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Abstract
Radar tracking plays an important role in the area of early warning and detection system, whose precision is closely
connected with filtering algorithm. With the development of noise jamming technology in radar echo signal, linear
filtering becomes more and more difficult to satisfy the demands of radar tracking, while nonlinear filtering can solve
problems such as non-Gaussian noises. There exist a lot of nonlinear filtering algorithms at present, owning their
particular characteristics. With this in mind, we provide a comprehensive overview of different nonlinear filtering
algorithms in radar tracking, including basic ideas and concrete steps of them. For a more clear presentation, we also
make comparisons of them from all sides. Through the analyses of different nonlinear data filters, we find that the
unscented Kalman data filter (UKF) can achieve better performance than others. Therefore, we will simulate and show
the performance of UKF, and performance of the extended Kalman data filter (EKF) under the same condition will be
taken as comparison, whose accuracy was not ideal for radar tracking data filtering.
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1 Introduction
Gaussian applied generalized least squares method to
radar data processing in the early nineteenth century. He
created a mathematical approach to deal with observa-
tions, which then became the basis of the modern filter
theory [1]. Tracking filter is an important part of radar
data processing technology. Its main goal is to estimate
target location, speed, and other parameters in real time
base on the metrical information [2]. And at the same
time, tracking filter should extrapolate the location infor-
mation of the target in the next antenna scan period. The
location information will then be used to examine the
rationality of themeasurement in the next time and can be
used for track-related processing in searching radars [3,4].
Target tracking with combined multi-sensor is widely

used in practical applications. The problem of nonlinear
filtering is to estimate the optimal state of the common
nonlinear stochastic dynamic systems. It is essential to
find out an effective filtering method to estimate and
predict the dynamic system status and the statistics of
error from the sequential measurements in real time.
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Following 1960s, when Rudolph E. Kalman invented
and named Kalman filter [5,6], there emerged many mod-
ern filtering technologies, and most of them are created
based on Kalman filter. Kalman filter plays an irreplace-
able role in the development of filter which has been
applied to many fields such as radar and computer vision.
At the beginning, most of Kalman filters are linear fil-
ters, which are the minimum variance state estimation
of linear dynamic systems [5]. However, as technology
develops, linear filtering technique was hard to meet the
demands and nonlinear filter got more use. Gaussian fil-
ters and particle filters are mainly applied to nonlinear
filtering estimation, and general Gaussian approximation
methods include linearization and sampling approxima-
tion with applicants of extended Kalman filter (EKF) and
unscented Kalman filter (UKF) separately.
In the following paper, we first present the process of

target tracking based on multiple radar and the system
model. Then, we make an introduction of nonlinear filters
as well as algorithm procedures of them. In the simulation,
we do filtering by UKF and compare the data image with
that of EKF algorithm. The experimental results show that
it is more accurate when using unscented Kalman filter on
radar tracking data filtering problem.
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2 Radar tracking and systemmodel
Modern radar usually processes data with digital com-
puters. Using parameter estimation techniques, we can
estimate a lot of motion parameters such as the specific
location of the target, velocity, and acceleration basing on
the radar measurements and generate a variety of infor-
mation about the target such as the expected position and
the current and the next state of the target [5]. There
are five steps when processing TT&C radar data, and the
procedure is as shown in Figure 1.

• Data formatting: Store the measurements by unified
format.

• Data correction: Do unbiased estimation and
defection compensation according to data theory.

• Coordinate transformation: Most of the data
measured by radar is based on the spherical
coordinate system, which needs to be converted to
the Cartesian coordinate system in order to simplify
the calculation.

• Tracking filter processing: Tracking filter is the core
device of a radar data processing system. It can
estimate the state of the dynamic system using a
series of measurements containing noise and other
inaccuracies and predict the coordinate position and
velocity of the object according to the observation
sequence of the noise.

Figure 1 Procedure of radar data processing. The five steps when
processing TT&C radar data.

• Target track processing: The tracking filter should
estimate the target’s motion parameters like speed
and position in real time using radar measurements
and calculate the position and orientation of the
target in the next time using the iteration formula.

