,AN } as the inter-
arrival time between packets in the system. Throughout
the paper, for any random variable Z, fZ(.) and FZ(.)
respectively represent the probability density/mass func-
tion (PDF or PMF) and the cumulative distribution func-
tion (CDF) of the random variable Z. Moreover, Ẑ(s)
represents the Laplaceñ-Stieltjes transform (LST) of the
distribution FZ(.) of the random variable Z.
Lower index classes have higher priority. In the special

case of two traffic classes (e.g., voice and data), we desig-
nate the index 1 traffic as high priority (HP) and the index
2 traffic as low priority (LP). Packets from traffic class i
have a random real service timeTi. The real service time is
the total transmission time of the packet and excludes the
time spent during interruption periods during the service
of a packet. From the queueing point of view, the user’s
operation can thus be modeled as an M/G/1 queue with
random service interruptions.
We must also introduce the notion of completion

time X, which represents the whole time in service
for a packet including the real service time T and the
interruptions that may occur during its service. We

Figure 1 Operation model for a cognitive radio link alternating between operating and recovery (interruption) periods. Identical instances
of Y and R are illustrated.
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Figure 2 Queuemodel with a multiple-class cognitive radio traffic.

assume a service-resume model which means that after a
packet service interruption, only the remaining part of the
packet needs to be transmitted. This implies that the com-
pletion time of a packet is formed by alternating instances
of Y and R named Y1,Y2, . . . and R1,R2, . . . respectively.
It is worth noting that in this work, the term packet des-
ignates a general block of data to be transmitted, which
in itself can be composed of smaller disjoint parts. For
instance, the block of data could be a MAC frame com-
posed of several higher OSI layers’ data blocks or a jumbo
frame composed of smaller wireless or Ethernet frames,
as in IEEE 802.11n with MAC service data unit (MSDU)
orMAC protocol data unit (MPDU) aggregation [25]. The
service-resume model is thus realistic for those scenar-
ios where the packet of data to be transmitted consists
of several smaller frames because, in case of an interrup-
tion, there is no need to retransmit the parts or frames
which have already successfully been transmitted. The
queue size is assumed infinite, so packet loss and blocking
are irrelevant and the main performance metrics are the
total time spent in the queue (waiting time) W and in the
system (system time or sojourn time) D = X + W .
We consider four different service disciplines: the classi-

cal non-preemptive and preemptive-resume schemes [26],
and two novel disciplines we propose in this paper. As
illustrated in Figure 3, if during a recovery period a low

priority packet arrives in an empty system followed by a
high priority (HP) packet, in a non-preemptive scheme the
LP packet will be transmitted first. In other words, the LP
packet cannot be preempted even if its real service has not
started yet.
In the new scheme that we call exceptional non-

preemptive, an HP packet can preempt a lower priority
packet only if its real service has not started yet. As can
be seen in Figure 3, the difference between a non-
preemptive and an exceptional non-preemptive scheme is
only for the LP packets which arrive to an empty unavail-
able system. We also propose a preemption in case of
failure discipline where HP packets cannot preempt an
LP packet in service until the LP service is finished or if
an interruption occurs. In other words, at the end of a
recovery period, the priority is always given toHP packets.
Meanwhile, in the classical preemptive scheme HP pack-
ets can preempt LP packets at any time. The two proposed
schemes are defined based on the existence of interrup-
tions and can specifically be used in OSA networks with
service interruptions.

3 Single traffic class analysis
In this section, we analyze the queue model with a sin-
gle traffic class and obtain results which will be extended
in the next section to the analysis of multiple classes of

Figure 3 Comparison between non-preemptive and exceptional non-preemptive schemes.
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traffic. The results presented here are an extension of the
work presented in [16] where only constant service time
was considered. In this section, the analysis is done for the
general case where the packet length follows an arbitrary
random distribution.
As can be seen in Figures 4 and 5, we can distinguish

three types of packet in the CR queueing model.
There are packets which enter an empty available

system, and their real service starts immediately (see
Figure 4(1)). The subscript ‘a’ is used to designate this
case. Considering the completion time of the packets of
type ‘a’, we can see that the distribution of the first operat-
ing period is different from the following ones because it
represents the residual part of Y. We thus use the notation
of Y1a to designate the first operating period for the case
‘a’ packets.
Packets that enter an empty system during an interrup-

tion period (empty unavailable system) must wait until
the end of the recovery period before starting their real
service (see Figure 4(2)). The subscript ‘u’ is used to des-
ignate this case. For those packets, the distribution of
the first operating period is the same as the operating
period distribution and is simply denoted by Y1. On the
other hand, the distribution of the first recovery period
is different from the following recovery periods because
it represents the residual part of R. Rr is used to denote
the remaining part of the recovery period in which the
arrival has occurred. Note that we consider the arrival
time as the start of the completion time in case ‘u’ (i.e.,
Rr) is not accounted as waiting time but as completion
time.
Finally, there are packets that enter a busy system and

are queued (see Figure 5). Their service starts immediately
after the completion time of the previous packets, and
the subscript ‘b’ is used to designate this case. Note that
in this case, the completion time of the packet is always
started within an operating period (similar to the case ‘a’).
Their first operating period is thus called Y1b because its
distribution is different from general Y.
In the following, we will find the first two moments

of the completion time X and then analyze the average

waiting time and other metrics. We also provide sim-
plifications for the special case of exponential operating
periods.

3.1 Completion time
Suppose Xa represents the completion time of the pack-
ets of type ‘a’ (similarly Xb and Xu for cases ‘b’ and ‘u’).
Let also Xe define the completion time of a packet which
arrives to an empty system (cases ‘a’ and ‘u’ together). The
first two moments of Xe are given as follows:

E[Xe] = PaeE[Xa]+(1 − Pae)E[Xu] , (1)
E

[
X2
e
] = PaeE[X2

a]+(1 − Pae)E
[
X2
u
]
, (2)

where Pae is the average probability that the server is avail-
able when the system is empty. From [7], Pae can be found
equal to the following:

Pae = 1 − (1 − F̃Y (λ))(1 − F̃R(λ))

λE[Y ] (1 − F̃Y (λ)̃FR(λ))
, (3)

where F̃Z(.), for an arbitrary distribution function FZ(.), is
given as follows:

F̃Z(λ) =
∫ ∞

0
e−λtdFZ(t). (4)

For Z = Y or R, this function gives the probability that
the length of the operating or recovery period, respec-
tively, is less than a packet inter-arrival time. Note that
Pae is a conditional probability, conditioned on the fact
that the system is empty. In general, Pae is only a function
of the moments of Y and R. We therefore assume in the
following that there is no correlation between Pae and Y
and R.
The first moment of X can be obtained by solving the

following equation:

E[X]= ρE[Xb]+(1 − ρ)E[Xe] , (5)

where ρ = λE[X] is the probability of the system being not
empty. The second moment of X can be found equal to:

E[X2]= ρE
[
X2
b
] + (1 − ρ)E

[
X2
e
]
. (6)

Figure 4 Completion time for the case ‘a’ (1.) and case ‘u’ (2.).
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Figure 5 Completion time for the third case when the packet enters a busy system and is queued (case ‘b’).

