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Abstract

We consider the problem of route selection and optimization for a mobile sensor network, which involves two nodes
transferring information over a large area using a number of intermediate routers in the presence of noise, path loss,
multipath fading, and interference. The communication- and position-aware reconfigurable (COMPARE) route
optimization framework is proposed to improve the end-to-end throughput of the routes in the realistic
communication environment. Initially, a communication-aware route selection strategy selects the optimal route by
integrating the routing decisions with the link quality. The quality of the wireless link is characterized by the reception
probability, i.e., the probability of successfully receiving packets over a realistic communication link. The selected route
is reconfigured by exploiting the multipath fading, position information, and the mobility of the nodes during the
phase of position-aware optimization. The optimal position for a router is heuristically found using a priori information
about fading channels and the positions of transmitting and interfering nodes. The router is guided to the optimal
position using the feedback mobility control, and only the route selected by the COMPARE framework is used for data
transmission between the source and destination node. We illustrate through simulations that the proposed
framework provides routes with considerably better performance than conventional route selection metrics, in terms
of the end-to-end throughput.

Keywords: Mobile sensor networks; Realistic communication model; Position-aware optimization; Particle swarm
optimization

1 Introduction
Mobile sensor networks (MSNs) could play an impor-
tant role in future applications such as rescue operations,
target tracking, and environmental scanning. The guid-
ing vision behind mobile sensor network research is that
mobile platforms (nodes) embeddedwith sensors can nav-
igate and visit targets in a two-dimensional environment
in order to achieve a common goal. The nodes in such net-
works need communication links that offer a high quality
of service (QoS), allowing them to deliver large band-
width information in forms such as continuous images or
real-time videos. Achieving a high QoS in MSNs poses
several challenges due to uncertainties in the methods
of communication, routing, and sensing. The transmitted
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waves are attenuated, reflected, and refracted from objects
in the environment, resulting in degradation of the perfor-
mance of the communication links. Since the nodes need
to spread out geographically, direct transmission may not
be feasible and ad hoc routing mechanisms may need
to be deployed to relay the data packets between nodes
[1]. This necessitates multihop routing where nodes also
act as routers forwarding data to other nodes as shown
in Figure 1. The first problem is to select the optimal
route out of many available routes. In single-path rout-
ing, only the selected route out of many available routes
is then used for data transmission. Once the route is
established, the fundamental challenge is to guarantee a
robust flow of information [2-4]. The flow of informa-
tion can be optimized via route reconfiguration, which
involves the routers positioning themselves in a manner
that ensures robust communication between the source
and destination nodes.
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Figure 1 Amobile sensor network where nodes are deployed to find the static target/victim in a particular region. The node can directly
communicate with other nodes inside the transmission range r. The communication with nodes outside the transmission range is achieved via
multihop communication. The signal arrives at the receiver node via a number of paths. The source node S requires optimal route out of many
available routes to send data to the sink node D via intermediate routers.

1.1 Related work
1.1.1 Communication-aware route selection
Due to the special demands of mobility, the routing proto-
cols for traditional wireless sensor networks are not suit-
able for MSNs and existing literature available for mobile
ad hoc networks may be inherited. The performance anal-
ysis of conventional route establishment schemes in ad
hoc networks is based on over-simplified communication
link models such as the binary link model where nodes
can perfectly communicate within a transmission radius
and nothing at all is communicated outside that radius [5].
Other approaches consider free space models where sig-
nal strength decays according to path loss and successful
transmission is possible within a deterministic transmis-
sion radius irrespective of wireless link conditions [6-8].
The simplistic assumptions used in such models yield
well-documented limitations and unrealistic conclusions
[9]. The routes for data communication are determined
on the basis of route selection metrics. However, route
selection metrics based on the simplified communication
models do not generate reliable routes in realistic scenar-
ios as they neglect the sensitivity of the wireless links to
noise and fading. For instance, the hop count (HC)metric,
which is the most widely used route selection metric in ad
hoc networks [10,11], is based on the notion of the ideal
communication link model, i.e., either communication
is perfect or no communication at all. The use of geo-
graphical position is another popular approach for route
selection in ad hoc networks [12]. From the perspective of
wireless link quality, the usage of Euclidean distance (ED)
as metric for route selection is based on free space mod-
els so that it only considers the path loss due to distance.

Consequently, HC selects suboptimal routes as it prefers
long links irrespective of their quality to minimize hop
count [13] and ED-based routes overlook the fact that link
quality can be significantly decreased over small distances
due to the multipath fading effects.
Link quality is increasingly being taken into account for

routing decisions in wireless sensor networks. Chen et al.
in [14] presented a dynamic window concept to record
the link information and proposed link quality estimation-
based routing protocol (LQER). Sequential assignment
routing (SAR) [15] developed by Sohrabi et al. incorpo-
rates some notion of QoS in its routing decisions. The
work in [15] was extended by Akkaya and Younis in [16],
where their proposed scheme selects routes that meet
the end-to-end delay requirements and providemaximum
throughput. However, these works did not consider the
drastic effects of path loss, fading, and interference on the
link quality. An awareness of the properties of commu-
nication channels and the possibility of interference must
be taken into account to provide a high QoS in a realistic
environment. In [17], we developed a communication-
aware route selection strategy for static nodes which
incorporated the inherent uncertainty in the performance
of realistic wireless communication links due to noise,
fading, and accumulated interference among the nodes.

