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Abstract

presence of additive white Gaussian noise.

A word error rate (WER) reducing approach for a hybrid iterative error and erasure decoding algorithm for low-density
parity-check codes is described. A lower WER is achieved when the maximum number of iterations of the min-sum
belief propagation decoder stage is set to certain specific values which are code dependent. By proper choice of
decoder parameters, this approach reduces WER by about 2 orders of magnitude for an equivalent decoding
complexity. Computer simulation results are given for the efficient use of this hybrid decoding technique in the
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Introduction

Low-density parity-check (LDPC) codes were first intro-
duced by Gallager in 1963 [1] and rediscovered by Mackay
[2] inlate 1990s. LDPC codes are characterized by a sparse
parity-check matrix H, for which an iterative decoder
becomes an attractive option. One example is the belief
propagation (BP) decoder which achieves the optimal
MAP (Maximum a Posteriori) decoding condition if the
code graph does not contain cycles ([3], p. 211). However,
most LDPC codes have cycles in their Tanner graph repre-
sentation, mainly for small and medium blocklengths [4],
which adversely affect code performance. The BP decod-
ing operation is executed for a preset number of iterations,
and in case of a decoding failure, it leads to a frame error
which implies a number of bits erroneously decoded. In
the error-floor region, where LDPC codes exhibit a sud-
den saturation in word error rate (WER) for a sufficiently
high signal-to-noise ratio (SNR), the bit errors are primar-
ily caused by trapping sets ([3], p. 225). A considerable
amount of research has gone into designing decoders to
mitigate the errors caused by trapping sets [4-6].

In [7], a bi-mode decoder for LDPC codes was pro-
posed for the additive white Gaussian noise (AWGN)
channel, called a hybrid decoder (HD). The HD system
operates in two modes (stages), where in mode 1 (first
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stage) a min-sum BP decoding is employed and in mode 2
(second stage) an iterative erasure decoder is used. One
cycle of the HD operation includes at least one passage
through the min-sum BP decoder, and if necessary, it also
includes a passage through the erasure decoder.

In this article, we make a more efficient use of the HD
system introduced in [7]. In comparison with [7], the nov-
elty here is the experimental determination of appropriate
values for the number of iterations for the min-sum BP
decoder which permits to perform a fine tune on the HD
system. Furthermore, a new material has been added to
explain the estimation of the number of bits to be erased
at the end of an unsuccessful BP decoding, and computer
simulations were performed to investigate the behavior
of certain LDPC codes in the presence of AWGN by
analyzing the following:

e Behavior of the number of errors resulting after a
decoding failure;

e Impact on the performance of HD systems caused by
setting a specific number of iterations in a min-sum
BP decoder, such that the cardinality of the
remaining bit error pattern is small in case of
unsuccessful BP decoding;

e Performance curves obtained by computer
simulation for some LDPC codes used in the IEEE
802.11n standard [8], under the constraints on the
decoding conditions indicated earlier.
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Nowadays, LDPC codes are continually in high demand,
and that causes a strong need for the development of low-
complexity decoding algorithms for these codes to enable
low-cost high-throughput decoder implementations. As
mentioned in [9], there are three main approaches to
reduce the complexity of LDPC decoding, namely

1. Simplification of computations performed by the
decoder

2. Reducing the number of iterations needed to
converge

3. Reducing the complexity cost of an iteration.

Different approaches have been followed to reduce the
complexity of LDPC decoding. For example, by replacing
the sum-product check node computation by a simpler
function [10], to simplify the computations, or using var-
ious scheduling techniques to increase the convergence
rate by altering the order of updating messages dur-
ing the iteration [11], or using the forced convergence
method [12]. In [9], an approach named lazy schedul-
ing was employed to force a reduction in the complexity
of decoding computations without reducing the number
of iterations. Here, we address an approach whereby the
maximum number of iterations is reduced without paying
a penalty for loss in performance.