We will now find the first two moments of Xa, Xu, and
Xb.

3.1.1 Arrival to an empty-available system
For packets of case ‘a’, as illustrated in Figure 4(1), Xa can
be given as follows:

Xa =
{ T , Y1a ≥ T
Y1a + R1 + Y2 + R2 + . . . + YKa + RKa + TR, Otherwise, (7)

where Y1a is the random remaining time of the first
operating period until the next interruption, TR is the
transmission time of the last part of the packet, and Ka is
the number of operating periods required to transmit the
entire packet. For the second case where Y1a < T , we can
thus write the following:

T = Y1a + . . . + YKa + TR. (8)

If we consider the operating periods {Y1a,Y2, . . . ,YKa}
as a renewal process, Ka is the number of renewals of Y
during the real transmission time of a packet and its dis-
tribution can be found from the renewal theory results
[27,28]. The first two moments of the number of renewals
during (0, t] composed of instances of Y1a and Y are given
by the following:

ma(t) = L−1
{

Ŷ1a(s)
s(1 − Ŷ (s))

}
, (9)

m2
a(t) = L−1

{
Ŷ1a(s)(1 + Ŷ (s))
s
(
1 − Ŷ (s)

)2
}
. (10)

The moments of Ka are then given by the following:

E[Ka]=
∫ ∞

0
E[Ka|T = t] fT (t)dt =

∫ ∞

0
ma(t)fT (t)dt.

(11)

We can rewrite (7) as follows:

Xa = T +
Ka∑
k=1

Rk . (12)

We then obtain the first moment of Xa as follows:

E[Xa]= E[T]+E[Ka]E[R] . (13)

For the secondmoment, we use the facts that Ka is inde-
pendent of the recovery process, but not the service time,

and that the variance of the random sum
∑Ka

k=1 Rk is equal
to E[Ka]Var(R)+(E[R] )2Var(Ka) to obtain the following:

E
[
X2
a
]=E

[
T2]+2E [TKa]E[R]+E [Ka]

(
E

[
R2]−(E[R] )2

)
+ (E[R] )2E

[
K2
a
]
,

(14)

where

E [TKa]=
∫ ∞

0
E [TKa|(T= t)] fT (t)dt=

∫ ∞

0
tma(t)fT (t)dt.

(15)

3.1.2 Arrival to a busy system
Based on the distribution of the first operating period Y1b
(see Figure 5), we can find the first two moments of Kb,
the number of renewals for the case ‘b’, and Xb , as we did
for Ka and Xa in the previous results.

3.1.3 Arrival to an empty-unavailable system
For the case ’u’, as illustrated in Figure 4(2), the comple-
tion time of the user started within a recovery period and
we have the following:

Xu = Rr +Y1 +R2 + . . .+YK +RK+1 +TR = Rr +X∗
u .

(16)

The moments of X∗
u can be found as for Xa by replacing

Y1a with Y1. Rra, the remaining time in the first recovery
period, can be written as follows:

Rr = R − A|(R > A), (17)

where A|(R > A) is the inter-arrival time conditioned on
the fact that it should be less than R. The moments of Rr
based on R and A are found as follows.
As mentioned above, we encounter several times

throughout the paper the random variables Z = V |(V <

U) andQ = V −U|(V > U) for any two arbitrary random
variables V and U. We derive here the statistics of these
two random variables. We have the following:

fZ(t) = Pr(U > t)fV (t)
Pr(U > V )

= (1 − FU(t))fV (t)
Pr(U > V )

. (18)
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When U is exponentially distributed with parameter α,
we then have:

Pr(V < U) =
∫ ∞

0
e−αt fV (t) = V̂ (α), (19)

fZ(t) = e−αt fV (t)
V̂ (α)

. (20)

In this case, E[Z] and E[Z2] can respectively be given by:

E[Z]= −d/dαV̂ (α)

V̂ (α)
, (21)

E[Z2]= d2/dα2V̂ (α)

V̂ (α)
. (22)

For the second random variable, Q, we still assume that
U is exponentially distributed with parameter α. Then,
after some algebra manipulations (details can be found in
([7] Lemma2) or in [9]), we obtain:

E[Q]= E[V ]
1 − V̂ (α)

− 1
α
, (23)

and

E[Q2]= E[V 2]−2E[V ]
α

1 − V̂ (α)
+ 2

α2 . (24)

Based on the moments of Rr = R − A|(R > A), the
completion time can thus be found as:

E[Xu] = E[Rr]+E[X∗
u] ,

E[X2
u] = E[R2

r ]+E[X∗2
u ]+2E[Rr]E[X∗

u] . (25)

3.2 Queue performance metrics
To find the waiting time for our system, we can use the
same approach as the one used to derive the Pollaczek–
Khinchine formula for M/G/1 queues [26]. When a packet
arrives, it waits for the remaining completion time of the
packet in service (if any), which, from renewal theory
results, is equal to E[X2]

2 , and then the completion time of
all packets in the queue. For the packets which are in the
queue, the completion time is always distributed with Xb
(they are queued, so they have not arrived to an empty
system). However, for the packet which is initially in ser-
vice, the general completion time should be used because
no knowledge is available to know whether this packet has
been of case ‘a’, ‘b’, or ‘u’. We thus have the following:

E[W ]= λE[X2]
2(1 − λE[Xb] )

. (26)

The average system time is given by E[D]=
E[W ]+E[X].

3.3 Busy periods
Similarly to an M/G/1 queue without interruption [9],
we can find the busy periods’ distribution for our queue
with interruption. This result will be useful to analyze the

priority disciplines. We know that the first completion
time in a busy period is an instance of Xe. However, for
other busy periods which are initiated during Xe, the busy
period is started with an instance of Xb because the pack-
ets enter a non-empty system. Therefore, we can find the
LST of the busy periods as follows:

B̂(s) = X̂e(s + λ − λB̂b(s)), (27)

where B̂b(s) is the LST of the busy periods which are ini-
tiated during Xe with an instance of Xb. B̂b(s) itself can be
found from the following equation:

B̂b(s) = X̂b(s + λ − λB̂b(s)). (28)

From the equation above, we can find the first and the
second moments of Bb(t) as follows:

E[Bb]= E[Xb]
1 − λE[Xb]

and E
[
B2
b
] = E

[
X2
b
]

(1 − λE[Xb] )3
.

