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Abstract

Broadcast is a fundamental operation in multi-hop wireless networks. Given a source node with a message to
broadcast, the objective is to propagate the message to all nodes in an interference-free manner while incurring
minimum latency. This problem, called Minimum-Latency Broadcast Scheduling (MLBS), has been studied extensively
in wireless networks whereby nodes remain on all times and has been shown to be NP-hard. However, only a few
studies have addressed this problem in the context of duty-cycled wireless networks, which unfortunately, remains
NP-hard. In these networks, nodes do not wake up simultaneously, and hence, not all neighbors of a transmitting
node will receive a broadcast message at the same time, meaning multiple transmissions may be necessary.
Moreover, most of these studies addressed the MLBS problem over the idealistic protocol interference model.
Henceforth, this paper considers MLBS for duty-cycled wireless networks under the physical interference model and
presents an approximation algorithm called hexagon-based broadcast algorithm (HBA), which has a constant ratio in
terms of broadcast latency and transmission times. We have evaluated HBA in different network configurations, and
the results show that the latencies achieved by our algorithm are much lower than existing schemes. In particular,
HBA manages to half the broadcast latency achieved by the state-of-the-art tree-based algorithm.
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1 Introduction

Wireless sensor networks (WSNs) consist of numerous
nodes deployed in a field. These nodes may be resource
constrained in terms of battery lifetime, memory, and
processor speed. In addition, they use multi-hop commu-
nications whereby sensed data are forwarded to one or
more sinks/gateways via one or more nodes. Upon receiv-
ing the data, a sink/gateway may transmit a command
to sensor nodes to affect their operating parameters; e.g.,
sampling frequency. Consequently, network-wide broad-
cast from a sink is a fundamental operation. Apart from
that, broadcast is relied upon by several network proto-
cols, such as routing [1], information dissemination [2],
and resource/service discovery [3]. These protocols in
turn help applications in disaster relief, military commu-
nication, rescue operation, and object detection [4].
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For these applications, time is critical, and hence, a
Minimum-Latency Broadcast Scheduling (MLBS) algo-
rithm/protocol will be of great importance to their oper-
ation. Like many other communication protocols, any
developed MLBS solution must deal with interference.
Unfortunately, the MLBS problem for multi-hop wire-
less networks has been proven to be NP-hard [5], and
researchers have proposed many approximation algo-
rithms; see [4-10]. These algorithms, however, assume
all nodes are always active and adopt highly theoretical
disk graph models, in which the transmission and inter-
ference range is assumed to be a unit disk centered at
each node. These works deal with interference through
the RTS/CTS model or protocol interference model [11].
RTS/CTS model only considers the interference within a
node’s transmission range; that is, interference and trans-
mission range are equal. On the other hand, the protocol
interference model assumes that the interference range is
larger than transmission range. Specifically, interference is
assumed when nodes have overlapping interference range.
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These ‘interfered nodes’ must therefore be scheduled in
different time slots. The main drawback of these inter-
ference models is that they cannot model the case where
many far-away nodes could still have non-negligible effect
on reception. To this end, the physical interference model,
also called SINR-based interference model, is more real-
istic, where the cumulative interference of many nodes
outside the interference range is not neglected.

To date, only a few broadcast algorithms [7,12,13] have
been designed for the MLBS problem under the physical
interference model. Notably, there are even fewer works
that address the MLBS problem in duty-cycled wireless
networks. Briefly, in these networks, nodes are powered
by batteries and are only awake for a fraction of the time
[14]. Here, the duty cycle of a node is defined as the ratio
between its active time and scheduling period, denoted
as T. We note that they can employ a synchronous wake-
up schedule; that is, nodes wake up at the same time.
This means existing MLBS solutions for always on nodes
are applicable. Unfortunately, doing so would require sen-
sor nodes to coordinate and synchronize their wake-up
time globally. This incurs high signaling overheads and
energy that may severely shorten their operational life-
time. This paper, therefore, only considers wireless net-
works with an asynchronous schedule. Advantageously,
Chin [15] showed that nodes only need to maintain the
clock offset to each neighbor. To reduce signaling over-
heads even further, nodes can select a random sequence
of wake-up times independently instead of having a coor-
dinated wake-up schedule, which requires network-wide
negotiation, where all nodes are awake. Figure 1 shows a
sequence of four slots that repeat periodically. The grayed
slots denote the wake-up times of a node. In this exam-
ple, the node has picked slot 2’ as its active time slot
from a scheduling period T of 4, and hence, its duty cycle
is i. In fact, in a duty-cycled WSN, all nodes will pick
their own wake-up time upon network boot-up; in this
example, a random slot in the range [1,4]. Once selected,
a node then wakes up in its chosen slot every T slots.
Given the wake-up schedule of nodes, a broadcasting
node may have to transmit a message multiple times; i.e.,
all neighbors are unlikely to select the same slot to wake
up. Consequently, any solutions to the MLBS problem in
duty-cycled networks must first determine the wake-up
times of neighbors, and in each wake-up time, it needs to
ensure transmissions do not collide.