1.1.2 Position-aware optimization
We aim to find an optimal position or continuum of posi-
tions with better communication quality. The problem
of optimum positioning of routers has received signifi-
cant attention in the robotics and sensor community. To
solve this problem, the algebraic-graph approaches are
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proposed by Kim and Mesbahi [18] and Gennaro and
Jadbabaie [3]. In [18], an iterative greedy-type algorithm
is proposed to maximize the Fiedler eigenvalue for finding
optimal configuration of wireless sensor nodes. Gennaro
and Jadbabaie [3] use a sub-gradient algorithm for com-
puting the second eigenvector to maximize the Fiedler
eigenvalue. Although the Fiedler eigenvalue is a good
measure of graph connectivity in undirected networks, it
does not reflect the reception quality of communication.
The communication-orientedmetric, i.e., the capacity, has
been used by Dixon and Frew [19], but it does not mea-
sure the current communication quality. Xu et al. [20] and
Wang et al. [21] investigated the optimal positioning of
relay nodes in relation to network lifetime and connec-
tivity in mobile sensor networks. In [22,23], the sensors
are moved to optimal positions so that maximum network
coverage is achieved.
Mobility is considered to be a challenge for network effi-

ciency. However, network performance can be enhanced
by the incorporation of controlled mobility. The notion
of controlled mobility has been proposed so that mobil-
ity can work as an advantage in a network rather than
a burden; for instance, mobile nodes with the ability to
sense the energy level of a neighbor’s node can change
their location so as to avoid link breakages and improve
the network lifetime. Natalizio et al. in [24] have illustrated
the advantages and limitations of controlled mobility in
mobile sensor networks. Mobility is utilized in different
ways in MSNs, which can be sub-divided into networks
with mobile sinks only, networks with mobile routers, and
networks with all mobile nodes. Our focus is on networks
where routers have the ability to move. The analytical
results presented by Natalizio et al. in [25] suggest that
controlled mobility of the nodes improves network per-
formance. Nodes are moved to the most energy-efficient
positions so that path lifetime of the nodes involved
in a monodirectional data flow is maximized. Natalizio
et al. in [26] have extended the work in [25] by consider-
ing both the forward and backward directions in a data
flow. Optimal placement of the nodes is done by taking
into account the energy expenditure in the two directions.
Other studies have considered controllable mobility for

routing purposes. For instance, Goldenberg et al. pre-
sented a strategy in [27] in which the routers on the route
are evenly spaced along a line connecting the source and
destination to achieve optimal energy efficiency. Liu et al.
in [28] first identify the route between the source and
destination nodes, after which the router nodes can be
moved to their optimal positions so as to minimize energy
consumption. Loscri et al. exploit information about the
nodes’ positions in [29] to build the route between a
source and a destination which minimizes the total trav-
eling distance of the router nodes. Once the route is
established, router nodes move to positions which are

evenly spaced on the straight line connecting the source
and destination. Le et al. have considered the end-to-end
throughput of the network and proposed robot control-
lable mobility aided routing (RoCoMAR) [30]. RoCoMAR
identifies the link with the lowest quality on the route and
replaces it with a high-quality link through the optimal
positioning of a robotic node. However, all of the above-
mentioned works deal with communication models such
as binary or free space only and neglect the effects of mul-
tipath fading and interference on link quality. Multipath
fading can often be very deep, i.e., the signals fade away
completely. It also causes distortion in the radio signal
and must be taken into account when developing a mobile
sensor network with radio communication capabilities.
Recently, considerable attention has been given to real-

istic communication channels in mobile sensor andmulti-
robot networks, with more focus on navigation strategies.
Lindhe et al. in [31] proposed a strategy that improves
the throughput by modifying the trajectory of the sensor
nodes so that they spend more time at points with high
signal strength. Zavlanos et al. in [32] defined network
integrity in terms of communication rates and incorpo-
rated distributedmotion control through the optimization
of communication variables in a distributed hybrid multi-
robot network. Mostofi in [33] integrated a statistical
evaluation of link quality into the motion planning func-
tion, so that each node improves its knowledge of the
environment through the network’s sensing capabilities
and uses that knowledge for link prediction. A function
incorporating the costs of both sensing and communica-
tion is used to make decisions about the motion of the
nodes, and in particular to avoid deep fade spots. Seminal
work on the positioning of robotic routers so as to ensure
robust communication in a realistic environment has been
presented by Yan and Mostofi in [34]. It is assumed that
a priori information about the wireless channel is already
known and can be used to predict the distribution of the
channels at unvisited positions using proposed channel
estimation strategies. The results show that the under-
lying channel properties can be predicted by randomly
measuring a priori only 5% of the channel. These proba-
bilistic channel prediction models are incorporated with
motion goals for the robotic routers so as to achieve over-
all optimization in terms of the average end-to-end bit
error rate (BER). Recently, Williams et al. in [35] devel-
oped a hybrid architecture called INSPIRE for sensing
and information routing applications involving networked
robots. INSPIRE utilizes two control levels, namely, the
information control plane and the physical control plane,
to command, control, and coordinate the robots. A simple
instantiation is described in which the robotic network
is dynamically reconfigured so as to ensure high-quality
routes between static wireless nodes. All of the afore-
mentioned work is not concerned with multiple access
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issues or interference among the nodes. However, inter-
ference is the main factor limiting the performance of
wireless mobile sensor networks. Interference arises when
the number of nodes sharing the resources is consid-
erably large; for instance, because of the scarceness of
wireless spectrum, transmission by any device at the same
frequency can cause interference at the receiver [36].

1.2 Motivation and contribution
To summarize, the work presented in this paper is moti-
vated by four major considerations. First, conventional
routing strategies for sensor networks assume simplis-
tic communication models [10,11]. Second, the papers
[31,33,34] that do investigate realistic communication
environments do not take interference among nodes into
consideration. Third, most of the previous work on real-
istic communication environments focuses on navigation
[31] and motion control [33] in sensor networks, but does
not deal with route selection or optimization. Finally, due
to the complex nature of wireless channels, there are many
local optimal positions and the probability of converging
on a local maximum is high even if the channel has already
been estimated.

Statement of contribution: We propose a communica-
tion- and position-aware reconfigurable (COMPARE)
route optimization framework, with end-to-end through-
put as the performance metric, by using a realistic
communication model that includes noise, interference,
path loss, and multipath fading in a large-scale wireless
network. The contributions of this work are twofold:

• Communication-aware optimization: The optimal
route with the highest throughput is identified using
a communication quality-oriented route selection
metric based on reception probability.