(29)

The first and the second moments of the general busy
periods are then given by the following:

E[B]= E[Xe]
1 − λE[Xb]

, (30)

E[B2]= λE
[
B2
b
]
E[Xe] + (1 + λE[Bb] )2 E

[
Xe

2] . (31)

3.4 Alternative model
An alternativemodel is to consider the start of the real ser-
vice as the start of the completion time. We introduce this
model since it will be useful to analyze some of the pri-
ority schemes. This alternative model does not affect the
completion time for arrivals in empty available and busy
systems (cases ‘a’ and ‘b’), but for an arrival in an empty
unavailable system, the remaining time of the recovery
period Rr is considered as waiting time. The completion
time is given by X∗

u (see (25)). The first two moments of
X∗, the overall completion time for this alternative model,
can then be found using the same approach as for X. Since
the system time for both models must be the same, we
then have that the average waiting time for this model is
given by:

E
[
W ∗] = E[W ]+E[X]−E

[
X∗] . (32)

3.5 Approximate and exponential operating periods
As discussed in [7], in general, it is very complex to find
the exact distribution of Y1a and Y1b, since they depend
on the time when a packet arrives or a packet service
has terminated. An approximation for Y1a and Y1b is to
assume that they may be started uniformly during an
operating period [16], which is sometimes called random
modification of Y [8] or equilibrium excess distribution
[7].
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For the special, yet important, case that the operating
periods are distributed with an exponential distribution Y
with parameter α (i.e., FY = 1 − e−αt), from the memo-
ryless property we have that Y1a = Y1b = Y and Ka =
Ku = Kb. Using (9) and (10), we have that m(t) = αt and
m2(t) = α2t2 + αt. It is then straightforward to derive the
moments of the completion time as:

E
[
Xa,b,u

] = E[T] (1 + αE[R] ) , (33)
E[TKa] = αE[T2] , (34)
E

[
X2
b
] = E

[
T2] (1 + αE[R] )2 + αE[T]E[R2] , (35)

E
[
X2
u
] = E

[
X2
a
] + E

[
R2
r
] + 2E[Xa]E[Rr] . (36)

For exponentially distributed operating periods, we can
further model our queue as a queue with an initial setup
time [9] to find the waiting time. The initial setup time
S for a packet which initiates the busy period is Rr with
probability (1 − Pae) and zero otherwise. Thus, we can
find the moments of S based on the moments of Y and R:
E[S]= (1 − Pae)E[Rr] and E[S2]= (1 − Pae)E

[
R2
r
]
. From

([9] 2.44a), we then have:

E[D] = E[Xb]+
λE

[
X2
b
]

2(1 − λE[Xb] )
+ 2E[S]+λE[S2]

2(1 + λE[S] )

= E[Xb]+
λE

[
X2
b
]

2(1 − λE[Xb] )
+ E[R2]

2(E[Y ]+E[R] )
.

(37)

The steady-state probability of the system being empty,
P0, can be given by:

P0 = E[I]
E[I]+E[Bs]

= 1 − λE[Xb]
1 + λE[S]

, (38)

where E[I]= 1
λ
is the average of idle periods (no packet

in the system), and E[Bs] is the average of busy periods
initiated by S + Xb which can be found from Section 3.3.

3.6 Case study: comparison between switching and
buffering OSA strategies

We now present a case study to validate the theoretical
analysis and to discuss how it can be used to gain insight
on the performance of OSA networks. In this case study,
we compare two commonOSA strategies which, following
the detection of primary users activity on the operating
channel, either switch to a new channel or buffer packets
while waiting for the primary users to release the channel
[23,29].
It is assumed that there is a large set of similar channels

with exponentially distributed availability (I) and unavail-
ability periods (U). For both OSA policies, we have Y = I
and for the buffering policy R = U [16]. For the OSA
switching policy, we use the common random sensing

model in which the channels are sensed successively in
a random order until an available channel is found. The
interruption time R is thus geometrically distributed with
a success probability E[I]

E[I]+E[U] for each time slot of τ (τ
is the amount of time required to switch to and sense a
channel). In the theoretical model, R is approximated by
an exponential distribution with an average length E[R]=
τ(E[I]+E[U])

E[I] .
Figure 6 compares the packet sojourn time (E[D]), for

the system parameters indicated in the figure, of these
two models obtained with exact Monte-Carlo simulations
and using the theoretical result (37). First, the presented
results confirm the accuracy of the theoretical model and
its applicability to different OSA strategies. We can also
observe that, as can be expected, the threshold point
for the average channel unavailability length E[U] where
the switching policy becomes preferable over the buffer-
ing policy increases from 5.2 to 11.4 units of time when
τ increases from 5 to 10 units of time. Note that this
threshold is not simply given by the value E[R] where
the average interruption time for both policies are equal,
but is obtained by finding the value of E[R] where (37)
is the same for both OSA policies. Based on the knowl-
edge of the CR users sensing and switching time, and
the estimated values of the average channel availability
and interruption period lengths [30], the OSA network
can therefore use (37) to optimally decide between the
switching and buffering policies to minimize the pack-
ets sojourn time. In the remainder of the paper, we will
derive similar relationships that can be used to analyze
and optimally control on OSA network with multiple
classes of traffic with priority queueing differentiated
services.

4 Priority queueing
We can now tackle the analysis of the four priority queue-
ing disciplines for the general queueing model with Np
classes of CR traffic. Let ρb = ∑N

j=1 ρb,j = ∑N
j=1 λjE[Xb,j]

and A = min{A1, . . . ,AN } → A ∼ EXP(λ). We also use
the notation Pae(λ) and Rr(A) to highlight that Pae and
Rr in (3) and (17), respectively, should be calculated with
combined λ and A. For the non-preemptive and preemp-
tive priority queueing disciplines presented in Section 4.1
and 4.3, respectively, results for a general distribution for
the operating periods are presented. For the exceptional
non-preemptive and preemption in case of failure ser-
vice disciplines, introduced in this paper and presented
in Section 4.2 and 4.4 respectively, we only analyze the
case of exponential operating periods due to the analyt-
ical complexity of those schemes without the assump-
tion of memoryless operating periods. We also present
in Section 5 an alternative approach to analyze the pre-
emptive and non-preemptive disciplines for exponential
operating periods.
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Figure 6 Decision on employing a buffering or switching policy fulfilled with analytical queueing results.

4.1 Non-preemptive
Since the packet service cannot be preempted in this
scheme, the completion time of any packet for the three
cases (‘a’, ‘b’ and ‘u’) will be the same as for the single traf-
fic queue. The moments of the general completion time
Xi for class of traffic i, i = 1, . . . ,N , can then be found
by solving the system of N equations and N unknowns
obtained from (5) for the N classes of traffic where ρ

is replaced by
∑N

j=1 λjE[Xj]. Then, similar to an M/G/1
queue [26], we have:

E[Wi]= E[ J](
1 − ∑i

j=1 ρb,j
) (

1 − ∑i−1
j=1 ρb,j

) . (39)

where J is the remaining completion time of the packet in
service and is given by:

E[J]=
N∑
j=1

λj

2
E

[
X2
j

]
. (40)

Note that since no knowledge is available about the
packet in service, the general completion time is used.
However, the denominator represents the completion
time of the queued packets which is Xb,j for class j.
When Y is exponentially distributed, we have that the

completion time for the three cases (‘a’, ‘b’ and ‘u’) has the
same distribution in the alternative model presented in
Section 3.4. Using the same approach as for (37), a closed-
form relation can be obtained for the system time by using
a queue model with an exceptional completion time Xe

for the first packet which initiates a busy period [9]. Xe is
given by:

Xe =
N∑
i=1

λi
λ
Xe,i

=
N∑
i=1

λi
λ

[
Pae(λ)Xb,i + (1 − Pae(λ))(Xb,i + Rr(A))

]
.