Hybrid decoding system
We illustrate in Figure 1 the basic digital communica-
tion system adopted for the computer simulation of some
selected LDPC codes. At the transmitter, a binary infor-
mation K-tuple w = (u1,u,...,ux) feeds the encoder
for a binary LDPC code C to produce the codeword ¢ =
(c1,¢2,...,¢cn). Each codeword is then processed by a
mapper in such a way that each digit 0 is converted to the
integer +1 and each digit 1 is converted to the integer —1.
At the mapper output, the N-tuple x = (x1,%2,...,%4N)
is generated where x;, 1 < i < N, denotes an integer
equal either to +1 or —1. The N-tuple x is sent through
an AWGN channel, the output of which is denoted by
y, expressed as y = x + n, where n = (n1,ny,...,
ny) denotes a vector whose coordinates are AWGN
samples introduced by the channel with zero mean and
variance 2.

At the receiver, decoding consists of processing y to
recover u, and this is performed in at most two decoding

Page 2 of 7

stages as we explain in the sequel according to the
flowchart in Figure 2. On receiving the N-tuple vy, the
decoder converts y into a vector & = (§1,&,...,&N)
whose coordinates are values of a quantized logarithmic
likelihood ratio (QLLR) [13]. The first decoding stage
employs a min-sum BP decoder. Let /gp denote the max-
imum number of iterations for the first decoding stage.
After each iteration, the min-sum BP decoder gener-
ates an N-tuple é = (1,6,...,EN) of reliability values,
which is converted to a binary form by hard-decision and
denoted as ¢ = (¢1,C2,...,¢n). The binary N-tuple ¢ is
tested for its syndrome by means of the operation ¢H,
where H” denotes the transpose of the code parity-check
matrix. A well-established result for linear block codes
([14], p. 70), guarantees that if cH? = 0 occurs, then
we can consider ¢ to be the transmitted codeword and
the HD cycle is successfully interrupted. Otherwise, i.e.,
if cHT # 0, then a new iteration is performed by the
BP decoder and the newly generated ¢ is tested to check
whether ¢H” = 0. The BP decoder iterations continue
until the condition ¢H” = 0 is satisfied or else the num-
ber of iterations reaches the value Igp. After Igp iterations
are performed and decoding is not successful, instead of
declaring a decoding failure, the resulting N-tuple £ of
reliability values is used by an artificially created binary
erasure channel (BEC) [7] to produce an N-tuple z of 0’s,
1’s, and erasures.

For a given positive integer X, let Sy denote a set
containing X coordinates, X < N, selected among N
coordinates with lowest reliability values in £. The value of
each one of those X’ selected coordinates is mapped to z as
an erasure, and the remaining N — X coordinates in £ are
mapped to z as either 0’s or 1’s by hard-decision according
to Rule 1 as follows:

Rule 1.

A, forie Sy
zi=1 .
¢i, fori ¢ Sy,

where A denotes an erasure.

The iterative erasure correction decoder then acts on
z to correct the erasures introduced by Rule 1. In case
all erasures are corrected, the HD cycle is interrupted
and the erasure decoder outputs a binary N-tuple w. If
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Figure 1 Block diagram of the digital communication system employed to investigate the performance of selected LDPC codes.
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Figure 2 Flowchart illustrating the HD operations performed on y to recover u.

wHT = 0, then w is considered to be a codeword; other-
wise, a decoding failure occurs. However, if all erasures are
not corrected but at least one erasure is corrected when
the erasure decoding operation is finished, the erasure
decoder outputs an N-tuple w in which the coordinate
values coincide with corresponding coordinate values in z,
except for those coordinates where erasures in z have been
corrected and, therefore, will contain binary values in w.
Next, w is associated to an N-tuple of reliability values &
by Rule 2 as follows:

Rule 2.
&, wj=Aorw; = E,»,
—f;'j Wi ;ﬁ ﬁ,’.

