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Abstract

Communication channels not only suffer from ambient noise but also from deterministic interference. In this paper,
we consider signal-to-noise ratio (SNR) estimation in the presence of constant deterministic interference. A maximum
likelihood (ML) non-data-aided algorithm is proposed for SNR estimation. We first consider a real-valued model and
then extend this to a complex-valued model. The proposed algorithm applies an iterative approach initialized with
approximate closed form estimates so as to guarantee stability and convergence. Furthermore, the Cramer-Rao
bound (CRB) is also derived as the theoretical limit of the jitter variance. Computer simulations based on
pulse-amplitude modulation (PAM) and quadrature amplitude modulation (QAM) sources show that the performance
of the proposed algorithm is close to the CRB.
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1 Introduction
Besides ambient noise, the communication channels may
suffer from deterministic interference. In terrestrial wire-
less systems, the competing users sharing the same spec-
trum resource, or simply the drift of the system’s baseline,
may introduce some sort of deterministic interference
[1,2]. When a direct conversion receiver is applied, the
demodulator output is usually impaired by a direct cur-
rent (DC) offset due to self-mixing [3], which might be
considered as some sort of deterministic interference.
More recently, based on an experimental underwater
communication system, Wang et al. [4] observed that
unknown users transmitting multiple sonar waveforms
in the same environment may lead to significant perfor-
mance degradation. In [4], the deterministic interference
is modelled as known waveform with unknown param-
eters. Interference reconstruction and cancelation was
applied to improve the system performance.
The signal-to-noise ratio (SNR), defined as the ratio of

the signal power to the noise power, is frequently used
as the system performance measure [5-8]. In cases where
interference is present, the interference can be estimated
and removed from the estimated signal [2,3]. In [1,6,7], the
signal-to-interference-plus-noise ratio (SINR), instead of
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SNR, is applied as the system measure. In [1], a non-data-
aided (NDA) algorithm, based on fourth-order statistics,
was proposed for SINR estimation, where the interference
was modeled as a constant. In [6] and [7], SINR estimation
in cellular systems is investigated, where the interference
stems from competing users in other cells.
In [6,7], the interference was modelled as zero-mean

random variable. The algorithms indeed cannot deal with
deterministic interference. The fourth-order statistics-
based algorithm in [1] requires a large quantity of samples
(more than 1,000). It may not be effective to assume that
the interference is constant during thousands of symbols.
The maximum likelihood (ML) algorithm in [2] needs
only tens of samples. However, the algorithm assumes no
attenuation of the source signal and hence is not applica-
ble to SNR estimation.
Our goal in this paper is to develop a NDA SNR esti-

mation algorithm which provides satisfactory estimates
with a small size of samples (e.g., tens of samples). We
assume a slowly time-varying channel such that over the
observation interval, the channel gain and the interference
can be assumed to be constant. In natural, therefore, this
is an additive noise channel model with attenuation fac-
tor and deterministic interference during the observation
interval.
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In this paper, an iterative maximum likelihood (ML)
algorithm is proposed for SNR estimation. A sim-
ple moment-based estimator is applied to initialize the
ML algorithm. Simulation results show that the pro-
posed algorithm converges within 10 iterations. We
also derive the theoretical performance bound, i.e., the
Cramer-Rao bound (CRB) as the performance bench-
mark. Computer simulations based on pulse-amplitude
modulation (PAM) and quadrature amplitude modula-
tion (QAM) sources show that the performance of the
proposed algorithm with tens of samples is close to the
CRB.

2 Development of the iterative ML algorithm
2.1 Real-valued systemwith PAM signaling
We first consider a real-valued system with PAM signal-
ing. The received signal is given by

xn = Asn + I + vn, (1)

where sn is the source signal and vn is the ambient noise.
We assume that vn is zero-mean white Gaussian noise
with variance σ 2. A stands for the channel gain/atten-
uation, and I is the deterministic interference. We assume
that sn is generated randomly by a M-ary PAM source
with equiprobable constellation points at±(2m−1), m =
1, 2, · · · ,M/2, with M = 2p and p ∈ N. Therefore, the
average power of a M-ary PAM signal is given by EM

PAM =
(M2 − 1)/3. As a result, the SNR of the received signal is
defined as

γ = A2EM
PAM

σ 2 . (2)