(41)

It is straightforward to find the first twomoments of Xe,i
and Xe. We then obtain [9]:

E[Di]= (1 − ρb)
(
E

[
Xe,i

] + E
[
Xb,i

]) + λE
[
Xe,i

]
E

[
Xb,i

]
1 + λE [Xe] − ρb

+
λ
[
(1−ρb)E

[
X2
e
]+E[Xe]

(∑N
j=1 λjE[(Xb,j)

2]
)]

2 (1+λE[Xe]−ρb)
(
1−∑i

j=1 ρb,j
)(
1−∑i−1

j=1 ρb,j
) .
(42)

The first term represents the average completion time
and the second term, the average waiting time. Similar to
(38), P0, the steady-state probability of the system being
empty, is given for this queue by:

P0 = 1 − ρb
1 − ρb + λE[Xe]

. (43)

4.2 Exceptional non-preemptive
In this scheme, a packet which arrives in an empty unavail-
able system (case ‘u’) can be preempted at the end of
the arrival recovery period by a higher priority packet
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which also arrives in the same recovery period. However,
this is in fact a non-preemptive discipline for the alterna-
tive model presented in Section 3.4 since in this model a
packet which arrives in an empty unavailable system does
not start the service, but is queued waiting to obtain the
server which will be given to the queued packet with the
highest priority. We thus have a non-preemptive queue
with initial setup time [9]. Using the same approach as in
Section 3.5, we obtain that:

E[Di] = E[Xb,i]+
∑N

j=1 λjE
[(
Xb,j

)2]
2
(
1 − ∑i

j=1 ρb,j
) (

1 − ∑i−1
j=1 ρb,j

)
+ (1−ρb)

(
λE[S2]+2E[S] )

2 (1+λE[S]−ρ)
(
1−∑i

j=1 ρb,j
)(
1 − ∑i−1

j=1 ρb,j
) .
(44)

The probability of the system being empty is equal to:

P0 = 1 − ρb
1 + λE[S]

. (45)

4.3 Preemptive
In this scheme, the highest class is not affected by the
other classes of traffic. Its completion time and system
time can thus directly be found using the results presented
in Section 3. Let us now analyze the performance of the
low priority class for a two priority class system.
To solve this system, let us find the distribution of Y2

and R2, respectively the operating and interruption peri-
ods, from the perspective of the low priority (LP) packetsb.
The system is unavailable for LP traffic both due to the
activity of high priority (HP) users and due to channel
interruptions. As illustrated in Figure 7a, Y2 is the mini-
mum between the time to the next interruption and the
arrival of an HP packet: any one which arrives sooner ini-
tiates an interruption period for LP packets.We thus have:

Y2 = min(Y ,A1) → 1−FY2(t) = (1 − FY (t))
(
1 − FA1(t)

)
.

(46)

When Y is exponentially distributed with parameter α,
the distribution of Y2 can be given by:

FY2(t) = 1 − e−(λ1+α)t . (47)

To calculate R2, we have to distinguish between the
events that caused the period of interruption. If, as illus-
trated in Figure 7a, a high priority (HP) packet arrived
and preempted the low priority (LP) traffic, the length of
R2 is equal to one busy period of HP packets which is
distributed according to Bb,1. On the other hand, if the
channel interruption caused the unavailability, the two
cases shown in Figure 7b and 7c may happen. First, if

no HP packet arrives during R, the length of R2 is equal
to R|R < A1. If an HP packet arrives during R, R2 will
be A1|(R > A1), the interruption period until the HP
packet arrival, extended with an HP busy period BRr . BRr
can be found from (27), replacing Xe by Xb,1 + Rr where
Rr = R − A1|(R > A1) is the remaining time of the server
interruption after the HP packet arrival andXb byXb,1.We
then have:

R2 =

⎧⎪⎨⎪⎩
Bb,1 Pr(A1 < Y ),
R|(R ≤ A1) Pr(Y ≤ A1&R ≤ A1),
A1|(R > A1) + BRr Pr(Y ≤ A1&R > A1).

(48)

Please be aware that in order to simplify the notation,
from now on, we use the notation V<Z to denote V |(V <

Z) for any two random variables V and Z. The probability
of an HP arrival during R can be given by:

PA1<R =
∫ ∞

0
(1 − e−λ1r)dFR(r). (49)

For exponential Y, we have:

Pr(Y ≤ A1) = α

α + λ1
, (50)

and then

E[R2]= λ1
α + λ1

E[Bb]+ α

α + λ1

×
[
(1−PA1<R)

−d
dλ1

R̂(λ1)

R̂(λ1)
+PA1<R(E

[
A<R
1 ]+E[BRr

]
)

]
.

(51)

R̂(λ1) is the Laplace–Stieltjes transform (LST) of R,
replacing s with λ1, and the derivation is with respect to
λ1. Then, using (23) for E[Rr] and (30) for busy periods,
we have:

E[BRr ]=
E[Xb,1]+E[Rr]
1 − λ1E[Xb,1]

=
E[Xb,1]+ E[R]

1−R̂(λ1)
− 1

λ1

1 − λ1E[Xb,1]
.

(52)

The second moment of R2 can be computed similarly,
where the second moment of the busy periods can be
found from (31) and the second moment of A<R

1 and
R<A1 can be derived from (22) in Section 3.1.3. It should
be taken into account that BRr and A<R

1 are correlated,
so E

[
BRrA<R

1
]
should be calculated separately, using, for

instance, the same approach as in (15).
From the equations above, one can find the moments

of the operating and interruption periods from the per-
spective of LP packets (Y2 and R2). Then, we return to
the original M/G/1 queue with interruptions and replace
Y and R in (37) with Y2 and R2, respectively, to find the
performance metrics of the LP packets.
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Figure 7 Operating and interruption periods (Y2 and R2) from the perspective of LP packets. (a) R2 is equal to one busy period of HP packets,
(b) R2 is equal to R|R < A1, and (c) R2 is equal to A1|(R > A1) + BRr .

Note that it is not easy to extend the proposed approach
for more than two classes of CR traffic and it is one
of the limitations of this work; however, the proposed
model can be used to find a bound for the performance
of aggregated low priority traffic (combination of all low
priority classes). That is, after the first round of analy-
sis, we re-analyze the LP traffic in a recursive way with
the highest classes as the aggregated new HP class and
all others aggregated as the new LP class. This approach
however results in approximations and has a high
complexity.

4.4 Preemption in case of failure
In this priority queueing model, high priority packets can
only preempt the service from a low priority packet if an
interruption occurs. When the service is resumed after
an interruption, the priority is given first to high priority
packets (HP). In other words, if an HP packet arrives while
a low priority (LP) packet is in service, the HP service is
started either after the end of the LP service or after an
interruption, any one which occurs sooner. As expected,
for any class of traffic the performance metrics for this
scheme lies between the non-preemptive and preemptive
schemes ([31] Vol. 2). The completion time of HP packets
is not affected by this service discipline and can be found
from the original single traffic queue. However, the wait-
ing time of the HP packet is affected since it must wait
until the end of the LP packet transmission or an interrup-
tion before starting its service. In the following, we first
analyze the completing time of LP packets with this ser-
vice discipline and then study the HP and LP waiting time.