When the erasure decoding operation is finished, we
notice in & that the QLLR values from the previous BP

& =

decoding are kept if the corresponding digits remained
erased or if their values are the same as those already com-
puted at the previous BP decoding. Otherwise, the sign of
the corresponding QLLR value is changed. A binary N-
tuple b, obtained by hard-decision on the coordinate val-
ues of &, has its syndrome computed to find out whether
decoding has been successful or not. If not so and the
maximum number of cycles of the HD algorithm, denoted
by I1ip, has not been reached, then £ is used as input to the
min-sum BP decoder and thus a new HD cycle is initiated.

The choice of a value for X’

As we already mentioned, the parameter X" represents the
number of bits to be erased at the end of an unsuccess-
ful BP decoding using the criteria of erasing those digits
with lowest QLLR absolute values. An adequate determi-
nation of X is essential for obtaining a satisfactory overall
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performance since, in the erasure iterative decoding pro-
cess, as the number of introduced erasures increases, it
is less and less likely to find parity-check equations con-
taining a single erased bit which could thus be solved. The
set of erased bits which cannot be decoded with the code
parity-check equations is called a stopping set [15].

Definition 1 (Reference [15]). A stopping set S in a linear
block code C is a subset of the set of variable nodes (or bit
nodes) of the code Tanner graph, such that all neighbors of
S (parity-check nodes) are connected to S at least twice.

Whenever there is a decoding failure on the first decod-
ing stage, then the second decoding stage is employed
to process the output of an artificially created BEC. The
input to the BEC is the binary sequence ¢ produced by the
min-sum BP decoder at the end of the Igpth iteration. Our
motivation to employ an iterative erasure decoding stage
is the following. For a given block code with minimum
Hamming distance d, it is well known that any erasure pat-
tern containing up to d — 1 erasures ([14], p. 81) can be
corrected, as well as a large fraction of patterns containing
d or more erasures, as long as the number of erasures in
a codeword does not exceed the number of parity-check
digits and these erasures do not cover a codeword [16].

As shown later, typical useful values of X" are much larger
than d.

Definition 2 (Reference [17]). The stopping distance of a
linear block code C, denoted as s(H), is defined as the set
of least cardinality among all stopping sets of code C.

The number of distinct stopping sets of a linear code
C determines the code performance with erasure iterative
decoding [17]. The performance of code C with block-
length N, for a specific parity-check matrix H, as a func-
tion of the BEC erasure probability ¢, is computed with the
probability Py (€), i.e., the word erasure rate, expressed as
([18], p. 313)

N

S
P =2 () )ea-eoNt (32,

=0

where T'(8) denotes the total number of distinct combi-
nations of § positions with erasures and S(§) denotes the
number of such combinations which constitute a stopping
set. Thus, the ratio S(§)/T(§) can be interpreted as the
probability of a given set § of erased digits to be a stopping
set. All erasure patterns containing a number of erasures
less than the stopping distance s(H) can be corrected by
the erasure iterative decoder. Apparently, a good choice
for X should satisfy X < s(H), in which case all erasure
patterns would be corrected. However, a small value for
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s(H) may be insufficient for the possible S x to contain the
majority of the errors present in the N-tuples &.

Definition 3. We define an N-tuple containing errors
produced when BP decoding fails as detected if all erro-
neous positions are contained in Sy.

Definition 4. We define an N-tuple containing errors
produced when BP decoding fails as corrected if it can
be detected, and the corresponding binary word ¢ pro-
duced by the erasure iterative decoder belongs to code C,
ie,ceC.

For two LDPC codes used in the IEEE802.11n stan-
dard and used as examples in this article, namely the
(1296, 648) and the (1296, 864) codes, the best value for X
was determined by computer simulation of the HD algo-
rithm by trying out various values for X, s(H) < X, and
computing the percentage of detected error patterns, the
percentage of corrected erasures, and the percentage of
errors corrected in the received N-tuple. The best value
of X for the (1296,648) LDPC code is X = 130 as can
be viewed in Figure 3. For the (1296, 864) LDPC code, the
best value of X" is equal to 100 as indicated in Figure 4. By
observing Figures 3 and 4, we notice that by increasing X,
there is a corresponding increase in the percentage detec-
tion of error patterns (blue bars); however, this comes
accompanied by a decrease in the percentage correction
of erasures (green bars) due primarily to the presence of
stopping sets. We notice that the (1296, 648) code has a
minimum distance d = 23, while the minimum distance
of the (1296,864) code, although not known exactly, is
estimated to be at most 20, i.e., both minimum distances
are much less than the corresponding values of X. Other
SNR values were tested to analyze the behavior of the two
codes considered here, and similar results to those shown
in Figures 3 and 4 were obtained.