State equation and observation equation of nonlinear
systems [7,8] are as follows:

xk+1 = fk(xk) + uk
zk = hk(xk) + vk

(1)

where xk is the state vector of the target, zk is the obser-
vation vector, fk and hk are the state transition and the
observation of the system, and uk and vk are the unrelated
status noise and measurement noise of system.

3 Nonlinear filtering in radar tracking
3.1 Introduction of nonlinear filtering
The result of Kalman filter is the optimal closed solution
for linear systems, while for nonlinear systems, it is very
difficult or even impossible to get an accurate optimal
solution. So a lot of methods on suboptimal approximate
filtering are proposed [9].
Nonlinear filtering methods can be classified into five

types [10,11]: 1) extended Kalman filtering (EKF), 2) inter-
polation filtering, 3) unscented Kalman filtering (UKF),
4) particle filtering, and 5) neural network filtering.
The most widely used method for nonlinear filtering is

EKF, which transforms nonlinear issues into linear issues,
and then, linear filtering theory can be applied in it. This
method is usually regarded as a suboptimal method.
The key point of nonlinear filtering is to seek an effective

linear approximation. Interpolation filtering utilizes inter-
polation polynomial to operate a linear approximation
based on Stirling interpolation formula.
UKF needs no linearization. It makes an approximation

of the probability density function of state vector with a
series of chosen sampling points.
Particle filtering is a filtering algorithm based on Monte

Carlo and recursive Bayesian estimation. It assumes get-
ting a series of estimated values according to samples
acquired by posterior probability distribution.When there
is enough particles, the statistical properties of particles
can be regarded as statistical properties of the posterior
probability distribution.
Sigmoidal multi-layer feedforward neural networks can

realize arbitrary continuous nonlinear function at arbi-
trary precision, which is applied to neural network
filtering.

3.2 Filtering algorithms of nonlinear systems
3.2.1 EKF filtering
The first-order EKF equations [12] are shown as follows:
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With knowledge of the present state and covariance of
the present state, we can get the prediction of the next
state as well as covariance of the next state:

∧
X (k + 1|k) = f

[
k,

∧
X (k|k)

]
(2)

P (k + 1|k) = fx(k)P (k|k) f ′
x (k) + Q (k) . (3)

Then, according to equations above, we get the predic-
tion of measurement and innovation covariance:

∧
Z (k + 1|k) = h

[
k + 1,

∧
X (k + 1|k)

]
(4)

S(k + 1) = hx(k + 1|)P(k + 1|k)h′
X(k + 1) +R(k + 1). (5)

Therefore, the optimal Kalman gain can be described as:
∧
X (k + 1|k + 1) = ∧

X (k + 1|k) h′
X (k + 1) S−1(k + 1). (6)

From the the derivation above, we can finally obtain
the updated state equation and the updated covariance
equation:

∧
X(k + 1|k + 1) = ∧

X(k + 1|k) + K(k + 1){
Z(k + 1) − h

[
k + 1,

∧
X(k + 1|k)

]}
(7)

P(k + 1|k + 1) = [I − K(k + 1)hx(k + 1)]P(k + 1|k)
× [I + K(k + 1)hx(k + 1)]′ − K(k + 1)R(k + 1)K′(k + 1)

(8)

where I is an identity matrix that has the same dimension
with the covariance matrix.
Specific applications follow these steps:

• Nonlinear function processed by Taylor-series
expansion (TSE) [13]: The n-order TSE
approximation of f (x, t) at x = x̂ is:

f (x, t) ≈ TSE
(
x, t; n, x̂

)
. (9)

For scalar f (x, t), there is:

TSE
(
x, t; n, x̂

) = f
(
x̂, t
)+ f ′ (x̂, t) x̄ + 1

2! f
′′ (x̂, t) x̄2

+ 1
3! f

(3) (x̂, t) x̄3 + . . . + 1
n! f

(n)
(
x̂, t
)
x̄n

(10)

where x̄ = x − x̂ and f ′(x̂, t) = ∂ f
∂x |x=x̂, f ′′(x̂, t) =

∂2f
∂x2 |x=x̂, . . . , f (n)(x̂, t) = ∂nf

∂xn |x=x̂.• Calculate the gains and updates using EKF equations:
EKF is a typical example of approximate nonlinear
filtering [14]. By processing the nonlinear model
basing on linear Taylor-series expansion, we can get a
first-order approximation as an expression of the
original state equation and measurement equation.