Finally, we discuss the special case where the service time
of low priority packets is exponentially distributed.

4.4.1 Completion time of the LP packets
To find the completion time of the LP packets, we fol-
low a similar approach as the one used for the preemptive
scheme. Due to the memoryless operating periods dis-
tribution, from the LP packets perspective, the operating
period distribution is not affected by the preemptive in
case of failure service discipline and we have Y2 = Y . On
the other hand,
R2, the length of the interruption period from the LP

users perspective, is a function of the remaining service
time of the LP packet at the HP packet arrival time. That
is, the longer the remaining service time until the next
interruption, the more HP packets can arrive and thus
their busy period will get longer. However, unless the ser-
vice time is memoryless (this special case is discussed
in Section 4.4.3), the remaining service time is not the
same for each interruption R2. Therefore, the completion
time cannot be modeled as a renewal process because
the instances of R2 are not identical. We will thus pro-
vide approximations for the moments of X2 (or X∗

2 ) for
two extreme cases: when the operating periods are much
larger than the service time of type-2 (LP) packets (Y >>

T2) (large scenarios) and when it is smaller (Y < T2)
(small scenarios).
For Y >> T2, it can be assumed that the service of an LP

packet is finished in at most two operating periods. This
assumption is a trade-off between accuracy and complex-
ity and it is equivalent to assuming at most one instance
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of R2 interruption during the completion time. The com-
pletion time will be found based on the alternate model
(Section 3.4). The expectation of X∗

2 is then given by:

E[X∗
2 ]≈

{
E[T2] Y ≥ T2
E[T2]+E[R2] Y < T2.

(53)

Note that even with the assumption of having a large
scenario, there is still a positive probability to have T2 > Y
since both T2 and Y are random variables. The length of
R2 depends on the arrival of an HP packet and its arrival
time. R2 can be given by:

R2 =

⎧⎪⎨⎪⎩
R<A1 No HP arrival,
BCr − (

Y<T2 − A1|
(
A1 < Y<T2

))
HP arr. in Y<T2 ,

A<R
1 + BRr HP arr. in R.

(54)

where Cr is the remaining time of the cycle (a cycle con-
sists of an operating period Y followed by a recovery
period R) after the arrival of an HP packet, and BCr repre-
sents the HP busy period which is initiated with Cr +Xb,1.
However, Y<T2 − A1, the remaining time of the operat-
ing period Y<T2 after the HP packet arrival, should be
excluded from R2 since the HP packet does not imme-
diately preempt the LP packet. In the third case, the HP
arrival occurs in R. The busy period of HP packets thus
starts with Rr + Xb,1 and the length of the total interrup-
tion is A1 in addition to the HP busy period. E[R2] can
thus be given by:

E[R2] =
(
1 − PA1<C<T2

) −d
dλ1

R̂(λ1)

R̂(λ1)
+ PA1<C<T2

[
Pae(λ1)

×
(
E[R]+E

[
Y<T2 − A1|A1 < Y<T2

] + E[Xb,1]
(1 − λ1E[Xb,1] )

− E
[
Y<T2 − A1|A1 < Y<T2

])
+ (1 − Pae(λ1))

×
(
E

[
A<R
1

] + E
[
Xb,1

] + E [Rr](
1 − λ1E

[
Xb,1

]) )]
,

(55)

where PA1<C<T2 is the probability of an arrival in C<T2 =
Y<T2 + R, and Pae is calculated for HP packets. The
second moment of R2 can be found similarly using the
second moment of the busy periods and the relations pro-
vided in Section 3.1.3. However, the correlation of random
variables BRr and A<R

1 should be taken into account.
For the case where Y < T2, we assume that the dura-

tion of HP busy periods is independent of the activity
of LP packets. Therefore, the interruption periods from
the perspective of LP packets have the same distribution
and a renewal process can be considered to analyze the

completion time. When a LP packet starts its service, as
illustrated in Figure 8, it holds the channel (available or
unavailable) for a cycle and if there is an HP arrival during
the cycle, it releases the channel to HP packets at the end
of the cycle. So, the probability of releasing the channel to
HP traffic at the end of the cycle is given by:

PA1<C = Pr(HP arrival in C) =
∫ ∞

0

(
1 − e−λ1c) fC(c)dc.

(56)

For R2, (54) is still valid except that we eliminate the
condition that Y < T2.
We then obtain:

E [R2] = (
1 − PA1<C

) −d
dλ1

R̂ (λ1)

R̂(λ1)

+ PA1<C

[
Pae (λ1)

(
E[R]+E[Y ](

1 − λ1E
[
Xb,1

]) − E[Y ]
)

+ (1 − Pae(λ1))
(
E

[
A<R
1

] + E[Xb,1]+E[Rr]
(1 − λ1E[Xb,1] )

)]
.

(57)

The second moment can be found similarly. The
moments of R2 can then be substituted into the results
for the single traffic queue to find the moments of the
completion time of LP packets E[X2] and E[X2

2 ].

4.4.2 Waiting time
For the high priority (HP) traffic, the waiting time of HP
arrivals during Y in a system empty of HP packets is
affected by the presence of LP packets. For those packets,
the new waiting time is zero if the LP queue is empty or, if
the LP queue is not empty, the minimum of the remaining
time of the arrival cycle and the remaining service time
of the LP packet in service. The difficulty to compute the
waiting time is thus the dependency of both types of traf-
fic on each other. That is, while the waiting time of the
HP packets is affected by the lower class, both the waiting
time and the completion time of LP packets are affected
by HP traffic. This obliges us to use approximations and
bounds to find the waiting time of LP and HP packets.
The waiting time of HP packets is upper bounded by

an M/G/1 queue with vacation in (37) if we neglect the
unknown part of the service that the LP has received so
far and assume that the remaining LP service time is still
T2. That is, the initial setup time S can be approximated
as follows:

S =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Rr(λ1) 1 − Pae(λ1),
Y<T2 + R Pr(Y ≤ T2)(1 − P0)Pae(λ1),
T<Y
2 Pr(Y > T2)(1 − P0)Pae(λ1),

0 P0Pae(λ1),

(58)
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Figure 8 Cycles and holding periods for the LP packets in the discipline of preemptive in case of failure (FP). The LP packet can hold the
channel for three cycles. However in a preemptive scheme (Pr) (not shown here), it can keep the channel for two complete cycles and releases the
channel in the middle of the third cycle if there is an HP arrival (section 1).

where Pae(λ1) and Rr(λ1) only take HP packets into
account, and P0 is the probability of system being empty
of any type of packet. Note that the correct probability
to be used here instead of 1 − P0 is PL|NH , which is the
probability that there are LP packets in the system given
that it is empty of HP packets. However, this probability
cannot be found without any assumption on T2’s distri-
bution; therefore, we used P0 as an approximation. This
approximation results in a setup time, S, larger than its
real value, which provides an upper bound in (59) that can
be sometimes looser than expected. P0 is the same for all
priority queueing models [9] and is given in (43). An obvi-
ous lower bound on the waiting time is given by assuming
that HP packets always preempt LP packets (preemptive
discipline). We can thus write:

λE
[
X2
b,1

]
2(1 − λE[Xb,1] )

+ E[R2]
2(E[Y ]+E[R] )

≤ E[W ∗
1 ]<

λE
[
X2
b,1

]
2(1 − λE[Xb,1] )

+ 2E[S]+λ1E[S2]
2(1 + λE[S] )

.