• Position-aware optimization: The optimal position
with better communication quality and higher
throughput for the router involved in the hop with
lowest link quality is determined using particle
swarm optimization (PSO). The controller is
designed to move the router from its initial position
to the optimal position. The channel map in general
has a lot of local optimal points, and it is almost
impossible to find the global optimal point directly.
We show that our framework performs well by
avoiding local optimal points with extremely low link
quality.

1.3 Paper outline
The rest of this paper is organized as follows. Section 2
describes the network model, the communication link
model, and the performance metric. In Section 3, we
present the proposed communication- and position-
aware reconfigurable route optimization strategy for

large-scale MSNs, which takes into account interference,
noise, path loss, and fading. The simulation and statis-
tical results verifying the effectiveness of our framework
in different scenarios are presented in Section 4. Finally,
Section 5 concludes the paper.

2 Networkmodel
Consider a group of mobile sensor nodes equipped
with sensing, computing, and communication capabili-
ties which are spatially distributed in a given environment
and are being used to jointly perform a task. The nodes
have reached their individual targets and have used their
sensing capabilities to gather required information. The
collected information needs to be shared with other nodes
in the network. Deviations in the positions of the nodes
that are small enough that the targets remain inside the
sensing radii are allowed, but large deviations from the
initial positions are undesirable. We use the terms robot
and node interchangeably in this paper. Any node which
is part of the route other than source and destination
nodes is termed a router. We define the network area as a
two-dimensional square in which N nodes are randomly
placed. When the destination node (Rx) is significantly far
from the source node (Tx), the rest of the nodes in the
network act as routers by relaying information. We sup-
pose that the nodes remain static during the period of
information sharing and that any router moves only if it
is required to optimize the communication throughput of
the route. If there is more than one route available for
data transmission from the source to the destination node,
the objective is to select the route with the best through-
put and to further optimize the throughput by positioning
the routers so that environmental noise, path loss, fad-
ing, and interference are minimized. The solution to the
problem of selecting the best route from the available
routes and optimizing it by reconfiguration in a realis-
tic communication environment involves the following
steps:

• Find a suitable metric to represent the link quality in
a realistic communication environment, taking into
account noise, path loss, multipath fading, and
interference.

• Select an optimal route on the basis of the chosen
metric.

• Identify the link with the lowest throughput, as route
performance is limited by that link.

• Exploit multipath fading and position information to
heuristically find optimal position for the receiving
router of the lowest quality link.

• Use mobility control to guide the router from the
initial position to the optimal position, such that
end-to-end throughput of the route is improved.
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2.1 Communication link model
We consider a quasi-static narrowband Rayleigh fad-
ing wireless communication link with an additive white
Gaussian noise (AWGN) process and large-scale path loss
exponent α [37]. Each transmitted signal reaches the des-
tination via a random number of multiple paths with
no dominant line of sight (LOS) signal. The received
signal is corrupted by M interference signals and an
AWGN noise process. The variance of the noise pro-
cess is denoted by No, and P denotes the transmis-
sion power of all the nodes. The distance between the
desired transmitter and receiver is denoted by dD, and
the distance between the interferer and the receiver is
denoted by dm. In the Rayleigh flat fading link model,
the received power R and interference power Im are
exponentially distributed with R̄ = Po

(
dD
do

)−α

and ¯Im =
Po

(
dm
do

)−α

where dD, dm > do, respectively. do is
the reference point located in the far field of transmit
antenna, and Po is the average power at do given as
Po = P

(
λ

4πdo

)α

. The signal-to-interference-and-noise
ratio (SINR), denoted by ζ , is a discrete random process
given by

ζ = R
No + I

. (1)

The SINR is factorized into signal-to-interference-ratio
(SIR) and signal-to-noise-ratio (SNR). For a link between
any two nodes i and j, the SNR is the ratio of received
power to noise power, given by ζij = R̄

No
, and the SIR is

the ratio of received power to interference power, given
as ζm = R̄

Im =
(
dD
dm

)−α

. The cumulative density function
F(ζ ) for SINR is [38]

F(ζ ) = 1 − e
−ζ
ζi j .

M∏
m=1

1
1 + ζ

ζm

. (2)

To decrease the effects of interference, a slotted ALOHA
scheme is used in which, for each time slot, each node
transmits independently with a certain transmission prob-
ability [39]. In Equation 1, I is the accumulated interfer-
ence power at the receiver given by I = ∑M

m=1 BmIm.
The transmission probability pt is assumed to follow
a Bernoulli distribution so that Bm is a sequence of
independent Bernoulli distributed random variables with
P(Bm = 1) = pt and P(Bm = 0) = 1 − pt .

2.2 Link quality estimation using reception probability
The quality of a wireless communication link is deter-
mined by the instantaneous SINR (ζ ) between two nodes.
In general, outage probability [40] is used to estimate
the link quality and is defined as the probability that the
instantaneous SINR (ζ ) is below a certain threshold ζt .

Accordingly, a packet will be successfully received if ζ ≥
ζt . The probability that the instantaneous SINR between
two generic nodes i and j is above the threshold ζt is called
reception probability (RP), denoted by pr := P

[
ζij ≥ ζt

]
.

The value of ζt depends upon the modulation and coding
scheme [41]. RP has been used previously for link qual-
ity estimation in wireless sensor networks. Flushing et al.
have used the packet reception probability to estimate link
quality in [42] and refer to it as mobility-assisted proactive
probing and learning estimates (MAPPLE). Alizai et al.
[43] and Becher et al. [44] have also used the predicted
probability of successful packet transmission to estimate
link quality. The RP for a slotted ALOHA scheme with a
Rayleigh fading channel is calculated by using Equation 2,
and [45] shows that it can be factorized into reception
probabilities of noise-only pNr and interference-only pIr
networks given as

pr : = P
[
ζij ≥ ζt

] = 1 − F (ζ ) = exp
(
− ζt

ζij

)
.

M∏
m=1

1
1+ ζt

ζm
,

= exp
(

− ζtNo

Po
(
dD
do

)−α

)

.
M∏

m=1

{
P (Bm = 1) . 1

1+ ζt
ζm

+ P (Bm = 0)
}
,

= exp
(

− ζtNo

Po
(
dD
do

)−α

)
.