Error event analysis
In the HD scheme, ideally after the last iteration of an
unsuccessful min-sum BP decoding, all remaining bit

T
mm Corrected N-tuples
= Corrected erasures 1
I Detected error patterns

(1296,648) LDPC code

o
=]

®
=]
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B (2]
o o

n
=]
T

100 110 120 130 140 150 160 170 180
Number of erasures (X)
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Figure 3 Determination of the best value for X’ for the
(1296,648) LDPC code for SNR = 2.4 dB.
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Figure 4 Determination of the best value for X’ for the
(1296,864) LDPC code for SNR = 3.2 dB.

errors should be included among those X" erased posi-
tions in the N-tuple z. That is more likely to occur when
either the value of X is large or else when the cardinal-
ity of the remaining bit error pattern is small. Opting for
a large X in many cases may not be a good approach
because it can give rise to stopping sets ([3], p. 244), thus
hampering the success of the iterative erasure decoder as
we can observe by analyzing the behavior of the green
bars in Figures 3 and 4. On the other hand, the number
of bit errors for a given frame error occurrence can vary
significantly along the intermediate iterations [5], i.e., the
cardinality of the remaining bit error pattern can vary sig-
nificantly. The variation in the number of erroneous bits at
the output of a BP decoder after an unsuccessful decoding
motivated us to develop an error event analysis in order
to perform a fine tune on the HD system [7], more specif-
ically for selecting an appropriate value for Igp. In [7],
initially, an arbitrary value of Igp was employed for the first
stage of the HD system, which is a min-sum BP decoder. In
this manner, there was no clue to the number of remain-
ing errors when Ipp iterations were performed and the
decoding was not successful. When that happened, it was
likely that the BP decoder had reached a trapping set ([3],
p. 651). Once a trapping set has been reached, it is not pos-
sible, by performing more iterations with the BP decoder,
to get out of it and successfully decode the received word.
According to ([3], p. 652), the variation in the cardinal-
ity of the remaining bit error patterns occurs due to the
behavior of the trapping sets that dominate the error floor.

Trapping sets can be classified into one of three classes
according to their behavior ([3], p. 652): (1) a stable trap-
ping set (also called a fixed-point trapping set), (2) a
periodically oscillating trapping-set, and (3) an aperiodic
oscillating trapping set. The relevance of the variation in
the cardinality of the remaining bit error patterns depends
on the class of trapping sets that dominate the error-floor
region. In general, there is no known theoretical way to
establish the trapping sets for a given code. Thus, find-
ing trapping sets is in general a difficult task because it
requires intensive computer simulations at very low error
rates which often take months to run ([3], p. 651). As an
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alternative to the usual computer simulation, we develop
an error event analysis, which has a much lower com-
putational cost, and apply it to two LDPC codes of the
IEEE802.11n standard used as examples in this article.
The purpose of the error event analysis is to find out
the average behavior of the min-sum BP decoding, with
respect to the variation in the number of errors after each
iteration, in case of a decoding failure. If the cardinality
of the remaining bit error patterns varies significantly, we
expect to find out values for the number of iterations for
which the number or erroneous bits is minimal and thus
choose one of these values for Igp. As a result, the proba-
bility that erroneous bits are included among the X" erased
positions in the N-tuple z is higher.

In the sequel, we present results of computer sim-
ulations performed for two LDPC codes used in the
IEEE802.11n standard, namely the (1296,648) and the
(1296, 864) codes. Our purpose is to find out the aver-
age behavior of the min-sum BP decoding with respect to
the variation in the number of errors remaining after each
iteration in case of a decoding failure. The number of bit
errors is averaged over the number of intermediate itera-
tions of a min-sum BP decoder. The procedure employed
to generate the curves in Figure 5 works as follows.