(59)

We can then use those bounds on the HP waiting
time to find corresponding bounds on the LP waiting
time through the conservation law (CL) in a queue with
multiple classes of traffic [31] which indicates that the
quantities

κ = λ1E[T1]E[W1]+λ2E[T2]E[W2] , (60)

and

κ∗ = λ1E[T1]E[W ∗
1 ]+λ2E[T2]E[W ∗

2 ] , (61)

for alternative model, are constant for all priority ser-
vice disciplines. κ and κ∗ can thus be computed with the
waiting time of LP and HP packets found for one of the
previous priority disciplines.

An alternative approach is to directly find the LPwaiting
time and then use the conservation law to obtain the HP
waiting time. But, similarly to the HP waiting time, it is
difficult to find an exact expression for the LPwaiting time
due to the strong interdependence between both types of
traffic. We thus propose to compute bounds as follows.
Using the approximations for the first two moments of

X2 or X∗
2 found previously, the minimum waiting time of

LP packets can be found using the Pollaczek–Khinchine
relation [26]. An upper bound for the LP packets’ wait-
ing time is naturally given by the waiting time in the
preemptive discipline model.
We thus have two upper and lower bounds for both the

HP and LP waiting time. The tighter bounds can then be
selected as the final lower and upper bound for both traffic
categories.

4.4.3 Exponentially distributed LP service time
The queue model for the HP traffic is an M/G/1 queue
with vacations. Since for a memoryless exponentially dis-
tributed service time, the remaining parts of the service
are identically distributed, it is possible to exactly express
S, the initial setup time for the HP traffic, as follows:

S =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Rr(λ1) 1 − Pae(λ1),

Y<T2 + R Pr(Y ≤ T2)PL|NHPae(λ1),
T<Y
2 Pr(Y > T2)PL|NHPae(λ1),

0 Otherwise,

(62)

where Pae(λ1) and Rr(λ1) only take HP packets into
account. E[ S] is then given by:

E[ S] = (1 − Pae(λ1))E[Rr]+PL|NHPae(λ1)

×
[(

1
γ2 + α

+ α

α + γ2
E[R]

)]
.

(63)

α is the exponential parameter for Y and γ2 is the expo-
nential parameter for T2. The unknown in the preceding
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equation is PL|NH , which is the probability that there are
LP packets in the system given that it is empty of HP
packets, and can be expressed as:

PL|NH = 1 − P0
P0,1

, (64)

where P0,1, the probability that the system is empty of HP
packets, can be found from the original queue by substi-
tuting E[ S] with the one that was calculated in (63), and,
as indicated previously, P0 is the probability that the sys-
tem is empty of all packets and is given in (43). We thus
finally have two equations ((63) and (64)) which can be
used to find the two unknowns E[ S] and PL|NH . The sec-
ond moment of S can then be found and the HP waiting
time is given by (37).
The LP packets waiting time can be found easily from

the conservation law and the previous result for the HP
packets waiting time. To find the system time, we will now
find an exact expression for the first two moments of the
completion time of LP packets. The interruptions, from
the LP packets point of view, are identically distributed
due to the exponential LP service time distribution. The
same renewal process approach which was used as an
approximation for Y < T2 duration in (57) can thus be
used exactly for this case. The only change is that Y should
be replaced with Y<T2 = Y |(Y < T2). We then have

E[R] =
(
1 − PA1<Y |Y<T2 − PA1<R)E

[
R<A1

]
+A1<Y |Y<T2(E[BCr ]−E

[
Y<T
r

])
+ PA1<R

(
E[BRr ]+E

[
A<R
1

])
,

(65)

where

PA1<Y |Y<T2 = λ1
λ1 + α + γ

,

PA1<R = (
1 − PA1<Y |Y<T2

)
Pr(R < A1),

E[BCr ] = E[R]+ 1
γ2+α

+ E[Xb,1]
1 − λ1E[Xb,1]

,

E[BRr ] = E[Rr]+E[Xb,1]
1 − λ1E[Xb,1]

.

(66)

Similarly, E
[
R2
2
]
and consequently E[X2] and E

[
X2
2
]
can

be found.
It is worth noting that only the assumption of expo-

nential service time for LP packets is required to find
the results above. The service time of HP packets can be
general.

5 Alternative approach for priority queueing
analysis

In this section, we propose an alternative approach to ana-
lyze the preemptive and non-preemptive priority queue-
ing service disciplines in OSA networks. As interruptions

have a preemptive behavior, we can model the interrup-
tions as the highest priority type of traffic whose packet
inter-arrival time is distributed with a random variable
Y and whose busy periods are distributed with a random
variable R. We can then have an estimate for the service
time of these virtual highest priority packets whose busy
period models the interruptions. Closed-form relations
cannot be derived in general since for any distribution of
R and Y, a different formula for the busy periods and con-
sequently for the service time exists. If Y is exponentially
distributed with parameter α, we can assume an M/G/1
queue for the interruptions. Note that, as discussed in
the introduction, this alternative approach provides an
approximation because we know that the real distribution
of the busy periods in an M/G/1 queue is a compli-
cated function built on the Bessel function [9], which
cannot exactly be matched to R. We discussed this alter-
native approach in this paper for completeness and as an
extension of the analysis provided in [6,12,13] for multi-
ple classes of traffic with preemptive and non-preemptive
service disciplines.
Using this alternative approach, it is possible to

find approximate results for the preemptive and non-
preemptive service disciplines as follows. We first find the
first two moments of the service time of the virtual pack-
ets which form the interruptions from the distribution of
the busy periods of a regular M/G/1 queue [9]:

R̂(s) = T̂v(s + α − αR̂(s)), (67)

E[Tv]= E[R]
1 + αE[R]

,E
[
T2
v
] = E[R2] (1 − αE[Tv] )3.