M∏
m=1

(
pt

1+ζt
(
dD
dm

)α + 1 − pt

)
,

= exp

⎛
⎜⎝− ζtNo

Po
(
dD
do

)−α

⎞
⎟⎠

︸ ︷︷ ︸
pNr

M∏
m=1

⎛
⎜⎝1 − ptζt

ζt +
(
dm
dD

)α

⎞
⎟⎠

︸ ︷︷ ︸
pIr

.

(3)
The basic concepts of framework are reinforced by

means of a series of MATLAB simulations. The RP is
investigated by simulating the behavior of pNr as a func-
tion of SNR threshold and relative distance between two
nodes as shown in Figure 2a. The pNr decreases as the
distance between the nodes increases and is inversely pro-
portional to the SNR threshold. The narrowband Rayleigh
fading wireless communication channel with an AWGN
process and path loss exponent α is simulated usingMAT-
LAB, with a view to understand the relationship between
the number of paths and the RP. Figure 2b shows the rela-
tionship between pNr and the number of paths on the link
between the nodes. The RP decreases as the number of
paths increases between two nodes. The values assigned
to the parameters in the simulations are listed in Table 1.

2.3 Performance measure
An appropriate QoS performance measure needs to be
defined for a route optimization framework in mobile
sensor networks. For instance, throughput is a conven-
tional estimate for the amount of traffic delivered by the
network [8,13]. We define the normalized throughput as
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Figure 2 Reception probability (noise only).

the expected number of successful packet transmission for
a given node per time slot [37]. This normalized through-
put can be thought of as the fraction of time a channel
is utilized and is measured in Erlangs. We will regard
end-to-end throughput over a multihop connection as
the performance measure for a route. The end-to-end
throughput for a route is defined as the minimum of
throughput values of the links involved in constituting the
route. The optimal route configuration is the one with the
highest possible end-to-end throughput. The throughput
between two generic nodes i and j is given by

TPij = pt (1 − pt) × prij , (4)

where pr is the RP as given in Equation 3, pt is the proba-
bility that node i transmits, and (1 − pt) is the probability
that node j does not transmit in the same time slot. The
probability of transmission pt in each time slot depends on
the number of interferers on that particular link. Themax-
imum throughput achievable by a network using slotted
ALOHA is 0.3679, i.e., slotted ALOHA provides a maxi-
mum channel utilization of 0.3679 Erlangs [37].

Table 1 Values for parameters used in simulation

Parameter Description Value

P Transmit power 0 dBm

No Noise variance −85 dBm

ζt SINR threshold 10 dBm

λ Wavelength 0.12 m

α Path loss exponent 4

N Total nodes 150

k1 and k2 Controller parameters 0.2 and 1

3 COMPARE route optimization
The COMPARE framework is comprised of three main
components, i.e., communication-aware route selection,
link quality estimation, and position-aware optimiza-
tion. These components allow the routes to be selected
and optimized by appropriately positioning a particular
router as depicted in Figure 3. Whenever the source

Figure 3 Block diagram for COMPARE route optimization.
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node requires a route to the destination node, the
communication-aware route selection (CARS) phase is
called upon. First, each node in the network performs
neighbor discovery for the initialization of an ad hoc
wireless network. Second, weights based on the RP
are assigned to the individual links a node has with
each of its neighbors. The link quality estimation entity
is used for the computation of RP between any two
nodes. Third, Dijkstra’s algorithm is applied to identify
the route with the highest RP. The last step in CARS
is to compute the end-to-end throughput of the over-
all route. A detailed explanation of CARS is provided
in Section 3.1. When communication-aware route selec-
tion is complete, position-aware optimization (PAO) is
called to perform route reconfiguration and throughput
optimization. The receiving router on the link with the
lowest throughput is triggered by the destination node.
The router uses particle swarm optimization and link
quality estimation to find a new position with higher
throughput. Once the new position is computed, the
mobility controller is used to move the particular router
to that optimal position. The CARS phase is recalled
to compute the overall throughput for the reconfig-
ured route. The PAO is described in more detail in
Section 3.2.

3.1 Communication-aware route selection
An important requirement of mobile sensor networks is
to route traffic from a source to a destination node. To
achieve this, we need to determine a route using rout-
ing algorithm. The communication-aware route selection
incorporates the routing decisions with knowledge of
communication links including noise, path loss, multi-
path fading, and interference. We show how end-to-end
throughput of route depends on the quality of individual
links and route selection. The routing schemes essen-
tially rely on efficient shortest path algorithms such as
the Bellman-Ford [46] or Dijkstra algorithm [47] to com-
pute the optimal route. These algorithms find routes with
the minimum weight as determined by the given route
selection metric.
In order to incorporate noise, path loss, fading, and

interference, we use the route selection metric based
on RP presented in Equation 3 and find the route with
maximum RP. As presented in Algorithm 1, if a route
is required for the data transmission, all the nodes
identify their one hop neighbors and compute RP and
achievable TP. The communication links are indepen-
dent and does not affect each other’s probability. Once
RP for all links in the network is computed, we take
the negative logarithm to turn multiplication of prob-
abilities into addition of non-negative link costs. The
Dijkstra algorithm uses these link costs to compute the
minimum cost routes, which correspond to the routes

with maximum RP. The Dijkstra algorithm have both
centralized and distributed versions. In centralized ver-
sions, all route choices are made at a central node and
routes are broadcast to the rest of network. While in
the distributed version [48], the computation of route
is shared among the network nodes with information
exchanged between them. All the nodes calculate short-
est paths to each other based on the received link cost
information.