[1f2]3[4f1]2[3[4]1[2]3]
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Figure 1 An example of a duty-cycled schedule.
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Henceforth, this paper presents the design and evalua-
tion of a novel approximation algorithm that is designed
for duty-cycled networks under the physical interference
model. Specifically, it contains the following contribu-
tions:

1. We propose the first distributed broadcast algorithm,
called hexagon-based broadcast algorithm (HBA), for
the problem at hand. It produces a constant
approximation ratio? of

2 8p 2 1 a?
9’72—}_3(1—(7'/”:11;»()&(“_2_’_0(—1—*_3)) —‘ Tll’l
terms of broadcast latency, where « is the path-loss
exponent, B is the minimum SINR threshold required
for a message to be decoded successfully, rmay is the
maximum transmission range, r is the transmission
range of nodes, and T is the scheduling period.

2. The total number of transmissions in terms of
broadcast messages produced by HBA is upper-
bounded by (T + 1) Ny, where Ny is the number of
hexagons required to cover the entire network.

3. We evaluate HBA under different network
parameters via simulation and show that that on
average, our proposed algorithm has a much better
performance in terms of broadcast latency than the
tree-based algorithm [7]. The key reason is because
our algorithm is able to schedule transmissions in
multiple layers as opposed to layer by layer, as is done

by [7].

The remainder of this paper is organized as follows.
Section 2 lists related work. In Section 3, we introduce the
network model, definitions, theories, and the problem for-
mulation. In Section 4, we introduce our approximation
algorithm, followed by its analysis in Section 5. Section 6
presents our research methodology and results. Lastly,
Section 7 concludes the paper and presents future works.

2 Related works

To date, there are many approaches to address the MLBS
problem in multi-hop wireless networks. The simplest by
far is flooding [16], where each node simply re-transmits
a received message to its neighbors unscrupulously. How-
ever, this causes broadcast storms [17] and is thus very
costly and causes long latencies. Consequently, a num-
ber of researchers, e.g., [18-20], have proposed methods
that improve the efficiency of broadcast. In this paper, we
address a variant of the MLBS problem, which aims to
find an efficient, interference-free schedule that yields the
minimum broadcast latency.

For the MLBS problem under the RTS/CTS model,
where it only considers interference or collision from
senders inside a receiver’s transmitting range, Gandhi
et al. [5] presented an approximation algorithm with a
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constant approximation ratio of more than 400 for one-
to-all broadcast. They then improve this ratio to 12 in
[4]. Huang et al. [8] outlined three approximation algo-
rithms for MLBS with latency of at most 24R, 16R, and
R + O(log,R), respectively, and the omitted constant in
O(log,R) exceeds 150 [4], where R is the theoretical lower-
bound.

To the best of our knowledge, Chen et al. [6] are the first
to study the MLBS problem under the protocol interfer-
ence model, where the interference range is larger than
transmission range. Huang et al. [7] propose a constant
approximation algorithm with a ratio of 6[2(e +2)]* for
the MLBS problem, where € is the ratio between the
interference range and transmission range. Tiwari et al.
[10] extend Huang et al’s method to consider different
transmission ranges and dimensions, i.e., 2D and 3D, and
presented an approximation algorithm with a constant
ratio of 2 (%(e +1)%y% 4 Bt é—‘ for the 2D space, where
y is the ratio between the maximum and minimum trans-
mission range. Tiwari et al. [10] also propose the first
distributed algorithm for the MLBS problem under the
protocol interference model. However, their distributed
algorithm requires a node to exchange a significant num-
ber of control messages until all its neighbors receive the
broadcast message, leading to an increase in energy con-
sumption. Mahjourian et al. [9] study the conflict-aware
broadcast problem whereby apart from the transmission
and interference range, they also consider the carrier
sensing range. They propose a constant approximation
algorithm that has a ratio of O(max(e,8)?), where § is
the approximation ratio between the carrier sensing and
transmission range.

There are only handful works that have considered
the MLBS problem with the physical interference model.
Huang et al. [7] propose the first approximation algorithm
for the MLBS problem under the physical interference
model assuming each node is aware of its geographi-
cal location. Wan et al. [13] convert the network under
the physical interference model into a disk graph and
apply coloring methods to schedule simultaneous trans-
missions. Huang et al. [12] then extend the approach in
[7] to consider a more realistic interference model, where
a message is received successfully as per its SINR level.

Thus far, the aforementioned works assume an always-
on network, whereby all nodes remain awake indefinitely,
meaning they do not employ any duty-cycle regime. To
this end, only a handful of papers [21-23] have tried to
address the MLBS problem in duty-cycled wireless net-
works, and even worse, all of these works only study
the problem under the RTS/CTS model. Hong et al. [21]
prove that the MLBS problem in duty-cycled wireless
networks is NP-hard and proposed two approximation
algorithms with an approximation ratio of O((A2 4+ 1)T)
and 24T +1 respectively, where A is the maximum degree.

Page30f13

In [22], Jiao et al. propose an algorithm called OTAB
and prove that OTAB has an approximation ratio of 177
Also, they showed that the total number of transmissions
scheduled by OTAB is at most 15 times larger than the
minimum number of transmissions. Recently, Xu et al.
[23] extended the pipelined broadcast scheme in [8] to
consider duty-cycled WSNs. Their broadcast algorithm
produces a latency of at most TR + TO(log,R), where the
omitted constant in TO(log,R) also exceeds 150.