As pointed in [8], EKF is easy to implement and has
been widely used but with a lot of limitations.

3.2.2 Interpolation filtering
• Interpolation expansion of one-dimensional Stirling

[15].
We define two operators δ and μ which satisfy:

δf (x) = f
(
x + h

2

)
− f

(
x − h

2

)
μf (x) = 1

2

(
f
(
x + h

2

)
+ f

(
x − h

2

)) (11)

where h is the length of interpolation. Expanding f (x)
with the second-order Stirling interpolation at x = x̄,
we can obtain:

f (x) ≈ f (x̄) + f ′
DD(x̄)(x − x̄) + f ′

DD(x̄)
2!

(x − x̄)2. (12)

Then, we use the centered difference instead of the
derivative of Taylor-series expansion:

f ′
DD(X̄) = f (x̄+h)−f (x̄−h)

2h = δf (x)
h

f ′′
DD(X̄) = f (x̄+h)+f (x̄−h)−2f (x̄)

h2 = μf (x)−f (x)
h2
8

. (13)

Plugging the Taylor series into (12), we obtain:

f (x̄)+f ′
DD(x̄)+ f ′′

DD(x̄)
2!

(x − x̄)2 = f (x̄)+f ′(x̄)(x − x̄)

+ f ′′(x̄)
2!

(x − x̄)2

+
(
f (3)(x̄)
3!

h2 + f (5)(x̄)
5!

h2 + . . .

)
· (x − x̄)

+
(
f (4)(x̄)
4!

h2 + f (6)(x̄)
6!

h2 + . . .

)
(x − x̄)2.

(14)
• Interpolation expansion of multi-dimensional Stirling

[13].
We suppose x ∈ Rn, and y = f (x) is a function vector.
By applying Stirling interpolation expansion we get:

y = f (x̄) + D̃�xf + 1
2!
D̃2

�xf (15)

where D̃�x is the differential operators that satisfies:

D̃�x f = 1
h

(
n∑

p=1
�xpμpδp

)
f (x̄)

D̃2
�x f = 1

h2

(
n∑

p=1
�x2pδ2p+

n∑
p=1

n∑
q=1,q �=p

�xp�xq ·
(
μpδp

) (
μqδq

)
f (x̄)

(16)

where δp and μq are the pseudo-differential operator
and the average operator satisfying:

δpf (x̄) = f
(
x̄ + h

2 ep
)

− f
(
x̄ − h

2 ep
)

μqf (x̄) = 1
2

(
f
(
x̄ + h

2 ep
)

+ f
(
x̄ − h

2 ep
)) (17)
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where ep is the pth unit vector.
The above interpolation filtering algorithm has a
great advantage compared with TSE. Different
expansion contains one-dimensional Stirling
interpolation expansion and multi-dimensional
Stirling interpolation expansion. In the method of
Interpolation filtering, the calculation of the partial
derivative can be omitted. So it can be applied to any
function cases, even for cases of nonlinear
discontinuities with singularities, and it is more
accurate than the method of EKF [13].

3.2.3 Particle filtering
According to the posterior probability p(Xk|Yk) of differ-
ent observations YK , we obtained the optimal estimation
under the minimum mean square error criterion as
follows [15]:

xk ∼ E
{
xk|yk

} =
∫

xk · p (xk|yk) dxk . (18)

After sequential importance sampling (SIS) of the poste-
rior probability distribution, we obtain the particle swarm(
xik ,w

i
k
)
, and the posterior probability density can be

approximated as:

p̂
(
x0:k|y1:k

) ≈
∑N

i=1
ωi
kδ
(
x0:k − xi1:k

)
. (19)

And the state estimation can be expressed as:

x̂ =
∑N

i=1
ωi
kx

i
k . (20)

The basic procedures of the algorithm [15] are as
follows:

• Initialization: Set k = 0 and generate particle swarm
from the prior density function p(x0).

• Importance sampling: For the case when
k ∈ {1, 2, . . . ,∞} , get N samples from the conversion
prior density function p

(
xk|xik−1

)
and calculate the

weight of each particle ωi
k = ωi

k−1p
(
yk|xik

)
for

i = 1, 2, . . . ,N , then do regularization for the weights

by the rule ω̃i
k = ωi

k

[
N∑
j=1

ω
j
k

]−1

.