We note that in the open literature [1], the SINR,
defined as γ = A2EM

PAM
I2+σ 2 has also been applied as the per-

formance measure. On top of that, cancellation of the DC
offset is discussed in [3] and [9], where the SNR is used
as the major figure of merit (it was argued that the DC
offset has a less significant impact on the system perfor-
mance than noise [3]). In the current paper, the constant
deterministic interference (i.e. the DC-offset) was esti-
mated and suppressed from the received signal, and then
the SNR is applied as the performance measure. Our the-
oretical analysis further shows that varying the value of
deterministic interference has no effect on the accuracy
of parameter estimation (i.e. the estimation of A, I and
σ 2; see also Section 3). Hence, we argue that the SNR is
a more proper performance measure in the presence of
deterministic interference.
We shall separately estimate

{
A, I, σ 2} and then use

these estimates to calculate γ . Without loss of generality,
A is assumed to be a positive number in this paper. The
PDF of xn is given by

f (xn)= 1
M

√
2πσ 2

M/2∑
m=1

{
exp

(
− (xn−I−A(2m−1))2

2σ 2

)

+ exp
(
− (xn−I+A(2m−1))2

2σ 2

)}

= 2
M

√
2πσ 2

exp
(
− (xn−I)2

2σ 2

)M/2∑
m=1

exp
(
−A2(2m−1)2

2σ 2

)
cosh

(
A(xn−I)(2m−1)

σ 2

)
.

(3)

Assume there are N available samples, denoted as
x = [x1, x2, · · · , xN ]. Since the transmitted symbols are
assumed to be independent and identically distributed
(i.i.d.) and the additive noise is white, then the corre-
sponding received samples are independent and their joint
probability density function (PDF) is simply the product of
the PDF of each sample. Consequently, the log-likelihood
function of x is given by

L(x) = ln
N∏

n=1
f (xn) = N ln

(
2

M
√
2πσ 2

)
−

N∑
n=1

(xn − I)2

2σ 2

+
N∑

n=1
ln

⎛
⎝M/2∑

m=1
hcm,n

⎞
⎠ , (4)

where hcm,n is given as

hcm,n=exp
(
−A2(2m − 1)2

2σ 2

)
cosh

(
A(xn − I)(2m − 1)

σ 2

)
,

(5)

By forcing the derivatives ∂L(x)
∂A , ∂L(x)

∂I , ∂L(x)
∂σ 2 to zero, we

obtain the subsequent relationships:

A =
∑N

n=1(xn − I)Hs
n∑N

n=1Hc
n

, (6)

I = 1
N

N∑
n=1

(
xn − AHs

n
)
, (7)

σ 2 = 1
N

N∑
n=1

(
(xn − I)2 + A2Hc

n − 2A(xn − I)Hs
n

)
, (8)

where

Hc
n =

∑M/2
m=1

(
(2m − 1)2hcm,n

)
∑M/2

m=1 hcm,n
, (9)

Hs
n =

∑M/2
m=1

(
(2m − 1)hsm,n

)
∑M/2

m=1 hcm,n
, (10)

hsm,n= exp
(
−A2(2m−1)2

2σ 2

)
sinh

(
A(xn−I)(2m−1)

σ 2

)
. (11)

It is not an easy task to obtain closed form solutions for
these equations. Hence, we propose an iterative approach,
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which has to be initialized properly. For this purpose, we
consider the initialization based on the moments of the
received signal.
By directly calculating the first-order sample raw

moment of the received signal, we obtain the following
initialization of I:

Î0 = 1
N

N∑
n=1

xn. (12)

The second- and fourth-order central moments of the
signal population are respectively given as,

μ2 = Es,v
{
(xn − I)2

} = Es,v
{
(Asn + vn)2

}
= A2E

{
s2n
} + E

{
v2n
} = A2ν2 + σ 2, (13)

μ4 = Es,v
{
(xn − I)4

} = Es,v
{
(Asn + vn)4

}
= A4ν4 + 6A2ν2σ

2 + 3σ 4, (14)

where ν2 = E
{
s2n
} = EM

PAM and ν4 = E
{
s4n
}
are the second-

and fourth-order raw moments of the M-ary PAM signal
{sn}, respectively. And

ν4 = 2
M

M/2∑
m=1

(2m − 1)4 = 1
15

(
3M2 − 7

) (
M2 − 1

)
.

(15)

According to (13) and (14), one has an equation for A as

3μ2
2 − μ4 = A4 (3ν22 − ν4

)
. (16)

Equating the population moments with the sample
moments, one moment-based estimator for A can be
derived as

Â0 =
(
3μ̂2

2 − μ̂4

3ν22 − ν4

)1/4

, (17)

where μ̂2 and μ̂4 are the second- and fourth-order sample
central moments of the received signal and are given by,
respectively,

μ̂2 = 1
N

N∑
n=1

(
xn − Î0

)2
, μ̂4 = 1

N

N∑
n=1

(
xn − Î0

)4
.