The aforementioned approaches rely on a tree con-
structed using breadth-first search (BFS), which in turn is
used to schedule interfering transmissions layer by layer.
A key observation, however, is that transmissions in the
next layer can only start when all nodes in the current
layer have finished. In contrast, in our approach, HBA
considers the set of all nodes holding a broadcast message
at any point in time as potential transmitters. Conse-
quently, HBA is able to schedule simultaneous transmis-
sions in multiple layers of a BFS tree, which helps to
reduce broadcast latency. Furthermore, HBA uses a color-
ing technique based on checking individual transmitters
to ascertain whether they violate the interference-free
conditions, which we will be precise in Theorem 1. These
design features thus help increase the number of simul-
taneous interference-free transmissions in each time slot.
In addition, except for [10], the aforementioned works
are centralized and for always-on networks. However, the
distributed algorithm in [10] is designed for always-on
networks under the protocol interference model. More
importantly, to the best of our knowledge, HBA is the first
distributed solution for the MLBS problem in duty-cycled
networks under the physical interference model.

3 Preliminaries

3.1 Network model

We assume nodes are placed on an Euclidean plane. Let
d(u,v) be the Euclidean distance between node u and v.
We also assume the power level assignment is uniform,
whereby all senders transmit with power level P. We adopt
the following standard SINR-based interference model
[24]. Here, a node v receives a message successfully from a
sender u if and only if the following condition holds:

Pd(u,v)™® -
ZweV\{u,v}Pd(W’ V)_a +N

1)

where V denotes the set of nodes in the network, « is
the path-loss exponent that is normally between 2 and
6, B denotes the minimum SINR required for a message
to be received successfully which is greater than 1, N
is the ambient noise; and Y, ey () P d(w,v)™ is the
interference experienced by node v from nearby nodes.
We assume time is slotted. Each time slot is assumed to
be of sufficient duration to transmit or receive a broadcast
message. To this end, the network is locally synchronized
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at the slot level. As shown in [25], this can be achieved
by local synchronization techniques, such as FTSP [26],
which can yield an accuracy of 2.24 pus using only a few
small packet exchanges among neighboring nodes every
15 min. It is important to note that this accuracy is suf-
ficient as the active duration of each node is typically
above 10,000 s [27,28]. Moreover, transmissions are not
required to start at the beginning of each slot, mean-
ing nodes do not need strict synchronization in order to
communicate.

A scheduling period has T slots of fixed, equal length.
We will index each slot by 1, 2, 3,---,T. The duty cycle
is thus defined as the ratio between active time and 7. For
example, if T = 10, a 10% duty cycle means nodes are only
awake in one slot. Similar to [29,30] and [22], each node v
selects one active time slot from [1,2,3..., T] randomly
and independently and wakes up at its chosen time slot to
receive a message; i.e., sensor nodes operate using an asyn-
chronous schedule. If node v wants to transmit a message,
it wakes up at the slot in which the receiver is awake.

We remark that the process of determining slot bound-
aries and a schedule, see Section 3.2, requires only local
communication. This means nodes only need to commu-
nicate with their direct neighbors, as opposed to all nodes,
in order to determine the start and end of a slot and also
to learn the wake-up time of their neighbors. These design
decisions thus help improve the scalability of the proposed
solution, especially with respect to communication cost.

Lastly, we assume that each node is aware of its location.
This can be achieved by using localization methods such
as those in [31]. Note, we assume localization errors are
bounded by €. Also, nodes know the location of the base
station, which is located at position (0, 0).

3.2 Definitions and theories

We define the transmission graph Gt = (Vr,Er(r)),
where ET(r) = {(u,v) | d(u,v) < r}. We assume Gr is
connected. Let rpax = (Niﬂ)l/ % which is the maximum
transmission range in the absence of interference from
other simultaneous transmissions. Let rmin be the length
of the longest edge in the minimum spanning tree of Gr.
In other words, rmax and rmin are the maximum and min-
imum r such that transmission graph G7 is connected,
i, rmin < 7 < Fmax- Let Ni(u) denote the set of one-
hop neighbors of node u, i.e, Ny(u) = {v|du,v) <r}.
Accordingly, for a set V' of nodes, N1(V) denotes the
set of one-hop neighbors of nodes in V, ie., Ni(V) =
Uuev N1(#). Na(u) denotes the two-hop neighbors of u,
where node v € N3 (u) should share at least one common
one-hop neighbor with # and r < d(u,v) < 2r.

In a distributed environment, we assume each node
knows the ID, position, and active time slot of its two-
hop neighbors. This information can be gathered readily
from any local broadcast techniques, e.g., [32,33] or [34],
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in the network establishment stage. Incidentally, these
techniques are the first to achieve local broadcast under
the SINR-based interference model. Note, in practice, the
required information can be embedded in HELLO mes-
sages sent out by nodes during neighbor discovery. That
is, a node ‘A’ only needs to include its ID and selected
wake-up slot in its HELLO message. A neighbor that
receives this message records the embedded information
and included this in its own HELLO message. Hence,
node A’s information has propagated two hops. One way
to schedule the transmission of HELLO messages is to
use the method in [15]. Each node has a broadcast slot
whereby it transmits a HELLO message and all its neigh-
bors receive. If each node has k neighbors, in the worst
case, a node needs to transmits at most two times. That
is, it first transmits its own ID and selected slot. The next
HELLO message is transmitted only when it has received
the HELLO message from all neighbors.