• Resampling: Setting Ñ = [Ñωi
k
]
, we derive

Nk = N −∑N
i=1 Ñi particles by sample importance

re-sampling (SIR) and the corresponding weights are
ωi
k = Nk

−1(
ωi
kN − Ñi

)
. In this case, the total number

of particles N is invariant and ωi
k = ω̃i

k = 1
N .

The basic idea of the particle filter is to represent the
state vector of interest as a set of random samples with
associated weights and then work out the state estima-
tion values based on these samples and weights. When
the number of random samples is sufficient, the estimated
probability density function of the particle would level

off to the real probability density, and the particle filter-
ing would accordingly level off to the optimal Bayesian
filtering [10].

3.2.4 Neural network filtering [11]
Consider the system model as:

X(t) = f (X(t − 1)) + ξ(t − 1)
y(t) = H(t)X(t) + v(t) (21)

where X(t) is a n-dimensional state vector, f is a n-
dimensional nonlinear vector function, y(t) denotes the
m-dimensional detection vector, H is a matrix of sizem×
n, ξ(t) is the n-dimensional dynamic noise sequence, and
v(t) is the m-dimensional measurement noise sequence.
ξ(t) and v(t) are generally uncorrelated zero mean nor-
mal white noise sequence. That is, for all t and j, the noise
statistical properties satisfy:

Eξi = 0, cov(ξi, ξj) = Eξiξ
T
j = Qtδti

Evi = 0, cov(vt , vi) = EvtvTj = Rtδtj
cov(ξt , vj) = EξtvTj = 0.

(22)

Where ξ(t) and v(t) are colored noise with nonzero
mean.
With the rapid development of artificial intelligence

technology, researchers found that the neural network
filter was suitable for issues of nonlinear. Its main fea-
tures are smart and well-adapted. And the drawback of
this method is its poor universality, and the estimated
accuracy is unsatisfactory.

3.2.5 UKF filtering
The basic idea of UFK is unscented transformation (UT)
[12,16], and the procedure of the method can be summa-
rized as follows.

1. Construct the sigma points. In the first place, work
out the sampling points ξi and its corresponding
weightsWi [10,17].⎧⎨
⎩

ξ0 = X , i = 0
ξi = X + (

√
(nx + κ)Px)i , i = 1, . . . , nx

ξi+nx = X − (
√

(nx + κ)Px)i , i = 1, . . . , nx
(23)

⎧⎪⎨
⎪⎩

W0 = κ
(nx+κ)

, i = 0
Wi = κ

[2(nx+κ)] , i = 1, . . . , nx
Wi+nx = κ

[2(nx+κ)] , i = 1, . . . , nx
(24)

where κ is a scale parameter that can be any value
satisfying (nx + κ) �= 0,

(√
(nx + κ)Px

)
i is the ith line

and the ith column of the root mean square (RMS)
matrix (nx + κ)Px and nx denotes the dimension of
the state vector.
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2. Give nonlinear transformation to the sigma points.
Each of δ samples are transmitted by nonlinear
function and we obtain.

yi = g(ξi), i = 0, . . . , 2nx. (25)

3. Calculate the mean and variance of y. The estimated
mean and covariance of y are as follows.

Procedure of the algorithm [10]:

• Calculate the δ sampling point χ i
k|k ;

• Predict x̂k+1|k and Pk+1|k in use of χ i
k|k according to

UT;
• Update the observation value by the following

equations.
Zi
k+1|k = hk+1

(
χ i
k+1|k

)
∧z

k+1|k
=

2nx∑
i=0

WiZi
k+1|k

Sk+1 =
2nx∑
i=0

Wi
[
Zi
k+1|k − ∧xk+1|k

] [
Zi
k+1|k − ∧xk+1|k

]T + Rk

Pxx,k+1 =
2nx∑
i=0

Wi
[
χ i
k+1|k − ∧xk+1|k

] [
χ i
k+1|k − ∧xk+1|k

]T
Kk+1 = Pxx,k+1S−1

k+1
∧x

k+1|k
= ∧x

k+1|k
+ Kk+1

(
zk+1 − ∧z

k+1|k

)
Pk+1|k+1 = Pk+1|k − Kk+1Sk+1KT

k+1. (26)

UKF conducts recurrence and updates of the nonlin-
ear model status and error covariance by nonlinear UT
method. It is not about the approximation of the nonlin-
ear model but the approximation of the state’s probability
density function [18]. The similarity between UKF and
EKF is that the used parametric analytical form is both
based on the Gaussian assumption [19].