Algorithm 1 Communication-aware route selection
1: Discover nodes in the network, N
2: Discover neighbors nk
3: for i = 1 to N do
4: Neighbors {i} = [ ]
5: for j = 1 to N do
6: if Adjacency (i, j) > 0 then
7: Neighbors {i} = [ Neighbors {i}, j]
8: end if
9: end for

10: end for
11: ∀eij ∈ E : Compute RPij and TPij // RP and achievable TP

between each adjacent link
12: cij = − logRPij
13: L = {i} // Permanent list start with source node i
14: L′ = N\{i} // Rest of nodes are put in a temporary list
15: for j ∈ L′ do
16: if ciij < ∞ // considering adjacent neighbors only then
17: Cij = ciij
18: else
19: Cij = ∞
20: end if
21: end for
22: while L′ �= {} do
23: Ctemp = ∞ // find neighbor k with lowest cost
24: for t ∈ L′ do
25: if Cit < Ctemp then
26: Ctemp = Cit
27: k = t
28: end if
29: end for
30: L = L ∪ {k}// add to permanent list
31: L′ = L′ \ {k}// remove from temporary list
32: for j ∈ Nk ∩ L′ do
33: ifCij > Cik+cikj // check cost improvement via k then
34: Cij > Cik + cikj
35: end if
36: end for
37: end while
38: (TPE−E) = TP1 // temporary equating (TPE−E) to TP of

first hop on route
39: for a = 2 to n // n is total number of hops on selected route

do
40: Calculate TPa
41: (TPE−E) = min(TPa,TPE−E)
42: end for
43: CALL Position-aware optimization
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It is assumed that each node knows the position of
its neighbors using either the Global Positioning System
(GPS) or a localization technique for MSNs [49]. Even if
the position information is obtained using a centralized
system such as the GPS, each node locally calculates the
RP for its own adjacent links using Equation 3. Themobile
sensor network is represented as a directed graphG(N ,E),
where N is the set of nodes and E is the set of links
between nodes, called edges. The link between any two
nodes i and j is denoted by a weighted edge ei,j �= ej,i. In
case of communication-aware route selection, the cost of
edge is equal to the negative logarithm of its respective RP.
We consider two generic source and destination nodes,
labeled as i and j, respectively, in a network containing N
nodes. cij is the link cost between nodes i and j, while Cij
is the cost of minimum-cost route between nodes i and
j. The complete set of nodes N is divided into two lists:
the nodes already considered are stored in permanent list
L, and nodes not yet considered are stored in temporary
list L′ . It is observed from Algorithm 1 that list L expands
while L′ shrinks as the algorithm progresses and nodes are
deleted from L′ and added to L. The algorithm stops if L′

is empty. Algorithm 1 finds optimal routes to all the des-
tination nodes in the network. In case route to a specific
destination j is required instead of routes to all destina-
tions, an IF and exit operation ‘if (k=j), exit’ is added in
between lines 29 and 30. The essence of Algorithm 1 lies
in the way it expands the list L and computes the short-
est paths to nodes that are neighbor of nodes of list L but
are not yet in the list. As presented in Algorithm 1, on
each iteration, list L is expanded by including a neighbor-
ing node k of node i with the minimum link cost. In line
33, neighboring nodes of k are examined at each itera-
tion to see if there are any changes in the minimum cost
from the last iteration. The original shortest path is kept
by the algorithm if there is no improvement in cost. An
identifier is used to track the next hop from source node
i to the destination node j. The end-to-end throughput
(TPE−E) is determined in a distributed manner. Initially,
(TPE−E) is set to be the throughput of the first hop on
the route, and its value is compared with throughput of
the second hop. The minimum of the two throughputs is
assigned as the temporary value of (TPE−E). This process
is repeated for all the hops on the route unless final-
ized (TPE−E) information is obtained at the destination
node.

3.2 Position-aware optimization
An environment with multipath fading and interfer-
ence generates signal strength variations over distances
of a wavelength. Small changes in the position of the
router can be exploited to improve the received signal
strength [50]. In this phase, we exploit the information
we have about the multipath fading and positions of the

transmitter and interfering nodes to improve the end-
to-end throughput of the selected route. Assuming that
the fading channel is learned beforehand, the link qual-
ity at the unvisited location can be predicted using the
position information of the transmitter and interferers of
that link. Even if the channel is known beforehand, the
stochastic nature of a wireless channel makes it difficult
for iterative methods to find the global optimal position,
as the channel map in general has a lot of local opti-
mal positions and is unpredictable due to noise, path loss,
multipath fading, and interferences. In such a situation,
heuristic-based algorithms are good candidates to achieve
beneficial performance in avoiding extreme local optima.
Previously, the PSO-based algorithm incorporated with
distributed virtual force algorithm (VFA) is developed by
Loscri et al. in [51] to improve dynamic event coverage
for mobile sensor networks. We use the PSO to find the
optimal position for the router, so that the RP and overall
throughput are improved.
Once the route is selected in first phase of COMPARE,

the destination node triggers the receiving router on link
with the lowest throughput which is limiting the overall
route performance. The router executes the PSO algo-
rithm and provides its current position as input to PSO.
PSO along with link estimation generates a new position
for the router with a better RP and higher throughput. The
route is reconfigured by moving the router to the opti-
mal position using feedback mobility control. In order to
ensure that relocation of the router results in improved
throughput and does not diminish the overall throughput,
we return to the communication-aware route selection
phase so as to identify the throughput of the optimal
available route incorporating the new router position.

3.2.1 PSO-based optimal position search
PSO is a heuristic optimization technique which models a
set of potential problem solutions as a swarm of particles
moving about in a virtual search space [52]. The solution
is called a particle, and a group of particles is referred to
as a population. The PSO finds the optimal position for
the router in three steps as shown in the flow diagram in
Figure 4: (i) Initialization: A random population matrix is
generated with each row representing a candidate solu-
tion. Each particle in the population begins the search at
a random position (Xi,j) and with a random velocity (Vi,j)
in the n-dimensional search space. Here, i represents the
particle index and j represents the dimension in the search
space. Prospective solutions are optimized as the particles
are attracted to the positions that yield the best indi-
vidual results, and each particle remembers the position
of best performance (Pi,j). (ii) Evaluation: The individ-
ual best performances are compared and the best of all
particles is identified using the reception probabilities
calculated from Equation 3. (iii) Adaptation: Finally, the
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Figure 4 Flow chart for PSO-based optimal position search.

particles are updated by assigning a velocity to each ele-
ment using Equations 5 and 6. The particle that achieves
the best performance in terms of RP is called the global
particle.