A link (u,v) is defined as the transmission from sender
u to receiver v, where (u,v) € Er(r). Let L denote a
set of links in G7. Set L is said to be independent in the
SINR-based interference model if all senders in L transmit
simultaneously; all transmissions can be received suc-
cessfully by receivers in L. The next theorem gives the
sufficient condition for L to be independent, and its proof
can be found in the Appendix.

Theorem 1. In order for set L to be independent, it is
sufficient for one of the following to be true:

1. The mutual distances of senders are all greater than
pr;

2. The mutual distances of receivers are all greater than
pr.

1/a
— 8p 2 1
where p =1+ (1—<r/rmx>“ (u—z taat 3)) :

In practice, p is a small constant. Consider « = 4 and
B = 1. Figure 2 indicates the relationship between r/rmax
and p. We see that when r/rmpax < 0.8, p is smaller than 4.

We remark that in practice, there will be localization
errors. They can be incorporated by requiring the mutual
distance between nodes to be at least pr + €. Recall
that € is the maximum localization error. The incorpo-
ration of localization error also increases the distance
between hexagons (explained later) with the same color
and thereby ensuring the transmissions from nodes in
these hexagons are interference free.

Tessellation is a way to partition a plane into equal (or
similar) pieces. In Figure 3, we see a regular hexagonal tes-
sellation. We assume sensor nodes are pre-programmed
with this information before deployment and then using
their location determine the hexagon they are in. Given
this tessellation, we can now proceed to color it using
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Figure 2 Aplotof p whene =4and 8 = 1.

a number of methods; examples include [7,12] and [10].
Without loss of generality, in this paper, we will employ the
following 3k* coloring method when scheduling broad-
cast. As we will see later, the color of a hexagon will
be used to achieve interference-free transmissions in
Section 4.2, where nodes located in hexagons with a
different color are not allowed to transmit or receive
simultaneously.

We are given a natural number k& and a hexagonal
tessellation with a hexagon radius of r/2, where r is
the transmission range in Gr. Define two vectors ¥ =
(3v/3r/4,3r/4) and y = (3+/3r/4, —3r/4). These vectors
have a length of 37/2. Repeat the following process, see
Algorithm 1, for all colors; here, color is an integer in the
range [ 1, 3k%;ie, 1 < colgr < 3k2. Start from an uncol-
ored hexagon with centre / and then assign all hexagons
with center at i1+ akx + bky with color, where a, b € Z. For
instance, suppose k = 2. We need to assign the same value
color to all hexagons with center 1+ 3ax+3by where a, b €
7. This process repeats until color = 3k*> = 12. The result

Figure 3 An example of hexagonal tessellation and coloring.
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of 12 coloring is shown in Figure 3. Note, I+ aks + bky is
a function of a and b; both of which can be arbitrary inte-
gers, e.g, a = 1,b = —1, if there exists a hexagon in the
network with center % + akx + bky.

Algorithm 1 3k2-coloring method

1: input: r, k, X and y

2. output: 3k-colored hexagons
3: color <1

4: fori < 1to 2k do

5. if i < k then

6: forj <~ 1tok+i do

7: h < ((2j —i— 1)3/3r/4,—(i — 1)3r/4)

8: end for

9: else

10: forj < 1to3k—i do

11: h < (2 +i—1—2k)\/3r/4, —(i — 1)3r/4)
12: end for

13:  end if

14 Assign color to hexagons with center /1 + aki + bky
foralla,b € Z,

15:  color < color + 1

16: end for

Lemma 1. (Huang et al. [7]). Algorithm 1 results in a 3k>
coloring, and hexagons of the same color are separated by
at least a distance of 3k — 2)r/2.

According to Theorem 1 and Lemma 1, in order to
apply Algorithm 1 under the SINR-based interference
model, we need to set (3k — 2)r/2 = pr. In other words,
k = [2(p + 2)/3]. Based on the transmission graph Gr, a
hexagon is said to be covered by anode v € Vr, if and only
if node v’s neighbors are in the said hexagon, excluding v.
To distinguish nodes on the edges of hexagons, we assume
each hexagon is left half open and right half close, with
the topmost node included and the bottommost node
excluded.

3.3 Problem formulation

Let (B;,R;,t; + k;T) denote the ith transmission, i, k; €
N, where each B; (respectively, R;) is the set of nodes that
send (respectively, receive) the message at time slot ¢; +
k; T, where t; is the active time slot of nodes in R;. Given a
wireless network with duty cycle and a source node s € V,
the broadcast problem is to find a forwarding schedule,

B = {(Berl’ 1+ kl T) PR (erRmr tym + ka)}

that satisfies the following constraints: (i) each node v €
B; must have been in R;, with j < i; that is, node v
must receive the message before it sends, (ii) all transmis-
sions from set B; to R; must be interference free under
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SINR-based interference model, (iii) |Uf’;1 Ri| = |V] and
tw + kT — (t1 + k1 T) is minimum. In other words, find
an interference-free broadcast schedule that guarantees
all nodes in V receive the broadcast message interference-
free in minimum time.