3.3 Comparison of different nonlinear filters
In [20], by using EKF, it is obvious that besides some
improvements, we can see that the magnitude of the error
correction is small from the image after the radar data
filtering and simulation. The error of linearization usu-
ally seriously affects the final filtering accuracy, sometimes
even leads to filtering divergence.
In our work, we try to use UKF which is more accurate

than EKF, what is more, in themethod of UKF, the approx-
imation of the maximum term of Taylor expression and
the calculation of the Jacobi matrix are avoided. However,
it should be added that the application is limited due to
the assumption of the Gaussian distribution of noises.
For the interpolation filter, we need more sampling

points in order to achieve ideal precision. In the method,
Taylor expansion should be used and approximation must
be done. Considering that the performance of applications
on digital data is worse than applications on image data,
in our study, we do not use interpolation filter.

In practical, the estimation of nonlinear and non-
Gaussian stochastic systems is more significant. An effec-
tive way to solve this problem is nonparametric particle
filtering. Particle filtering can be applied to any state-
transformation model and measuring model in any envi-
ronment, which gets rid of the constraint that random
amounts must satisfy Gaussian distribution. However,
there would exist particle degradation when do particle
filtering practically, which means that as the increase of
the number of samples, the weight of many particles may
get smaller, and the variance of the sample would increase
over time. Based on the judgment in [20], the system is
under the assumption of Gaussian noise, so we would not
use particle filtering algorithm here.
Although with a short history, neural network filter-

ing algorithm can be combined with the other filters like
EKF and generates new adaptive extended Kalman filters.
However, we do not choose it for it is better used under
similar systems.
From the procedure of UKF, we can see that the method

is faster than EKF for there is no need to calculate the
Jacobi matrix. And the mean and variance of the nonlin-
ear function can be estimated more accurately with UT
so get a higher accuracy. For any nonlinear functions, the
posterior mean and covariance by UKF can be accurate to
the second-order so that UKF can be used in any dynamic
model while EKF can only obtain a precision of first order.
Basing on the above analyses, we choose the method

UKF which can provide more accurate data for further
calculation. And it has a great significance for practical
applications by applying UKF to [20] which is bound to lay
better foundation for the future data fusion problem.

4 Numerical results
Using the data in [20], after overall analyses, we can get
the radar data map as Figure 2.
When simulating the extended Kalman filtering algo-

rithm and the unscented Kalman filtering algorithm by
Matlab, we set the initial values as follows.

• Radar period: T = 2.
• Random errors of radar distance and the position:

200 and 0.3.
• Initial values of the state are:

X0 =
{
Z(1, 2), Z(1,2)−Z(1,1)

Ts
,Z(2, 2), Z(2,2)−Z(2,1)

Ts

}

H =
(
1 0 0 0
0 0 1 0

)
,F =

⎛
⎜⎜⎝

1 Ts 0 0
0 1 0 0
0 0 1 Ts
0 0 0 1

⎞
⎟⎟⎠ .

(27)

Initial covariance is as follows:
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Figure 2 Figure of overall radar data.

P=

⎛
⎜⎜⎜⎜⎝
R(1, 1) R(1,1)

Ts
R(1, 2) R(1,2)

Ts
R(1,1)
Ts

2R(1,1)
Ts2

R(1,2)
Ts

2R(1,2)
Ts2

R(1, 2) R(1,2)
Ts

R(2, 2) R(2,2)
Ts

R(1,2)
Ts

2R(1,2)
Ts2

R(2,2)
Ts

2R(2,2)
Ts2

⎞
⎟⎟⎟⎟⎠,Q=

⎛
⎝ 50 50 10 10

50 50 10 10
10 10 50 50
10 10 50 50

⎞
⎠.