Vij = Vij︸︷︷︸
Inertia

+ α1.(Pij − Xij)︸ ︷︷ ︸
Personal influence

+ α2.(pg(i) − Xij),︸ ︷︷ ︸
Social influence

(5)

Xij(n) = Xij(n − 1) + α3tanh(Vij), (6)

where Vij is the velocity and Xij is the position of each par-
ticle, P is the individual best performance, and pg is the
global best performance in the neighborhood. The inertia
term in Equation 5 keeps the particle moving in approxi-
mately the same direction and with the same velocity; the
personal influence term helps to improve the best individ-
ual performance for each particle by making the particle
move towards its best individual position; and the social
influence termmakes the particle move in the direction of
its best neighbor. α1, α2, and α3 are uniformly distributed
random numbers generated between (0, 1).
In our problem, we integrate evaluation of the commu-

nication quality with PSO; the RP in Equation 3 is used as
a fitness function for PSO. In multipath fading, the chan-
nel quality varies with small change in positions; therefore,
the distances between the positions of the particles is kept
small enough to search in the local vicinity of the receiv-
ing node such that the new position is not far from the old
position. The initial particle elements are randomly gen-
erated in the range (0, 1). We use a swarm of 20 particles
and 150 cycles. In each cycle, the algorithm reevaluates

the previous best positions and compares the new fit-
ness value based on RP with the previous ones to get a
more accurate measure of the actual fitness. By running
the algorithm in this fashion, the learning accuracy is sig-
nificantly improved. The nature of the problem requires
a smooth transition from one position to another, so the
hard limit for themax andmin velocities is replaced with a
smoothing tanh function [53]. PSO generates a new posi-
tion with improved RP and throughput. This position is
given to the feedbackmobility controller, whichmoves the
router to the desired optimal position.

3.2.2 Feedbackmobility control of mobile agents
Once the optimal position is computed using the PSO,
the mobile router needs to move to that position. Our
objective is to design a control law so that the mobile
router moves smoothly and arrives at exactly the desired
position. Before formulating the control design [54], we
present the differential equations that directly control the
acceleration of the router,

ẋ1 = x2, (7)

ẋ2 = u, (8)
where, x1, x2, and u represent the position, velocity, and
control input, respectively. The initial position will be
the position of the mobile router after the optimal route
has been identified using the communication-aware route
selection algorithm. The state space representation of the
above equation is

ẋ = Ax + Bu, (9)

A =
[
0 1
0 0,

]
, x = [x1 x2]T ,B = [0 1]T ,
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where x represents the state vector of the router, A is
the system matrix, B is the actuator matrix, and u is the
control law,

u = −Kx. (10)

Since the system has two states, so K = [k1 k2] is 1× 2
row vector. Combining Equations 9 and 10 results in

ẋ = (A − BK)x. (11)

The appropriate selection of k1 and k2, will move the
router to the target location.

3.3 Computational complexity analysis
The proposed COMPARE framework consists of multi-
ple algorithms with different complexities. Due to this, we
need to analyze the computational complexity of the indi-
vidual algorithms used in the framework. CARS utilizes
the simplest implementation of the Dijkstra algorithm
for optimal route selection. The implemented version in
our problem utilizes an ordinary array, and the computa-
tional complexity for communication-aware route selec-
tion using an ordinary array is O(N2).
The position-aware optimization is based mainly on

particle swarm optimization, which is only executed on
the router with the lowest link quality to search for the
optimal locationwhere the router contributes better to the
end-to-end throughput. In terms of intercommunication
through the network, searching for the optimal location is
independent to searching for the most optimal route and
throughput computation. The computational complexity
of PSO depends on the number of initial particles and the
number of cycles to reach the global optimum [55]. The
computational complexity for the PSO is given asO(MX).
In our case, the number of particles is M = 20 and the
number of cycles is X = 150. If the network is large
enough,O(MX) is minimal as compared toO(N2). There-
fore, the computational complexity of the COMPARE
algorithm is considered as O(N2) approximately.

4 Performance evaluation
The objective of the simulation is to evaluate the effec-
tiveness of the proposed communication- and position-
aware reconfigurable route optimization framework.
Several tests have been performed involving different sce-
narios to demonstrate the robustness and correctness of
the proposed framework. First, we quantify the benefits
of incorporating a realistic communication model with
routing decisions. The quality of realistic links is charac-
terized by the RP, and the RP-based metric is used for
route selection. The end-to-end throughput performance
of the RP metric is compared with conventional metrics
such as the ED and HC in a multipath fading channel
with noise, path loss, and interference. Second, we show
how the throughput of the route selected by the RP-based

metric can be further optimized by reconfiguring that par-
ticular route. Using PSO, we find an optimal position for
the receiving router ofminimum throughput link and then
move the router to that position using themobility control
(MC). The throughput performance of the reconfigured
route (RP-PSO-MC) is compared with the original route
computed using the RP-based metric.

4.1 Simulation setup
The values assigned to the fixed parameters are shown
in Table 1. The values selected for the parameters are in
accordance with real-world low-power wireless networks
[56].

4.1.1 Assumptions
The following operational assumptions underlie the devel-
opment of the proposed framework.

• Each node has a unique identification (ID).
• Every node knows the relative distance to its

neighboring nodes.
• A priori channel information is available.
• The transmission power is the same for all nodes.
• Single-path routing is considered, and only the route

chosen and optimized by the COMPARE framework
is used for data transmission from the source to the
destination.