4 Adistributed broadcast scheduler

We now present our distributed hexagon broadcast
scheduling algorithm (HBA). We first describe HBA fol-
lowed by our theoretical analysis confirming its O(1)-
approximation ratio in terms of broadcast latency.

4.1 Broadcast structure

HBA starts by constructing a broadcast structure T
before using the color of hexagons to derive a broad-
cast schedule such that nodes located in hexagons with
a different color are not allowed to transmit or receive
simultaneously.

Firstly, we describe the construction of Tj; see
Algorithm 2 for details. Each node first tessellates the net-
work into equal hexagons with a radius of r/2 and then
gives a 3([2(p +2)/ 37)2 coloring to all hexagons (lines 5
and 6 in Algorithm 2). Note, as the radius of each hexagon
is r/2, the maximum distance in each hexagon is r; that is,
nodes located in the same hexagon are one-hop neighbors
of each other.

Algorithm 2 Broadcast structure T}

1: input: Transmission graph G = (Vr, Er(r))

2: output: 7, = (Vp, Ep)

3 Vi < 0,Ep, < 0

4: for each node vin V7 do

5. Tessellate the plane into equal hexagons with radius
r/2, one of which is centered at (0, 0)

6:  Apply Algorithm 1 to color all hexagons by setting
k=1T2(p +2)/3]

7. Hi(v) <« {u | u lies in the same hexagon as v} U{v}

8  How) <~ {u|lueNi(Hi(v))andu ¢ Hi(v)}
9:  Mark all hexagons as uncovered
10 while Hy(v) # 0 do

11: u < a node in H;(v) covering most uncovered
hexagons (break ties based on smaller ID)

12: for each uncovered hexagon covered by u do

13: w < a node with smallest ID among nodes in

this uncovered hexagon and Nj (1)

14; Hao(v) < Ha(v) \ {H1(w) N Ha(v)}

15: Ep < Ep U {(u,w)}

16: Mark this uncovered hexagon as covered

17: end for

18:  end while

19: end for

20: V} < nodes in Ep
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Next, based on two-hop neighbors information, node
v places into set H;(v) neighbors that are in the same
hexagon as itself and adds into set Hz(v) nodes in the
other hexagons that are the one-hop neighbors of nodes
in Hi(v) (lines 7 and 8 in Algorithm 2). Note that set
H1(v) includes node v. Since nodes in H;(v) are one-hop
neighbors with each other and they are aware of two-hop
neighbors information, nodes in the same hexagon will
produce the same H; and H; sets.

To reduce the number of transmissions, HBA selects
a set of nodes from Hj(v) that covers all neighbor-
ing hexagons containing a neighbor; i.e., the selected
nodes are neighbors of nodes in Hy(v). Ideally, we want
the chosen set to have a small cardinality. Specifically,
HBA, applies line 9 to 18 in Algorithm 2 to produce the
broadcast structure T, = (V},Ep), where V}, contains
nodes used to relay broadcast messages, i.e., providers
and receptors, and Ej, indicates the set of links between
a provider and its corresponding receptor. Here, provider
is a node selected from #;(v) and is used for relaying a
broadcast message to its corresponding receptors; while
a receptor is a node chosen from set Hj(v) and is used
to transmit a broadcast message to all other nodes in
its hexagon.

Initially, HBA marks all hexagons as uncovered and
then repeats the following iterations until Hy(v) is
empty. It first picks a node u € Hi(v) that covers
the most uncovered hexagons (line 11 in Algorithm 2),
and labels u as a provider. The next step is to select
one corresponding receptor of u from each uncovered
hexagon. Specifically, for each uncovered hexagon, HBA
will choose as the corresponding receptor a node w
with the smallest ID among nodes in Nj(u); see line
13 in Algorithm 2. Then, it includes link (#,w) in the
set E, and removes nodes in Hi(w) from Hjy(v), ie.,
HoW\{H1(w) N Ha(v)} (lines 14 and 15 in Algorithm
2). It then marks the uncovered hexagon as covered.
Note, provider u and its corresponding receptor w are
located in different hexagons, and provider u (respec-
tively, receptor w) has only one corresponding receptor
w (respectively, provider u) in the hexagon including w
(respectively, u).

After the execution of Algorithm 2, we have the broad-
cast structure T}, where V}, contains providers and recep-
tors, and E; indicates the link of a provider and its
corresponding receptors.

We now use Figure 4 as an example to illustrate the
operation of Algorithm 2. We only consider the broadcast
structure of the hexagon with color 5. Recall that nodes
in the same hexagon produce the same broadcast struc-
ture T}. Hence, in the following description, we illustrate
Algorithm 2 from the perspective of node v;. It starts
by constructing the set 7;(v;) and H2(v;) based on its
two-hop neighbors information. We thus have H;(v1) =
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Figure 4 HBA in operation.

{vi,vo,v3} and Hy(v1) = {v4, vs, Ve, v7, Vs, V9, V10}. Node v
is first selected as the provider from H;(v;) as it covers
the most uncovered hexagons, i.e., hexagons with node v4,
Vs, V6, and v1g. Next, node vy, vs, v, and vy are selected
as the corresponding receptors of v; and are removed
from Ha(v1), i.e., Ha(v1) = {v7,vs, v9}. Algorithm 2 then
marks the hexagons covered by v; as covered and adds into
the set Ej, the links (v1,v4), (v1,v5), (v1,v6), and (v1, v19).
The other nodes in H;(v1), i.e.,, v and v3, are handled
in a similar manner, and the final result is shown in
Figure 4. For the hexagon with color 5, the set of providers
is {v1, vy, v3}.