Let B; be the number of errors in an estimated N-
tuple in the ith iteration of the min-sum BP decoding
algorithm, where i < Igp. In case of a min-sum BP decod-
ing failure, let xm = {B8]", 8", ... ,ﬂl’gp} denote the mth
sample sequence having for each coordinate the number
of errors in the corresponding BP iteration. The coor-
dinates in sequence Xj are then normalized by their
largest value giving rise to the normalized sequence X, =
{,5{", B;", e ,g;gp}. Averaging the overall mth normalized
Xm sequences gives rise to the ¥y = {y1,¥2,..., Vi)
sequence, whose ith coordinate (corresponding to ith iter-
ation) is expressed by

M ~
B
1
_ m=1
Yi= M
0.5
£
r 3 ® (1296,648) LDPC code error event analysis curve
0.4 D 4 ® © (1296,864) LDPC code error event analysis curve
l o
o

Number of error bits (normalized)

0 10 20 30 40 50 60 70 8 80 100
Iteration number

Figure 5 Error event analysis for (1296, 648) and (1296, 864)

LDPC codes as a function of the total number of decoding

iterations.
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where M denotes the maximum number of samples con-
sidered in the analysis. Thus, the sequence y allows us to
track the average behavior of the min-sum BP decoding
algorithm with respect to the variation in the number of
errors at each iteration. The results shown in Figure 5 are
for the two codes of interest, where the horizontal axis
represents the number of decoding iterations, and the ver-
tical axis represents the average normalized number of bit
errors at each iteration of the min-sum BP algorithm, y;,
1 < i < Igp = 100. In Figure 5, for the (1296, 648) code,
the curve is plotted for SNR = 2.4 dB and M = 525 sam-
ples, and for the (1296, 864) code, the curve is plotted for
SNR = 3.2 dB and M = 510 samples. Since trapping sets
depend not only on the graphical structure of the code but
also on the channel ([3], p. 653), it is noteworthy that other
SNR values were tested to analyze the behavior of the
two codes in the situation described, and similar results
to those shown in Figure 5 were obtained. In agreement
with [6], for both LDPC codes considered, the number
of remaining errors after a BP decoding failure exhibit an
oscillating behavior as illustrated in Figure 5. The result-
ing number of bit errors may reach higher values, referred
to as peak points or lower values (local minima) referred
to as valley points.

Although the error event analysis performed for the
codes examined may not be enough to draw precise con-
clusions about the class of the trapping sets that dominate
the error-floor region, it is enough to perform a fine tune
of the HD system as we show in the next section.

Efficient use of the hybrid decoder

Figure 6 shows some performance curves for the
(1296, 648) LDPC code. First, we consider decoding the
(1296, 648) LDPC code using Igp = 12 iterations for the
min-sum BP decoder (first stage) of the HD system. The
value Igp = 12 is very close to a valley point in the
curve shown in Figure 5, i.e., for which low cardinality bit
error patterns in the estimated N-tuple are expected. It is
noticed in Figure 6 that to achieve the same performance,
in terms of WER, the HD system with Iyp = 1 (1 cycle)
requires an SNR around 0.3 dB lower than that required

-o-12 iterations min-sum BP
~4-1-cycle HD (12 iter. min-sum BP stage)
-=-2-cycle HD (12 iter. min-sum BP stage)
102 =+=50 iterations min-sum BP
-0-25 iterations min-sum BP
3 -¢-1-cycle HD (25 iter. min-sum BP stage)
10 -o-2-cycle HD (25 iter. min-sum BP stage)

10 (1296,648) LDPC code

Word error rate (WER)

2.7 2.8 2.9 3 3.1 3.2 3.3
Signal-to-noise ratio (dB)

Figure 6 Performance curves for the (1296, 648) LDPC code.
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for a conventional min-sum BP decoder with Igp = 12
iterations. Similarly, for Iyp = 2 (2 cycles), the HD system
requires an SNR around 0.6 dB lower than that required
for a conventional min-sum BP decoder with Igp = 12
iterations.