(68)

where Tv stands for the service time of the virtual pack-
ets which form the interruptions. As interruptions have
a preemptive behavior, we can model the preemptive ser-
vice discipline as a preemptive-resume queue with N + 1
classes of traffic, the highest priority packets being the vir-
tual packets. The following extensions of the P-K formula
for preemptive-resume schemes [9] can then be used to
find the average waiting time of other classes of traffic:

E[Wi]= E[ Ji]
(1 − αE[Tv] − . . . − λi−1E[Ti−1] )(1 − αE[Tv] − . . . − λiE[Ti−1] )

,

(69)

where E[ Ji] can be given by:

E[Ji]= 1
2
αE

[
T2
v
] +

i∑
j=1

1
2
λj

(
E

[
T2
j

])
, (70)

and the moments of Tv can be found from (68). The
system time is then given by:

E[Di]= E[Ti]
1 − ρi−1 − · · · − ρ1 − ρv

+ E[Wi] (71)



Azarfar et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:206 Page 16 of 21
http://jwcn.eurasipjournals.com/content/2014/1/206

For the non-preemptive service discipline, the queue
can bemodeled as a priority queue where the highest class
of traffic (virtual) behaves preemptively, but other classes
behave non-preemptively. The extensions of the P-K for-
mula given in (69) can be used to find the average waiting
time of other classes of traffic where E[Ji]= E[J] is the
same for all priority classes and is equal to:

E[ J]= 1
2
αE

[
T2
v
] +

N∑
j=1

1
2
λj

(
E

[
T2
j

])
. (72)

The system time can be written as:

E[Di]= E[Ti]
1 − αE[Tv]

+ E[Wi] . (73)

6 Simulation results
In this section, we validate the analytical results of the
OSA networks priority queueing disciplines presented in
this paper by comparing with system accurate Monte-
Carlo simulation results. The presented results also give
several insights on the performance of OSA networks with
mixed traffic. We consider in the numerical evaluation a
system with two classes of traffic: high priority (HP) and
low priority (LP), also denoted as type-1 and type-2 pack-
ets, respectively. We assumed exponentially distributed
operating periods and considered the cases of exponen-
tially and constantly distributed interruption periods. The
service time (packet length) is also assumed to have either
an exponential or a constant distribution. Due to space
limitations, we only present the results for the exponential
and constant (deterministic) distributions.
Unless mentioned otherwise, the HP arrival rate is

assumed equal to 0.03 and the average real service times
are E[T1]= 3 and E[T2]= 5 (the unit of time is irrel-
evant). As an example, if the unit of time is millisecond
(ms) and the channel data rate is 4 Mbps, those service
times represent 1, 500 bytes and 2, 500 bytes packets,
respectively.
The duration of operating and interruption periods are

selected to model two different scenarios. The first sce-
nario is for an almost quasi-static cognitive radio network
where E[Y ]	 E[T] and used E[Y ]= 75 and E[R]= 15.
The second scenario is for a highly dynamic cognitive
radio network [32] where E[Y ]< E[T] and used E[Y ]= 1
and E[R]= 0.2. Note that the average server availabil-
ity is the same for both scenarios, only the dynamics are
different.
In the figures, the different distribution cases are

denoted by ‘ExpExp’, ‘ExpDet’, ‘DetExp’ and ‘DetDet’,
respectively for the distributions of T and R, as summa-
rized in Table 2. The four service disciplines are denoted
in the figures as ‘Non’ (non-preemptive), ‘ENo’ (excep-
tional non-preemptive), ‘Pr’ (preemptive) and ‘FP’ (pre-
emption in case of failure). The suffix ‘Sim’ indicates

Table 2 Service time and recovery time distribution cases

Service time (T) Exponential Exponential Constant Constant

Recovery time (R) Exponential Constant Exponential Constant

Notation ExpExp ExpDet DetExp DetDet

the simulation results, ‘The’ corresponds to the analyt-
ical evaluation of the theoretical results presented in
Section 4, and ‘Alt’ indicates the analytical evaluation of
the theoretical results for the alternative approach pre-
sented in Section 5.

6.1 Exponential recovery and service time
The recovery time for a random channel selection recov-
ery algorithm (i.e., the user senses a list of channels one
by one until finding an available channel) or a slotted-
Aloha competition with other CR users can be accurately
modeled with an exponential distribution.
Figure 9 shows the HP and LP average system time

respectively for this case. As expected, and can also be
observed for all the presented results, the HP system
time increases from the preemptive, preemptive in case of
failure, exceptional non-preemptive and non-preemptive
service disciplines, and the LP system time increases in the
inverse order of service disciplines. The results also show
that the simulation and theoretical analysis results closely
match, which validates the priority queueing analysis.
Results are also presented for static and dynamic oper-

ating period scenarios. We can observe that for the same
server availability ratio E[Y ] /E[R], the system time is
worst for both classes of traffic and all service disciplines
for the static scenario where E[R] and E[Y ] are much
larger than the service time. This is due to the fact that
the long recovery periods in the static scenario have a
severe impact on the OSA queue performance metrics
for all traffic classes. To further investigate this important
finding, in Figure 10 we present the system time as a func-
tion of E[T1]/E[R] for a server availability ratio E[Y ] /E[R]
fixed to five. This figure clearly shows that the OSA net-
work system time performance deteriorates as the system
dynamic decreases (i.e., when E[T1]/E[R] decreases) with
an inflexion point when the service time is approximately
equal to the average interruption length. Furthermore,
both HP and LP packets are similarly affected. That is,
queueing disciplines cannot protect HP traffic against
long interruptions. This is expected since interruptions
indeed preempt the server. Note that for a traditional OSA
throughput analysis based on a saturated-traffic model, no
major performance changes will be observed as a func-
tion of the OSA network dynamic since the main factor
is the server availability ratio E[Y ] /E[R]. Only the com-
plete queueing analysis presented in this paper can give an
insight on the important impact of system dynamics on
the OSA performance.
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Figure 9 System time of high priority (HP) and low priority (LP) packets vs. LP arrival rate.

The other interesting point to observe is that for
dynamic scenarios, due to frequent short interruptions,
the preemption in case of failure service discipline enables
the quick preemption of LP packets by HP packets. This
service discipline performance is thus close to the pre-
emptive scheme for dynamic scenarios. On the other
hand, for static scenarios the preemption in case of failure
service discipline performance gets closer to the non-
preemptive discipline due to the lack of opportunities for
HP packets to preempt LP packet service. Meanwhile, the
system time for the exceptional non-preemptive discipline
is very close to the non-preemptive scheme performance

in dynamic scenarios because the probability of an HP
arrival in an empty system in the same recovery period
as an LP arrival is very low. In large scenarios, their per-
formances start to differ. However, the performance gain
remains small. Those results show that the novel priority
discipline of preemption in case of failure for OSA net-
works can significantly improve the system time of HP
packets in several deployment scenarios while having a
lower implementation complexity than a full preemptive
service discipline.
In Figure 11, we study the CR traffic system time as a

function of the operating and interruption period length.

Figure 10 System time of LP and HP packets vs. the variations of E[R] and E[Y] when their ratio is fixed.
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Figure 11 System time of HP and LP packets vs. operating and interruption period duration.