The aforementioned T} construction process yields the
following property.

Lemma 2. For each hexagon H, there are at most 18
providers with corresponding receptors located in H.

Proof 1. Recall that a provider u and its corresponding
receptor v are located in different hexagons and only one
link (u,v) exists in Ej, between these two hexagons. This
means we only need to prove the number of hexagons cov-
ered by receptors in a given hexagon H is upper-bounded
by 18. As shown in Figure 3, for a given hexagon H
with radius of r/2, it has at most 18 hexagons around
it with a minimum distance less than r; that is, nodes
in H can cover at most 18 hexagons. Hence, this lemma
holds.

4.2 Broadcast scheduling

In this section, we describe the protocol used to broadcast
a message from the source node s to all other nodes in G,
see Algorithm 3.

Algorithm 3 Broadcast scheduling

1. input: s, Tj = (Vj, Ep) and message m

2: output: Broadcast latency Lat

3: Schedule node s to transmit message 1 in frame J,
4 Lat < 0,V < Hi(s) and i < (c + 1) mod 3k>

5. while V' £ Vr do

6: // Phase 1-schedule nodes in V,

7. for each hexagon # assigned to frame F; do

8
9

w <NIL
fort < 1to T do
10: Sr(t) < {v | vis areceptor in H with active
time slot of ¢}
11: Sp(t) < {u | u is a provider with m and yet to
send m to its receptor v € S,(¢)}
12: Node w sends an ACK at AF of F}(¢)
13: Sp(t) sends a REQUEST at the sub-time slot
allocated by H among BF of F}(¢)
14: v € S,(¢) sends an ACK after receiving a

REQUEST from its provider u € Sy(f), if v has
not heard an ACK from other receptors in A

15: Node u sends message m to v € S,(¢) at ]—'i2 (t)
16: W<V

17: end for

18: // Phase 2-schedule nodes in V1 \ V},

19: Node w broadcasts message m in }-is

20: V«—VU{r|visin H}

21:  end for
2. Lat < Lat+ 3T and i < (i + 1) mod 3k
23: end while

HBA schedules the transmission of nodes in G in two
phases. In phase 1, the algorithm only considers nodes
in V},. Specifically, for each hexagon, denoted by H, HBA
schedules the transmisison from a provider u to its cor-
responding receptor v in H, where (u,v) € Ej. In phase
2, HBA allows a receptor v in H to transmit a broad-
cast message received in phase 1 to all other nodes in H.
Furthermore, HBA schedules all tranmissions based on
hexagons’ color, where those with a different color are not
permitted to transmit or receive simultaneously.

We divide time into different frames. A hexagon with
the color value of i is assigned to the ith frame, denoted
by Fi, where 1 < i < 3k%; recall that 3k% is the num-
ber of colors used by Algorithm 1. As shown in Figure 5a,
each frame F; consists of three sub-frames, i.e., .7-"}, ]—'1-2,
and .7-13, comprising of 3T time slots. For each hexagon H,
the first T time slot, i.e., sub-frame F, is used to deter-
mine which provider u from other hexagons is allowed to
send a broadcast message m to its corresponding receptor
v, in ‘H. Sub-frame .7-'1.2 is used to transmit message m from
provider u to receptor v in H. The last sub-frame, ]—'l.?’, is
used by receptor v in H to send the broadcast message to
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a
1|2|3|"'|T 1|2|3|...|T 1|2|3|-..|T|
L > —C - O y /
Fl F? 7
G S—
ACK REQUEST

Figure 5 An illustration of frame and sub-frame structure. (a) An
example of frame J;, and (b) An example of time slot .’Fﬂ (t). Note,
the sub-frame shown in (b) only applies to each slot of .’Fﬂ ().

all other nodes in H. Specifically, phase 1 is conducted in
.7-'141 and .7-'[-2, and phase 2 is carried out in .7-'[-3.

Let ¢ be the color of the hexagon containing source node
s. Therefore, node s initiates the broadcast by transmit-
ting a message m to all nodes in its hexagon in frame F..
After that, HBA, see Algorithm 3, starts from frame F;,
where i is initially set to (¢ + 1) mod 3k2; that is, it starts
from the next frame of 7, (line 4 in Algorithm 3). Then,
HBA repeats the following iterations until all nodes in the
network receive the broadcast message.

In phase 1, for each hexagon H assigned to frame F;,
i.e., they have color i, let S,(¢) denote the set of receptors
in ‘H with active time slot £, and S,(¢) denotes the set of
providers that have received broadcast message m before
but have yet to send m to their corresponding receptors in
S (¢) (lines 10 and 11 in Algorithm 3), where 1 < ¢ < T.
Recall that these providers will have to wake up at time ¢ to
communicate with the receptors in S, (£). Let .7-}1 (¢) be the
time slot ¢ of sub-frame ]-'il, where 1 < t < T. Denote by
wareceptor in H that received a REQUEST message from
its corresponding provider before 7/ (¢), and w is initially
set to null. For any receptor v € S,(¢), v first listens to the
channel for an ACK message from a receptor w when it
wakes up at time slot .7-"} (¢) (line 12 in Algorithm 3). This
ACK is sent in the AF slot; see Figure 5b. Then, for any
provider u € S,(%), it will send a REQUEST message to its
receptor v € S,(t) asking it to receive a broadcast message
in sub-frame ]—;2 (line 13 in Algorithm 3).