(18)

When Î0 and Â0 are available, σ 2 can be estimated
by exploiting the second-order central moment of the
received signal, as follows:

σ̂ 2
0 = 1

N

N∑
n=1

(
xn − Î0

)2 − Â2
0EM

PAM. (19)

As a result, the moment-based estimator for γ can be
expressed as

γ̂0 = Â0EM
PAM

σ̂ 2
0

. (20)

These moment-based estimators are only valid in the
high SNR range. Unfortunately, they usually require a
large quantity of samples to obtain accurate estimation,
which is not realistic in practical time-varying systems. In
order to obtain a more accurate estimation and speed up
the convergence, we propose that the iterative method in
(6) to (8) is initialized by the closed form estimates given
by (12), (17) and (19). The procedure stops when a prede-
finedmaximum of iterations is achieved or when the error
is lower than a specified value. The algorithm is outlined
in Algorithm 1, where K is a predefined maximal num-
ber of iterations, ε is a predefined small constant, and the
iterative error εk is defined as

εk =
(

γ̂k − γ̂k−1
γ̂k

)2
, k = 1, 2, · · · . (21)

Algorithm 1 Iterative ML SNR estimation algorithm for
PAM signaling
Initialization:

Set k = 0, and calculate the initial estimation of I, A
and σ 2, denoted as Î0, Â0 and σ̂ 2

0 based on (12), (17)
and (19), respectively;

Iteration:
1: repeat
2: Calculate the k-th estimation of hcm,n and hsm,n by

(5) and (11), respectively, with A, I, and σ 2 replaced
by Âk , Îk and σ̂ 2

k , respectively; denote the results as
ĥcm,n,k and ĥsm,n,k ;

3: Calculate the k-th estimation of Hc
n and Hs

n by (9)
and (10), respectively, with hcm,n and hsm,n replaced
by ĥcm,n,k and ĥsm,n,k , respectively; denote the results
as Ĥc

n,k and Ĥs
n,k ;

4: k ← k + 1;
5: Calculate the k-th estimation of A, I and σ 2 by the

equations (6), (7) and (8), respectively, with A, I, σ 2,
Hs
n andHc

n replaced by Âk−1, Îk−1, σ̂ 2
k−1, Ĥ

s
n,k−1 and

Ĥc
n,k−1, respectively; denote the results as Âk , Îk and

σ̂ 2
k .

6: until k = K or εk < ε.
Output:

Âk , Îk , σ̂ 2
k , and γ̂k = Â2

kEM
PAM/σ̂ 2

k are the asymp-
totic ML estimates of the parameters A, I, σ 2 and γ ,
respectively.



Chen et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:45 Page 4 of 10
http://jwcn.eurasipjournals.com/content/2014/1/45

2.2 Complex-valued systemwith QAM signaling
Considering the complex-valued signal system, the signal model is revised as

rn = Gsn + I + wn

= (A + jB)
(
an + jbn

) + (C + jD) + (
un + jvn

)
= (Aan − Bbn + C + un) + j (Ban + Abn + D + vn)
� xn + jyn. (22)

We assume sn = an + jbn is aM-ary square QAM source, that is, sn ∈ S = {Siq = ai + jbq = (2i− 1− 2p) + j(2q− 1−
2p), i, q = 1, · · · , 2p}, where M = 22p for any natural number p, G = A + jB is the complex channel gain, I = C + jD
and wn = un + jvn are respectively the complex interference and complex noise. The average power of the square QAM
constellation power is given by EM

QAM = E
{|Siq|2} = 2(M − 1)/3.

The SNR of the received signal is defined as

γ = |G|2EM
QAM

2σ 2 =
(
A2 + B2) EM

QAM

2σ 2 . (23)

We shall separately estimate the unknown parameters of the vector {A,B,C,D, σ 2} and then use these estimates to
calculate γ . Without loss of generality, A and B are assumed to be positive numbers in this paper.
The joint PDF of the real and image parts of rn is given by:

frn(xn, yn) = 1
2Mπσ 2

∑
Siq∈S

exp
{

−
(
(xn − C) − (Aai − Bbq)

)2 + (
(yn − D) − (Bai + Abq)

)2
2σ 2

}

= 1
2Mπσ 2 exp

{
− (xn − C)2 + (yn − D)2

2σ 2

}
∑
Siq∈S

exp
{

−|GSiq|2
2σ 2

}
exp

{
(xn − C)(Aai − Bbq) + (yn − D)(Bai + Abq)