(28)

When using the extended Kalman filtering algorithm,
we select 16 sets of data, where x0 is the horizontal spatial
position of the plane and y0 is the vertical spatial position.
After filtering data (x0, y0) by EKF andUKF, we get the val-
ues (x1, y1) [21] and (x1′, y1′) , which are shown in Table 1.
(x1, y1) and (x1′, y1′) represent measurements obtained by
EKF algorithm and UKF algorithm, respectively.

Table 1 Radar measurements obtained by EKF algorithm and UKF algorithm

Values

(x0, y0) (768550, 786690) (766260, 786700) (764390, 787190) (762280, 787080)

(x1, y1) (768540, 786700) (766430, 786860) (764120, 787280) (761740, 787410)

(x1 ′ , y1′) (767784, 786694) (766716, 786699) (765136, 786995) (763243, 787088)

(x0, y0) (757850, 786890) (755880, 787360) (753780, 787530) (751550, 787370)

(x1, y1) (757840, 787090) (755730, 787450) (753420, 787580) (751140, 787820)

(x1 ′ , y1′) (760133, 787052) (757436, 787221) (754930, 787394) (752499, 787453)

(x0, y0) (747210, 787300) (745100, 787400) (742990, 787490) (740740, 787240)

(x1, y1) (747200, 787510) (745090, 787670) (742780, 787690) (740500, 787820)

(x1 ′ , y1′) (749442, 787473) (746636, 787513) (744005, 787565) (741462, 787537)

(x0, y0) (736750, 788000) (734630, 788040) (732380, 787720) (730470, 788030)

(x1, y1) (736750, 788010) (734640, 788070) (732320, 788390) (730040, 789020)

(x1 ′ , y1′) (738559, 787701) (735821, 787837) (733182, 787875) (730688, 787968)
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Figure 3 Filter image of applying (a) EKF algorithm and (b) UKF algorithm. Sixteen sets of data are in use.

The tracks of (x1, y1) after UKF and (x1′, y1′) after EKF
are shown in Figure 3a,b.
From the above images, we can clearly see that the

track in the second figure by UKF is smoother espe-
cially around the points 8 and 9. Since actually the
flight path of an aircraft cannot be poignant as bro-
ken line form, the smooth curve in Figure 3b is much
closer to the actual trajectory of the aircraft. That is to

say, in the test cases, UKF algorithm is a more suitable
method.
In the following, we choose 20 sets of data, then smooth

and track the path of aircraft using the Kalman filtering
algorithm. We obtain the tracks of data as are shown in
Figure 4a by EKF and Figure 4b by UKF.
Compared with the curve in Figure 4a, the track by UKF

is much smoother. And the curve behind point 9 is almost

Figure 4 Filter image of applying (a) EKF algorithm and (b) UKF algorithm. Twenty sets of data are in use.
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Figure 5 Filter image of applying (a) EKF algorithm and (b) UKF algorithm. Eighty sets of data are in use.

in a smooth form. Although the curve by EKF algorithm
is close to the original measurement data, according to
the actual principles of flight, the aircraft should have
a smooth movement, which fully illustrates that there is
measurement error, and we should filter the data before
using it.
In the next test case, we select 80 sets of data, then

smooth and track the path of aircraft using the Kalman
filtering algorithm, and we obtain the track after EKF
shown in Figure 5a and the track after UKF shown in
Figure 5b.
From Figure 5a, we can find that after unscented Kalman

filtering, the curve is almost a smooth one. It states that
filtering the set of measurements by UKF, the curve we
obtain is much closer to the actual track.

5 Conclusions
We present algorithm procedures of five types of non-
linear filters used in radar tracking data filtering, respec-
tively, and have a contrast of them, among which UKF
shows the best performance. For further illustration, we
mainly carry out simulations of UKF, and that of EKF is
taken as comparison. Both theory and simulation results
show that the precision of data and images we get by
UKF is superior to the other filters, especially better
than the result by EKF, and shows smoother and bet-
ter tracking performance. What is more, for nonlinear
function, UKF algorithm can greatly improve the accu-
racy of the calculation in practical applications, if we
apply the UKF algorithm to the method in [20], the
issue would be a preferable basis for data fusion in

the future and may have great significance for practical
applications.
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