When receptor v receives the REQUEST message from
provider u, if v has not received any ACK message from
other receptors in 7, node v replies with an ACK mes-
sage to u. Otherwise, it does not respond to REQUEST
messages (line 14 in Algorithm 3). As shown in line 16 of
Algorithm 3, the selected receptor v is assigned to w, and it
is responsible for sending an ACK message in subsequent
AF slots in F}(¢) (line 12 in Algorithm 3). This ensures
all nodes waking up in subsequent slots are aware that a w
node is available and thus stop responding to REQUEST
messages.
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We now discuss how providers in S,(¢) transmit their
REQUEST message in an interference-free manner. For
each time slot in .7-"} (t), we further divide it into two
parts, AF and BF; see Figure 5b. As mentioned earlier,
AF is used by receptors in S,(¢) to listen to the chan-
nel for an ACK message and for node w, if present, to
transmit an ACK. The second part, namely BF, is divided
into 18 sub-time slots, which is equal to the number of
hexagons around A that have a minimum distance less
than r; cf. Lemma 2. We allocate these 18 sub-time slots
to these neighboring hexagons according to their ID or
color. Hence, a provider u € S,(f) is only able to send
a REQUEST message to its corresponding receptor v €
S/(¢) in the sub-time slot corresponding to its hexagon.
A receptor v is then required to reply with an ACK mes-
sage in the same sub-time slot. As shown in Figure 5b,
we assume each sub-time slot is sufficient to receive a
REQUEST message and transmit an ACK message for
receptor v.

During time slot ¢ of sub-frame 77, denoted by F? (%),
where 1 < ¢t < T, the broadcast message m is transmit-
ted from the provider u to receptor v with active time slot
t (line 15 in Algorithm 3). Note, only one provider u« is
selected in }"L.l to relay the broadcast message in sub-frame
F? to hexagon .

In phase 2, after receiving the broadcast message m,
receptor v will broadcast message m to all other nodes
in the same hexagon as v, i.e,, H, in sub-frame F7. The
broadcast is carried out when these nodes wake up (line 19
in Algorithm 3). Finally, HBA updates i to (i + 1) mod 3k>
and repeats the above steps until all nodes receive the
broadcast message m.

We now illustrate the operation of Algorithm 3 using
Figure 4. Consider the hexagon with color 8. Assume
receptors vg, v11, and viy have the same active time slot
of ¢, and their corresponding providers, v1, v13, and vi4,
have received a broadcast message m, which it has yet to
send to vg, v11, and vi2. Hence, as per Algorithm 3, we
get S,(t) = {ve, v11,v12} and S,(¢) = {v1,v13,v14}. Nodes
in S,(¢), which are in hexagon 8, execute Algorithm 3 in
frame Fg. In the AF sub-time slot of .F81 (t), receptors
in S,(¢) listen to the channel for an ACK message. Sup-
pose that no ACK message is sent at AF by a node w.
Also, in this case, we assume that the transmitting order of
providers is vy, V13, and vi4. As mentioned, the sub-time
slots in BF can be assigned as per hexagon ID or color. In
this example, provider v; first sends a REQUEST to ve. On
receiving this REQUEST, vg replies with an ACK imme-
diately. After receiving this ACK from ve, provider v,
knows receptor vg is ready to receive the broadcast mes-
sage m and will transmit m to ve in sub-frame ‘7:82' Other
receptors, namely vi1; and vy, will also receive the ACK
from v, meaning they will not respond to any REQUEST
from their respective provider; i.e., v13 and v4. At ]-'g(t),
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provider v; sends m to vg. In sub-frame }"g, receptor vg
broadcasts m to nodes v11 and v1s.

4.3 Distance-based backoff

Recall that the BF portion of ]-"l.1 (¢) is divided into 18
sub-time slots. A possible optimization to shorten BF is
by employing a distance-based backoff method. When a
provider wants to send a REQUEST message, it first backs
off for a period of time. This backoff duration depends
on the distance between the provider and the hexagon
containing its corresponding receptor. The smaller the
distance, the shorter the backoff duration. Specifically,
assume that a network operator decides to reduce the
BF duration to Thackoff- This so called backoff time bound
can be divided into W < 18 sub-time slots. Note, each
sub-time slot is sufficient for transmitting an ACK and
receiving a REQUEST message. Let d be the distance
between a provider u and the centre of hexagon H con-
taining u’s receptor. We get d > +/3r/4 because u is not
included in H, and the distance between H’s edge and H’s
centre is /3r/4. Denote by g the ratio between +/3r/4 and

d,ie,q= {—Zr, where g < 1. For provider u, it computes
its backoff duration fp,ckoff using the following equation,

Thackoff
—+ X 2
)=+ (2)

Ibackoff = (I_W(l - Q)J

where X is random period of the time generated from the
range [—L"‘{)‘j"“, L’;}‘“’“] forl<|W(Q—-¢] <W-1and

from range [0, %

] for LW(I - q)J = 0. The random
value X reduces the chance of interference when two or

more providers have the same q.