σ 2

}
(24)

According to the symmetry of the square QAM constellation, frn(xn, yn) can be written as

frn(xn, yn) = 1
2Mπσ 2 exp

{
− (xn − C)2 + (yn − D)2

2σ 2

} ∑
Siq∈S

exp
{

−|GSiq|2
2σ 2

}

exp
{

(A(xn − C) + B(yn − D)) ai + (A(yn − D) − B(xn − C)) bq
σ 2

}

= 2
Mπσ 2 exp

{
− (xn − C)2 + (yn − D)2

2σ 2

}
2p−1∑
i=1

exp
{
−(A2 + B2)(2i − 1)2

2σ 2

}
cosh

{
(A(xn − C) + B(yn − D)) (2i − 1)

σ 2

}

2p−1∑
q=1

exp
{
−(A2 + B2)(2q − 1)2

2σ 2

}
cosh

{
(A(yn − D) − B(xn − C)) (2q − 1)

σ 2

}

= 2
Mπσ 2 exp

{
− (xn − C)2 + (yn − D)2

2σ 2

}
H(Xn)H(Yn) (25)
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where

Xn = A(xn − C) + B(yn − D), (26)
Yn = A(yn − D) − B(xn − C), (27)

H(Z) =
2p−1∑
i=1

hci (Z), (28)

hci (Z) = exp
{
− (A2 + B2)(2i − 1)2

2σ 2

}
cosh

(
Z(2i − 1)

σ 2

)
.

(29)
Assume there areN available received samples, denoted

as r = [r1, r2, · · · , rN ]. As a result, the logarithmic likeli-
hood function, define as L(r) = ln

(
fr1(·) fr2(·) · · · frN (·)) is

given by

L(r) = N ln
(

2
Mπσ 2

)
−

N∑
n=1

(xn−C)2 + (yn−D)2

2σ 2

+
N∑

n=1
ln (H(Xn))+

N∑
n=1

ln (H(Yn)) (30)

By forcing the derivatives ∂L(r)
∂A , ∂L(r)

∂B , ∂L(r)
∂C , ∂L(r)

∂D , ∂L(r)
∂σ 2

(see Appendix) to zero, we obtain the following equations:

A= 1
H

N∑
n=1

((xn − C)Hs(Xn) + (yn − D)Hs(Yn)) , (31)

B= 1
H

N∑
n=1

((yn − D)Hs(Xn) − (xn − C)Hs(Yn)) , (32)

C= 1
N

N∑
n=1

xn − 1
N

N∑
n=1

(AHs(Xn) − BHs(Yn)) , (33)

D= 1
N

N∑
n=1

yn − 1
N

N∑
n=1

(BHs(Xn) + AHs(Yn)) , (34)

σ 2= 1
2N

{(
A2+B2)H+

N∑
n=1

(
(xn−C)2+(yn−D)2

)

− 2
N∑

n=1
(XnHs(Xn)+YnHs(Yn))

}
, (35)

where

H =
N∑

n=1
(Hc(Xn) + Hc(Yn)) , (36)

Hc(Z) = 1
H(Z)

2p−1∑
i=1

(2i − 1)2hci (Z), (37)

Hs(Z) = 1
H(Z)

2p−1∑
i=1

(2i − 1)hsi(Z), (38)

hsi(Z) =exp
{
−
(
A2 + B2) (2i−1)2

2σ 2

}
sinh

(
Z(2i−1)

σ 2

)
.(39)

Similar to the case of PAM signaling, we adopt the
moment-based estimators as initialization and then apply
iterative estimation based on (31) to (35) to refine the esti-
mated results. At first, the moment estimate of I is given
as

Î0 = Ĉ0 + jD̂0 = 1
N

N∑
n=1

rn = 1
N

N∑
n=1

xn + j
1
N

N∑
n=1

yn

(40)

The second- and fourth-order central moments of the
signal’s real and imaginary parts are respectively given as,

μx2 = Es,w
{
(xn − C)2

} = Es,u
{
(Aan − Bbn + un)2

}
= (

A2 + B2) ν2 + σ 2, (41)
μy2 = Es,w

{
(yn − D)2

} = Es,v
{
(Ban + Abn + vn)2

}
= (

A2 + B2) ν2 + σ 2 = μx2 , (42)
μx4 = Es,w

{
(xn − C)4

} = Es,u
{
(Aan − Bbn + un)4

}
= (

A4+B4) ν4+6A2B2ν22+6
(
A2+B2) ν2σ

2 + 3σ 4,
(43)