Furthermore, for the range of SNR values in Figure 6, the
WER for the HD system with 1 cycle is lower than that for
a conventional min-sum BP decoder with Igp = 12 itera-
tions by approximately 1 order of magnitude. For 2 cycles,
the resulting WER for the HD system is lower by 2 orders
of magnitude than that for a conventional min-sum BP
decoder with Igp = 12 iterations.

Figure 6 also illustrates the results obtained for the
(1296,648) LDPC code for Igp = 25 iterations. We
observe in Figure 5 that Ipp = 25 iterations is close
to a peak point and large cardinality error patterns are
expected. For Igp = 25, an analysis similar to that from
the previous case shows that the HD system with 1 cycle
requires an SNR around 0.1 dB lower than that of a min-
sum BP decoder for Igp = 25 iterations in order to achieve
the same performance in terms of WER. For a 2-cycle HD,
a reduction of 0.2 dB results, again in comparison with a
min-sum BP decoder for Igp = 25 iterations. With respect
to the values of WER, for Igp = 25, we observe that the
difference between the values of WER for the HD system
with 2 cycles and for a min-sum BP decoder with Igp = 25
iterations is smaller than 1 order of magnitude. In sum-
mary, in terms of WER, no considerable gain results if the
value chosen for Ipp is close to a peak point in Figure 5. On
the other hand, we obtain a more efficient use of the HD
system for the (1296, 648) LDPC code by setting the value
of Igp close to a valley point in Figure 5.

A procedure similar to that described for the (1296, 648)
code was also performed for decoding the (1296, 864)
code using the HD system, and the corresponding results
are shown in Figure 7. As expected, for Igp = 10 iter-
ations, which is very close to a valley point in Figure 5,
the use of the HD system produces better results than
those for Igp = 16 iterations, which is a peak point in
Figure 5, according to the analysis described earlier for the
(1296, 648) code.

S,

T
-o- 10 iterations min-sum BP

(1296,864) LDPC code —4-1-cycle HD (10 iter. min-sum BP stage)

2
T 10 —= 2-cycle HD (10 iter. min-sum BP stage)
g == 50 iterations min-sum BP

Y 10 -0- 16 iterations min-sum BP

® -9~ 1-cycle HD (16 iter. min-sum BP stage)
- 4 -o- 2-cycle HD (16 iter. min-sum BP stage)
§10%¢

5

°

5 10°

H]

3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9
Signal-to-noise ratio (SNR)

Figure 7 Performance curves for the (1296,864) LDPC code.
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Performance curves in Figures 6 and 7 for the min-sum
BP algorithm with 50 iterations serve as a reference value.
By setting Igp close to a valley point, the HD system needs
an overall reduced number of iterations to achieve a sim-
ilar performance to the min-sum BP decoding scheme,
with equivalent implementation complexity.

Conclusions

The oscillating behavior of the error rate versus num-
ber of iterations, featured by some LDPC codes of the
IEEE802.11n standard, was exploited in order to take
advantage of the so-called valley points in the error event
analysis. The goal achieved here was an enhancement of
the performance of the bi-modal hybrid decoder from [7].
Simulation results show that a more efficient use of the
HD system is obtained when the min-sum BP decoder
employs a maximum number of iterations correspond-
ing to points close to and possibly including a valley
point and avoiding values close to and possibly includ-
ing a peak point. In particular, the error event analysis
for the (1296, 648) code in Figure 5 indicates for 12 iter-
ations a number of remaining errors much smaller than
for 25 iterations, whenever there is a decoding failure.
However, in general, a BP decoder employing a maximum
of 25 iterations on average will fail less times than when
employing a maximum of 12 iterations. A similar reason-
ing applies to other LDPC codes of similar parameters as
well as to LDPC codes of similar block length. In particu-
lar, it applies to the (1296, 864) code that was considered
here.
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