4.2 Results from illustrative scenarios
We check the correctness and validity of the proposed
COMPARE framework in different network scenarios,
i.e., sparse, dense, and mixed up. A total of N = 150
nodes are placed with a Gaussian random distribution
within the 50 × 50 square test area. The test area is
divided into cells or subareas with size d × d. In our
problem, we consider three scenarios, with the differ-
ences between them depending on the spatial proxim-
ity of the nodes to each other. The sparse scenario is
defined as a network with only one node in each sub-
area; the dense scenario has four nodes in each sub-
area; and the mixed-up scenario has two nodes in each
subarea.
For each scenario, we validate the proposed approach by

evaluating the simulation results for two separate cases,
i.e., one-to-one and one-to-all. The one-to-one simulation
focuses on a single route in order to perform a hop-by-hop
analysis of the selected route and examines the process
by which the router on the link with limited throughput
is optimally positioned. In the one-to-all case, we test the
performance of COMPARE for different kinds of routes
with varying numbers of hops, and levels of interference
and distance. We collect statistical data for 149 routes and
choose the median instead of the mean as a descriptor
of the data because the distribution is quite skewed. The
dispersion of the data is measured using the interquartile
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range (IQR). The IQR is defined as the difference between
25th and 75th percentiles of the data.

4.2.1 Scenario 1: sparse network
One-to-one. We first investigate the case when a source
node wants to share information with a specific distant
destination node in a sparse network. The network sce-
nario is shown in Figure 5, where a randomly selected
source node-1 requires a route to the destination node-72.
The routes are selected using three route selectionmetrics
based on HC, ED, and RP.
Figure 6a shows the achievable end-to-end throughput

of the routes selected by the different metrics. The RP-
based route outperforms the HC- and ED-based metrics
in terms of end-to-end throughput. The throughput gain
for the RP-based route is 32% and 78% more than the ED-
and HC-based routes, respectively. Figure 6b shows the
number of hops traversed by each metric. Intuitively, the
HC metric chooses the route with the lowest number of
hops, i.e., 14, but in realistic communication scenarios,
minimizing the hop count does not necessarily increase
the end-to-end throughput. The RP-based metric takes
four extra hops to reach the destination, but it incor-
porates the stochastic nature of the wireless links and
chooses the link with the highest reception probability,
resulting in higher throughput. By contrast, the ED- and
HC-based schemes select the route irrespective of the
conditions and nature of the wireless links. As expected,

the ED-based scheme choose the route with the smallest
physical distance between the source and destination, as
shown in Figure 6c.
The RP-based route is further optimized using the

position-aware optimization phase. First, the link with the
minimum throughput inside the route is identified. In
the case of scenario 1, the link between router-112 and
router-120 on the RP-based route has the lowest recep-
tion probability, i.e., 0.345, and an individual throughput
of 0.0261, limiting the overall route performance. The
PSO is used by router-120 to find a new position, so that
the reception probability and throughput are improved.
The RP-based route is reconfigured as the router moves
to the new position using MC. The yellow edges in
Figure 7 represent the link connectivity of router-120 at
the new position computed by the PSO. The initial posi-
tion of router-120 in the RP-based route is (29.65, 28.89).
After implementing position-aware optimization, router-
120 moves to (27.70, 28.09). Thus, moving the router by
a small distance of 209 cm at an angle of 0.385 achieves
a gain in the end-to-end throughput of 32%, compared to
the previous throughput of the RP-based route as shown
in Figure 8a. The RP-PSO-MC represents the reconfig-
ured route after PSO and MC have been applied to the
route selected using the RP metric. Figure 8b,c shows that
the number of hops and the Euclidean distance remain the
same for both RP- and RP-PSO-MC- based routes in this
particular case.

Figure 5 A sparse network of 150 nodes with routes selected from source node-1 (red) to destination node-72 (green). Using HC
(magneta)-, ED (cyan)-, and RP (red)-based metrics.
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Figure 6 Throughput (a), number of hops (b), and Euclidean distance (c) of routes for a single source-destination pair in sparse network.
Using HC-, ED-, and RP-based metrics.

Figure 7 A sparse network of 150 nodes with yellow edges depicting the connectivity of relocated router.
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Figure 8 Throughput (a), number of hops (b), and Euclidean distance (c) for a single source-destination pair. Using HC-, ED-, RP-, and
RP-PSO-MC-based schemes in sparse network.

Figure 9 A sparse network of 150 nodes with source node-40. Routes to all other destinations are selected using HC-, ED-, RP-, and
RP-PSO-MC-based schemes.
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One-to-all. In order to further validate the proposed
route optimization framework, we consider a situation in
which a source node requires routes to all the other nodes
in the network. In the scenario shown in Figure 9, node-40
is randomly selected as the source node and routes to all
the other destinations are computed using the HC-, ED-,
and RP-based metrics. Furthermore, each route selected
by the RP-based metric is reconfigured using position-
aware optimization and mobility control (RP-PSO-MC).
Figure 10a shows the statistical properties of the end-to-
end throughput for the 149 source-destination pairs. The
performance of the proposed COMPARE scheme is val-
idated again, as it achieves a median throughput gain of
19% compared to the RP-based route without position-
aware optimization. The median number of hops and the
Euclidean distance remain the same in this particular case,
as shown in Figure10b,c, respectively.
Intuitively, it seems that the reception probability is

higher at small distances, but in reality, it can be the
reverse, as the link quality also depends on interference
and fading. The reception probability can be very low

even at small distances if there is high interference and
deep fades. The schemewe are proposing generates routes
with a higher number of hops than the conventional met-
rics, but manages to generate optimized throughput by
exploiting multipath fading and position information.

4.2.2 Scenario 2: dense network
One-to-one: In the dense scenario shown in Figure 11,
node-1 and node-147 are randomly chosen as the source
and destination nodes. The routes are selected using
the HC-, ED-, RP-based metrics, and the link between
router−104 → 144 is identified as the link with the lowest
throughput on the RP-based route. Router-144 is moved
to a new position using position-aware optimization, and
the yellow lines show the links of router-144 at the new
position.
Figure 12a illustrates the end-to-end throughput for the

HC-, ED-, RP- and RP-PSO-MC-based routes. Reconfig-
uration of the RP-based route by moving router-144 by a
short distance of 241 cm at an angle of 0.718 achieves a
gain of 14% compared to the previous route. The previous

Figure 10 Throughput (a), number of hops (b), and Euclidean distance (c) for routes of 149 source-destination pairs in a sparse network.
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Figure 11 A dense network of 150 nodes with routes selected from source node-1 (red) to destination node-72 (green). Using HC
(magneta)-, ED (cyan)-, and RP (red)-based metrics.