μy4 = Es,w
{
(yn − D)4

} = Es,v
{
(Ban + Abn + vn)4

}
= (

A4 + B4) ν4 + 6A2B2ν22 + 6
(
A2 + B2) ν2σ

2

+ 3σ 4 = μx4 , (44)
μx2y2 = Es,w

{
(xn − C)2(yn − D)2

}
= Es,w

{
(Aan − Bbn + un)2(Ban + Abn + vn)2

}
= 2A2B2ν4 + (

A4 + B4 − 4A2B2) ν22

+ 2
(
A2 + B2) ν2σ

2 + σ 4, (45)

where ν2 = E
{
a2n
} = E

{
b2n
} = EM

QAM/2 = (M − 1)/3
and ν4 = E

{
a4n
} = E

{
b4n
}
are the second- and fourth-

order raw moments of the real/imaginary part of the M-
ary QAM signal {sn}, respectively. And

ν4 = 2√
M

√
M/2∑
i=1

(2i− 1)4 = 1
15

(3M − 7)(M − 1). (46)

According to (41) to (45), one has two equations for |G|2 =
A2 + B2 as

4μ2
x2 − μx4 − μx2y2 = (

A2 + B2)2 (3ν22 − ν4
)
, (47)

4μ2
y2 − μy4 − μx2y2 = (

A2 + B2)2 (3ν22 − ν4
)
. (48)

Equating the population moments with the sample
moments, one moment-based estimator for |G|2 = A2 +
B2 can be derived as

|Ĝ0|2 =
√√√√4μ̂2

x2 + 4μ̂2
y2 − μ̂x4 − μ̂y4 − 2μ̂x2y2

2
(
3ν22 − ν4

) , (49)

where μ̂x2 , μ̂y2 , μ̂x4 , μ̂y4 and μ̂x2y2 are the second-
and fourth-order sample central moments of the
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real/imaginary part of received signal, and are given by,
respectively,

μ̂x2 = 1
N

N∑
n=1

(
xn − Ĉ0

)2
, μ̂y2 = 1

N

N∑
n=1

(
yn − D̂0

)2
,

(50)

μ̂x4 = 1
N

N∑
n=1

(
xn − Ĉ0

)4
, μ̂y4 = 1

N

N∑
n=1

(
yn − D̂0

)4
,

(51)

μ̂x2y2=
1
N

N∑
n=1

(
xn − Ĉ0

)2 (
yn − D̂0

)2
. (52)

When Î0 and Ĝ0 are available, σ 2 can be estimated
by exploiting the second-order central moment of the
received signal, as follows:

σ̂ 2
0 = 1

2N

N∑
n=1

∣∣∣rn − Î0
∣∣∣2 − 1

2

∣∣∣Ĝ0

∣∣∣2 EM
QAM. (53)

As a result, the moment-based estimator for γ can be
expressed as

γ̂0 =
∣∣∣Ĝ0

∣∣∣2 EM
QAM

σ̂ 2
0

. (54)

It can be seen from (41) to (45) that A and B are asym-
metric such that they cannot be decoupled from these
equations. Therefore, they are temporally assumed to be
equal and then they are refined by the iteration. That is,
the rough estimates of A and B are given as

Â0 = B̂0 =
√

|Ĝ0|2/2. (55)

The iterative algorithm is similar to the case of PAM
signaling and will not be shown here for saving space.

3 The Cramer-Rao bound
3.1 The real-valued systemwith PAM signaling
In this section, we derive the CRB for unbiased estima-
tion of γ . Let θ = [θ1, θ2]=

[
A, σ 2] and γ = g(θ) =

A2EM
PAM/σ 2. The CRB of SNR is given by [8], i.e.,

CRB(γ ) = ∂g(θ)

∂θ
F−1

(
∂g(θ)

∂θ

)T
(56)

where
∂g(θ)

∂θ
=

[
∂g(θ)

∂A
,
∂g(θ)

∂σ 2

]
=

[
2A
σ 2 ,−

A2

σ 4

]
EM

PAM, (57)

F is the Fisher information matrix (FIM) defined as

F	j = E
{

∂L(x)
∂θ	

∂L(x)
∂θj

}
, 	, j = 1, 2, (58)

where E{·} denotes the expectation w.r.t the random vari-
ables {sn} and {vn}. After some algebra, we have

∂L(x)
∂θ	

= 1
σ 2

N∑
n=1

φ	(xn), 	 = 1, 2, (59)