Those results illustrate the validity of the queue analysis
for a wide range of operating and interruption periods.
Note that since E[R] or E[Y ] is fixed, the server avail-
ability increases as a function of E[Y ] in the former case
and decreases as a function of E[R] in the later case. We
can observe that as the server availability decreases, either
due to shorter availability periods or longer interruption
periods, the system time significantly increases, with LP
traffic being more affected than HP traffic due to the pri-
ority service disciplines. It is interesting to again note that
the system time increases much faster when the inter-
ruption period increases than when the availability period
decreases. For example, starting from the point where
E[Y ]= 75 and E[R]= 15 to the point where E[Y ]= E[R],
the HP system time approximately increases by a factor
of three when the operating period length decreases and
by a factor of eight when the interruption period length
increases. Those results underline the critical importance
of minimizing the interruption period length in OSA
networks.
The results presented in Figure 12 further motivate

the importance of the theoretical analysis provided in
this paper to correctly analyze the performance of OSA
networks. A straightforward tempting simplification that
could be used to analyze the CR queue system time is
to use the standard M/G/1 formulas without interrup-
tion and increase the packets real service time Ti by the
ratio E[Y ]+E[R]

E[Y ] to compensate for the average throughput
loss due to interruptions. It can be shown for both traffic
classes that the queues will saturate at the same traffic load
for both the simplified analysis and the correct analysis.
However, as can be seen in Figure 12, the M/G/1 simplifi-
cation (referred as ‘NoInt’) significantly underestimates by
almost an order of magnitude the real performance of the
queue for both preemptive and non-preemptive priority

disciplines (this simplification does not allow the analy-
sis of the two other OSA service disciplines due to the
absence of interruptions). This error is due to the fact that
the simplified modeling is in fact equivalent to assuming
that the interruption periods approach a length of zero.
But, as we have discussed previously, interruption periods
have a major impact on the OSA queue performance. The
accurate modeling of the interruption periods, as we pro-
vided in this paper, is thus critical to obtain a valid OSA
queue analysis.
Figure 12 also presents the system time when both traf-

fic classes are mixed without a priority service discipline
(i.e., both packet types are queued together and are served
in a first-in-first-serve scheme). It is interesting to observe
that for a standard system without interruption, the sys-
tem time increase for LP packets when a priority service
discipline is used is almost the same as the system time
decrease for HP packets (i.e., themixed traffic service time
is almost exactly in the middle between the LP and HP
service times with both priority service discipline). How-
ever, this is not the case for the OSA network where the
HP packet system time decreases significantly more than
the system time increase for LP packets. This is due to the
fact that the interruption periods preempt both classes of
traffic. Those results indicate that differentiated service
with priority queueing has a bigger impact in OSA net-
works than in conventional networks and should thus be
actively used when they carry multiple classes of traffic
with different QoS requirements.

6.2 Exponential recovery time and constant service time
In Figure 13, the HP and LP packet lengths are both
constant (‘DetExp’ scenario). Thus, the lower bound for
the waiting time of LP packets for the preemptive in
case of failure service discipline is presented. The results
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Figure 12 Performance comparison of accurate queueing models with interruption with a modified M/G/1 with longer packets but no
interruption.

are generated for two different values of HP arrival rate.
To better observe the accuracy of the completion time
approximations for the preemptive in case of failure ser-
vice discipline, simulation results and approximations for
the moments of the LP packets completion time, X2 and
X∗
2 , are compared in the upper part of Table 3. Note that

the completion time of LP packets is independent of their
arrival rate. The results show the accuracy of the analy-
sis for constant service time and the slight deterioration

due to the approximate analysis for the preemptive in case
of failure service discipline. On the other hand, we can
observe the accuracy of the theoretical analysis with deter-
ministic packet service time for the three other service
disciplines.

6.3 Constant recovery time
A constant recovery time occurs, for instance, in sce-
narios where the information concerning the channels’
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Figure 13 System time of LP packets vs. LP arrival rate for two values of HP arrival rate (small scenario).
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Table 3 Moments of the LP completion time with
preemption in case of failure (FP) service discipline for
DetExp and DetDet scenarios (S: simulation, A:
approximation)

Scenario λ1 E[X2]-S E[X2]-A E
[
X2
2
]
-S E

[
X2
2
]
-A

Small,DE 0.03 6.62 6.72 47.01 49.51

Small,DE 0.05 7.10 7.32 57.05 62.33

Large,DE 0.03 6.13 6.12 77.53 74.96

Large,DE 0.05 6.26 6.25 88.37 85.62

Small,DD 0.03 6.61 6.72 46.76 49.23

Small,DD 0.05 7.10 7.31 56.69 61.98

Large,DD 0.03 6.14 6.12 58.40 56.45

Large,DD 0.05 6.26 6.25 65.00 63.64

occupancy is provided in advance; therefore, no random
sensing is required and the recovery time only represents
a constant time for negotiation and radio alignment. In
order to compare the results with the previous scenario,
we assume the same average values.
Figure 14 illustrates the system time of HP and LP pack-

ets versus their arrival rate for the cases of exponential and
constant service times.
It should be noted that for the selected values in the

simulation, the upper and lower bounds proposed in
Section 4.4.2 (e.g., Eq. (59)) are loose compared to the
natural bounds of preemptive and non-preemptive disci-
plines, so they are not illustrated in the figures to enhance
their clarity. As expected, it can be seen in both figures
that the performance, when the distribution of real service
time (packet length) is exponential, is worse compared
to the case where the packet length is constant (with
the same average). The results also validate the theoret-
ical analysis presented in Section 4. However, it can be

observed that the system time for the non-preemptive
service discipline obtained with the alternative approach
presented in Section 5 is not accurate. This shows, as
discussed in the introduction, the limitations of alterna-
tive approaches which were previously proposed in the
literature when the recovery period is not exponentially
distributed. Furthermore, this alternative approach can-
not be used to analyze more sophisticated service disci-
plines such as the exceptional non-preemptive and the
preemptive in case of failure disciplines which provide
interesting performance gains for OSA networks. Simula-
tion and analytical results for the completion time of LP
packets are compared in the lower part of Table 3 for two
different values of HP arrival rate.

7 Conclusions
Priority queueing is a classical approach to implement
traffic differentiation in communication links. To ana-
lyze priority queueing schemes for opportunistic spec-
trum access networks, we derived in this paper a general
queueing model with interruptions for the preemptive
and non-preemptive classical priority disciplines. Two
new cognitive radio disciplines were also introduced in
this paper: exceptional non-preemptive and preemptive
in case of failure. The theoretical analysis was validated
with simulation results and we investigated the behav-
ior of those disciplines for different sets of parameters
and distributions for the packet service time and inter-
ruption periods. We also showed how the analysis can
be used by an OSA controller to make critical decisions
such as selecting the channel switching policy or the
priority queueing discipline based on the estimated chan-
nel parameters. It was also observed that even though
the ratio of operating and interruption periods plays
an important role, a significant performance decrease is

Figure 14 System time of high (HP) and low priority (LP) packets vs. LP arrival rate (DetDet and ExpDet, large scenario).
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observed in a semi-static network with long operating and
interruption periods compared to a fast-varying network
with short periods and the same ratio. A simplifiedM/G/1
model with no interruption and compensated increased
packet length cannot thus capture the queue metrics per-
formance of OSA networks. We also presented results
demonstrating the importance of priority queueing to
provide differentiated service in the presence of frequent
interruptions. As discussed in the introduction, an impor-
tant area of future work is to use the results presented in
this paper to further study and optimize MAC protocols
and channel assignment policies in OSA networks based
on not only a saturated mode throughput analysis but also
on queue metrics. Another interesting area of research is
to extend this work to the cases of queueing with service
repeat after an interruption and for non-homogeneous
channels with variable service rate for different operating
periods.

Endnotes
aFor notation simplicity, Rr is used instead of R1u.
bThey are here two new random variables. Not to be

mistaken with identical instances of Y and R in previous
sections.
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