Figure 12 Throughput (a), number of hops (b), and Euclidean distance (c) for a single source-destination pair. Using HC-, ED-, RP-, and
RP-PSO-MC-based schemes in a dense network.
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Table 2 RP- and RP-PSO-MC-based selected routes

Scheme Route

RP 1 → 37 → 56 → 7 → 80 → 81 → 13 → 83 → 18 →
100 → 104 → 144 → 145 → 124 → 130 → 150 → 147

RP-PSO-MC 1 → 37 → 56 → 7 → 80 → 81 → 13 → 83 →
18 → 104 → 144 → 145 → 124 → 130 → 150 → 147

and new positions of the router are (27.03, 23.54) and
(25.20, 21.96), respectively. In a dense network, the COM-
PARE framework reduces the number of hops in the
reconfigured route, as shown in Figure 12b where the RP-
PSO-MC-based route has one less hop than the simple
RP-based route.
The routes selected by the RP and RP-PSO-MC

schemes are shown in Table 2. It is observed that before
reconfiguration, the RP-based route follows the hops
18 → 100 → 104; when router-144 is moved to the opti-
mal position using position-aware optimization, the route

is reconfigured and establishes a direct link with router-
18, i.e., 18 → 100. Minimizing the number of hops in the
route has a positive impact on the performance of a sen-
sor network; it helps by decreasing delay and increasing
robustness.
One-to-all: The proposed framework is also tested for

the one-to-all case in a dense scenario. Node-1 is ran-
domly selected as the source in Figure 11, and the routes
to all the other nodes in the network are computed using
the HC, ED, RP, and RP-PSO-MC schemes. Figure 13a
shows a statistical comparison of the throughputs for
the 149 routes. The median throughput gain for the RP-
PSO-MC routes is 20% compared to the simple RP-based
routes. The overall number of hops is also minimized
once the RP-based routes have been reconfigured, as
shown in Figure 13b. The Euclidean distance is the low-
est for the ED-based metric and is almost the same in
the RP- and RP-PSO-MC-based routes, as illustrated in
Figure 13c.

Figure 13 Throughput (a), number of hops (b), and Euclidean distance (c) for routes of 149 source-destination pairs in a dense network.
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Figure 14 Amixed-up network of 150 nodes with routes selected from source node-1 (red) to destination node-72 (green). Using HC
(magneta)-, ED (cyan)-, and RP (red)-based metrics.

Figure 15 Throughput (a), number of hops (b), and Euclidean distance for a single source-destination pair. Using HC-, ED-, RP-, and
RP-PSO-MC-based schemes in a mixed-up network.
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4.2.3 Scenario 3: mixed-up network
One-to-one: In this simulation, we consider a scenario
in which some parts of the network are densely popu-
lated while others are sparsely connected, as shown in
Figure 14. Initially, the routes are selected on the basis of
the HC-, ED-, and RP-based metrics, and the RP-based
route is further optimized by reconfiguring the position
of the router with the lowest link quality. In Figure 14, the
link 32 → 114 is limiting the overall performance of the
RP-based route. Router-114 is moved to its optimal posi-
tion using PSO and MC, and the yellow edges represent
the links of router-114 at the optimal position. Figure 15a
shows that the RP-PSO-MC-based route provides a higher
throughput compared with the simple RP-based route.
This gain is achieved through only a small change in posi-
tion, as the position for router-114 in the RP-based route is
(28.61, 19.62) and the optimal position computed by PSO
is (28.61, 21.00). Thus, router-114 is moved only 137 cm
at an angle of 1.567 to achieve an 18% throughput gain.
The number of hops for the reconfigured route is also less

than for the RP-based route, demonstrating the useful-
ness of the proposed scheme, as illustrated in Figure 15b.
Figure 15c shows that the ED-based route traverses the
least distance and the Euclidean distances for the other
schemes are approximately the same.
One-to-all: The routes from source node-1 to all the

other nodes in Figure 14 are computed using the same
procedure as described in the previous scenarios. A sta-
tistical analysis of the throughputs for 149 routes is shown
in Figure 16a. The RP-PSO-MC-based routes achieve a
median throughput gain of 31% compared to the original
RP-based routes. The number of hops for the RP-PSO-
MC-based routes is less than in the RP-based routes, as
illustrated in Figure 16b. The Euclidean distances for the
routes based on the RP and RP-PSO-MC schemes are
approximately the same, as shown in Figure 16c.

5 Conclusions
In a mobile sensor network, it is crucial to achieve a
high throughput for ongoing data transmission between

Figure 16 Throughput (a), number of hops (b), and Euclidean distance (c) for routes of 149 source-destination pairs in amixed-up network.
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two far away nodes connected by a number of router
nodes. To this end, we have proposed a COMPARE route
optimization framework. The performance of the pro-
posed framework has been examined in the presence
of noise, path loss, multipath fading, and interference.
Reception probability is used to estimate link quality and
select the route with a higher end-to-end throughput. The
throughput of the selected route is further optimized by
reconfiguring it in the position-aware optimization phase.
The single-path routing is considered, and only the route
selected by the COMPARE framework is used for data
transmission. The throughput performance of COMPARE
was compared with the conventional route selection met-
rics through simulation. We showed that by exploiting
the multipath fading, mobility, and position information
of nodes, COMPARE has resulted in considerably better
performance.
Currently, we are investigating coordinative reconfig-

urable route optimization using the proposed framework.
In addition, we considered the single-route data trans-
mission in this paper which has limited fault tolerance;
the performance of the proposed framework in a multi-
ple route infrastructure is of potential interest for future
work.
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