φ1(xn) = (xn − I)Hs
n − AHc

n = (Asn + vn)Hs
n − AHc

n,
(60)

φ2(xn) = 1
2σ 2

(
(xn − I)2 + A2Hc

n − 2A(xn − I)Hs
n
) − 1

2

= 1
2σ 2

(
(Asn + vn)2 + A2Hc

n − 2A(Asn + vn)Hs
n
)

− 1
2
. (61)

Note that xn − I has been replaced by Asn + vn such that
φ	(xn) has no relation to I, as can be verified by (60) and
(61). By using this kind of substitution, it is easily observed
that Hc

n and Hs
n do not include I as well. For convenience,

we will denote φ	(xn) as φ	(sn, vn) so that F	j can be
calculated as

F	j = 1
σ 4 E

{ N∑
n=1

N∑
n′=1

φj (sn, vn)φ	(sn′ , vn′)

}
, 	, j = 1, 2,

= 1
σ 4

N∑
n=1

Es,v{φ	(sn, vn)φj (sn, vn)}

+ 1
σ 4

N∑
n=1

N∑
n′=1,n′ �=n

Es,v{φ	(sn′ , vn′)}Es,v{φj (sn, vn)}

= N
σ 4 Es{η	j (s)} + N(N − 1)

σ 4 Es{μ	(s)}Es{μj (s)} (62)

where

Es{η	j (s)} = 1
M

M∑
m=1

η	j (2m − 1 − M), 	, j = 1, 2,

(63)

Es{μ	(s)} = 1
M

M∑
m=1

μ	(2m − 1 − M), 	 = 1, 2,

(64)

η	j (s) =
∫ ∞

−∞
φ	(s, v)φj (s, v)p(v)dv, 	, j = 1, 2,

(65)

μ	(s) =
∫ ∞

−∞
φ	(s, v)p(v)dv, 	 = 1, 2, (66)

and p(v) = 1
σ
√
2π exp

(−v2/2σ 2) is the PDF of the additive
white Gaussian noise v with variance σ 2. It is not possible
to obtain closed-form expressions for the above inte-
grations. Numerical computation is applied to calculate
η	j (s), μ	(s) and then the CRB. Note that the reciprocals
of the diagonal elements of F provide the CRB for the esti-
mation of

{
A, σ 2}. It is interesting to remark that the CRBs

of
{
A, σ 2, γ

}
are not related to the value of I, which means
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that, in theory, an increase of the interference level would
not hurt the accuracy in estimating

{
A, σ 2, γ

}
.

3.2 The complex-valued systemwith QAM signaling
Next, we consider the complex-valued system with QAM
Signaling. Let θ = [θ1, θ2, θ3]=

{
A,B, σ 2} and γ = g(θ) =

(A2+B2)EM
QAM

2σ 2 . The CRB of SNR is given by [8]

CRB(γ ) = ∂g(θ)

∂θ
F−1

(
∂g(θ)

∂θ

)T
(67)

where
∂g(θ)

∂θ
=
[
∂g(θ)

∂A
,
∂g(θ)

∂B
,
∂g(θ)

∂σ 2

]
= EM

QAM

σ 2

[
A,B,−A2 + B2

2σ 2

]
.

(68)
F is the Fisher information matrix, whose elements are
defined as

F	j = E
{

∂L(r)
∂θ	

∂L(r)
∂θj

}
, 	, j = 1, 2, 3, (69)

where E{·} denotes the expectation w.r.t to the random
variables {an}, {bn}, {un}, and {vn}.
With some calculation, we have (see Appendix)

∂L(r)
∂θ	

= 1
σ 2

N∑
n=1

φ	(rn), 	 = 1, 2, 3, (70)

φ1(rn) = ((xn − C)Hs(Xn) + (yn − D)Hs(Yn))
− A (Hc(Xn) + Hc(Yn)) , (71)

φ2(rn) = ((yn − D)Hs(Xn)−(xn − C)Hs(Yn))−B (Hc(Xn)

+Hc(Yn)) , (72)

φ3(rn) = −1 + 1
2σ 2

{
(xn−C)2+(yn−D)2 + (A2+B2)

(
Hc(Xn)

+Hc(Yn)
) − 2 (XnHs(Xn) + YnHs(Yn))

}
.

(73)
In fact, since

xn − C = Aan − Bbn + un, (74)
yn − D = Ban + Abn + vn, (75)

Xn = (
A2 + B2) an + Aun + Bvn, (76)

Yn = (
A2 + B2) bn + Avn − Bun, (77)

then Hc(Xn), Hc(Yn), Hs(Xn), and Hs(Yn) are unrelated to
the values of the interference levelC andD, so are {φ	(rn)}.
Therefore, φ	(rn) can be rewritten as φ	(sn,wn), and F	j

can be calculated by

F	j = 1
σ 4 E

{ N∑
n=1

N∑
n′=1

φj (sn,wn)φ	(sn′ ,wn′)

}
, 	, j = 1, 2, 3,

= 1
σ 4

N∑
n=1

Es,w{φ	(sn,wn)φj (sn,wn)}

+ 1
σ 4

N∑
n=1

N∑
n′=1,n′ �=n

Es,w{φ	(sn′ ,wn′)}Es,w{φj (sn,wn)}

= N
σ 4 Es

{
η	j (s)

} + N(N− 1)
σ 4 Es {μ	(s)}Es

{
μj (s)

}
(78)

where

Es{η	j (s)} = 1
M

2p∑
i=1

2p∑
q=1

η	j (Siq), 	, j = 1, 2, 3,

(79)
Es{μ	(s)} = 1

M

2p∑
i=1

2p∑
q=1

μ	(Siq), 	 = 1, 2, 3,

(80)
η	j (s) =

∫ ∞

−∞

∫ ∞

−∞
φ	(s,w)φj (s,w)pw(u, v)dudv, 	, j = 1, 2, 3,

(81)
μ	(s) =

∫ ∞

−∞

∫ ∞

−∞
φ	(s,w)pw(u, v)dudv, 	 = 1, 2, 3,

(82)

and pw(u, v) = 1
2πσ 2 exp

(
−u2+v2

2σ 2

)
is the joint PDF of

the real and image parts of the complex additive white
Gaussian noisew = u+ jvwith variance σ 2. In the simula-
tion, numerical computation is applied to calculate η	j (s),
μ	(s) and then the CRB.

4 Numerical results
Computer simulation results are presented to show the
performance of the proposed algorithm. Unless otherwise
specified, a sample size of N = 80, 2 × 104 independent
trials and an interference-to-noise ratio (INR) of 0 dB are
applied in the simulation. To guarantee convergence, ε is
set to a small value of 10−6 and K is set to a large value of
100. To obtain a performance measure for a fair compari-
son of different parameters, we use the normalized sample
mean square error (NMSE) defined by

NMSE = 1
Ntr

Ntr∑
i=1

(
γ̂i − γ

γ

)2
, (83)

where Ntr is the number of total independent trials and γ̂i
is the estimated value of the true SNR γ from the ith trial.
Figure 1 shows the convergence property of the pro-

posed ML estimator (MLE). It can be observed that the
algorithm has fast convergence speed since that it con-
verges in several iterations, and the performance of the
proposed MLE is close to the CRB and significantly out-
performs the moment-based estimator (k = 0).
Figure 2 shows the estimation performance under differ-

ent sample sizes. It can be observed that the proposed ML
estimator results in almost identical performance to the
CRB. We therefore argue that tens of samples is enough
to obtain efficient estimation. Although in this paper we
assume time-invariant interference level and noise power,
the proposed algorithm indeed is applicable to slow time-
varying systems where the parameters can be assumed to
be invariant within tens of samples. We also observe that
an increased number of samples will be required to obtain
an accurate SNR estimation, especially at low SNR.
The estimation performance of PAM and QAM signal-

ing with different modulation orders is shown in Figure 3.
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Figure 1 Estimation performance in terms of the iteration times k. (a) 4PAM and (b) QPSK.
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Figure 4 BER performance comparison. (a)M-PAM and (b)M-QAM.

The figure suggests that both the ML and MB estima-
tors work better for smaller constellation sizes. It can be
observed from the above figures that the NMSE of the
proposed MLE for γ is decreasing as the SNR increases.
Some numerical evaluation and simulation results, which
are not shown here because of limited space, reveal
that the variation of interference level has no effect on
the NMSE of MLE and CRB of channel parameters of{
G, I, σ 2, γ

}
. This result agrees also with the analysis in

Section 3.
Figure 4 shows the bit-error-rate (BER) performance of

the proposed algorithm. We apply the estimated chan-
nel gain and interference level for symbol detection.
As a comparison, the moment-based estimator is also
evaluated in the simulation. It can be observed that
the proposed estimator significantly outperforms the
moment-based estimator in the cases of high SNR, and it
shows almost the same performance as knowing the per-
fect system parameters. On the other side, it also can be
seen from Figure 3 and Figure 4 that the large estimation
deviation of the system parameters at low SNR has little
effect on the BER performance.

5 Conclusions
SNR estimation in an additive noise channel with atten-
uation factor and deterministic interference has been
considered. A non-data-aided iterative estimation algo-
rithm has been proposed based on the ML criterion. The
proposed algorithm provides satisfactory performance,
although this is achieved to the price of an increased com-
putational complexity. Simulation results show that the
algorithm provides applicable results on the order of tens
of samples. And, its performance is almost identical to the
corresponding bounds over a wide range of the true SNR.
Moreover, the additive noise channel of this paper also
includes the case where the interference is determined by

a Gaussian random variable with non-zero mean. In this
case, the interference can be divided into a constant and
a zero-mean Gaussian random variable. As far as the SNR
is concerned, the zero-mean Gaussian random part of the
interference can be attributed to the additive Gaussian
noise. Therefore, the model is also validated in this case.
This case represents channels where there are many weak
interferers plus noise but no dominant interferers and also
represents channels where there is one dominant constant
interferer plus noise. Furthermore, next step of work may
focus on extending the algorithm to multipath channel
environments.

Appendix
Derivations of the likelihood function for QAM signaling

∂L(r)
∂A

=
N∑

n=1

1
H(Xn)

2p−1∑
i=1

{
(2i − 1)(xn − C)

σ 2 hsi (Xn) − (2i − 1)2A
σ 2 hci (Xn)

}

+
N∑

n=1

1
H(Yn)

2p−1∑
i=1

{
(2i − 1)(yn − D)

σ 2 hsi (Yn) − (2i − 1)2A
σ 2 hci (Yn)

}

= 1
σ 2

N∑
n=1

((xn − C)Hs(Xn) + (yn − D)Hs(Yn))

− A
σ 2

N∑
n=1

(Hc(Xn) + Hc(Yn))

(84)
∂L(r)
∂B

=
N∑

n=1

1
H(Xn)

2p−1∑
i=1

{
(2i − 1)(yn − D)

σ 2 hsi (Xn) − (2i − 1)2B
σ 2 hci (Xn)

}

−
N∑

n=1

1
H(Yn)

2p−1∑
i=1

{
(2i − 1)(xn − C)

σ 2 hsi (Yn) − (2i − 1)2B
σ 2 hci (Yn)

}

= 1
σ 2

N∑
n=1

((yn − D)Hs(Xn) − (xn − C)Hs(Yn))

− B
σ 2

N∑
n=1

(Hc(Xn) + Hc(Yn))

(85)
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∂L(r)
∂C

=
N∑

n=1

xn − C
σ 2 −

N∑
n=1

1
H(Xn)

2p−1∑
i=1

(2i − 1)A
σ 2 hsi (Xn) +

N∑
n=1

1
H(Yn)

×
2p−1∑
i=1

(2i − 1)B
σ 2 hsi (Yn)

= 1
σ 2

N∑
n=1

(xn − C) − A
σ 2

N∑
n=1

Hs(Xn) + B
σ 2

N∑
n=1

Hs(Yn)

(86)∂L(r)
∂D

=
N∑

n=1

yn − D
σ 2 −

N∑
n=1

1
H(Xn)

2p−1∑
i=1

(2i − 1)B
σ 2 hsi (Xn) −

N∑
n=1

1
H(Yn)

×
2p−1∑
i=1

(2i − 1)A
σ 2 hsi (Yn)

= 1
σ 2

N∑
n=1

(yn − D) − B
σ 2

N∑
n=1

Hs(Xn) − A
σ 2

N∑
n=1

Hs(Yn)

(87)

∂L(r)
∂σ 2 = − N

σ 2 +
N∑

n=1

(xn − C)2 + (yn − D)2

2σ 4

+
N∑

n=1

1
H(Xn)

2p−1∑
i=1

{
(A2 + B2)(2i − 1)2

2σ 4 hci (Xn) − (2i − 1)Xn
σ 4 hsi (Xn)

}

+
N∑

n=1

1
H(Yn)

2p−1∑
i=1

{
(A2 + B2)(2i − 1)2

2σ 4 hci (Yn) − (2i − 1)Yn
σ 4 hsi (Yn)

}

= − N
σ 2 + 1

2σ 4 (A2 + B2)H + 1
2σ 4

N∑
n=1

(
(xn − C)2 + (yn − D)2

)

− 1
σ 4

N∑
n=1

(XnHs(Xn) + YnHs(Yn))

(88)
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