5 Analysis

The following set of theorems assert the correctness and
approximation ratio of HBA in terms of broadcast latency
and transmission times.

Theorem 2. HBA yields a correct and interference-free
broadcast schedule.

Proof 2. According to Theorem 1, transmissions are inter-
ference free as long as the mutual distance between trans-
mitters or receivers is larger than pr. Hence, we only need to
prove that simultaneous transmissions carried out by HBA
are separated by pr.

Recall that in G, by design, the mutual distance
between hexagons sharing the same color is larger than pr.
For each frame F;, only nodes in hexagons with the same
color of i are scheduled by HBA. Considering sub-frames
.7-"12 and .7-"13, only providers and their corresponding recep-
tors are allowed to send a broadcast message to nodes in
hexagons with the same color of i. These receptors lie in
hexagons with color value of i, and hence, their mutual
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distance is larger than pr. Thus, these simultaneous trans-
missions during sub-frames ]—'i2 and }-is are interference
free by Theorem 1.

Then, we prove the transmissions in sub-frame .7-}1 are
also interference free. Only providers and their correspond-
ing receptors are allowed to send a REQUEST and ACK
during }'l.l. For hexagon H with color value of i, the trans-
missions of providers and their receptors in H are assigned
with non-overlapping sub-time slots in ]-'il, and hence,
transmissions in the same hexagon H are interference free.
For different hexagons which share the same color of i,
the mutual distance of receptors lying in them is lower-
bounded by pr. According to Theorem 1, simultaneous
transmissions in different hexagons during sub-frame .7’-'141

are also interference free.

Theorem 3. HBA produces a constant approximation for
the MLBS problem with a ratio of 9[2(p + 2)/312 T in
terms of broadcast latency.

Proof 3. The theoretical lower-bound of the MLBS prob-
lem is R, i.e., the radius of the network with respect to the
source node s. To compare the broadcast latency of HBA
algorithm with the theoretical lower-bound R, we consider
the BFS tree of the transmission graph Gt rooted at s. This
tree divides the network into layers L1,Ly,--- ,Lg. Let t;
denote the maximum reception time of nodes in L;, where
1 < i < R Then, we prove for each layer L; we have
b <tii1+9[2(p+2)/312T. We prove this by induction.
Ly only contains source node s, and thus t; = 0. Nodes
in Ly are the one-hop neighbors of s. Thus, for Ly, it holds
true because it takes a frame, i.e., 3T, for node s to broad-
cast the message m to Ly, i.e., ty = t; + 3T. Then, we
also prove this is true for layer i, where 3 < i < R
Recall that nodes in L; are the one-hop neighbors of L;_;.
After ti_1, receptors in L; will take at most 3 [2(p + 2)/3] 2
frames to get the message m from providers in Li_1 and
broadcast m to other nodes in L;, where 3 [2(p + 2)/37>
is the maximum color number used by Algorithm 1. Note,
a frame contains 3T time slots. Thus, for each layer L;,
ti < ti 149 [2(p +2)/31* T. After (R—1)3 [2(p + 2)/3]°
frames, nodes in Lg will receive the broadcast message m.
Hence, the broadcast latency of HBA is upper-bounded by
(R—1)92(p+2)/312T < 9[2(p +2)/31*> TR.

Theorem 4. The number of REQUEST, ACK, and broad-
cast messages in HBA is upper-bounded by 18Ny, TN,
and (T + 1)Ny respectively, where Ny is the number of
hexagons required to cover the entire network.

Proof 4. We first prove that the number of REQUEST
messages is upper-bounded by 18Np. According to
Lemma 2, for each hexagon H, it has at most 18 providers
with corresponding receptors that are in H. Recall that a
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REQUEST message is only sent once from a provider to its
corresponding receptor. It means, for each hexagon H, its
receptors receive at most 18 REQUEST messages. Hence,
given Ny hexagons, the number of REQUEST messages is
upper-bounded by 18Ny. Next, we show that the num-
ber of ACK messages is upper-bounded by TNy. For each
hexagon H, the ACK message is first sent by a receptor v
in ‘H in response to a REQUEST message from v's corre-
sponding provider. An ACK message is sent once in each
time slot until sub-frame F} ends. Since F} consists of T
time slot, the maximum transmission time of ACK is T for
each hexagon. To sum up, the maximum number of ACK
sent during the broadcast is TNy. Last, we show the maxi-
mum number of broadcast messages transmitted by HBA is
(T + 1)Ny. As illustrated in Section 4.2, during sub-frame
F? for a hexagon H, only one provider is allowed to trans-
mit a broadcast message to its corresponding receptor v in
‘H. During each time slot of }-is’ receptor v will transmit a
broadcast message at most T times to its neighbors in H.
The maximum number of broadcast messages transmitted
in a hexagon is thus T + 1, meaning the total number of
broadcast messages is upper-bounded by (T + 1)Np.

6 Evaluation

In this section, we outline the research methodology used
to evaluate the performance of HBA. In our experiments,
we measure each algorithm against two metrics: broad-
cast latency and number of transmissions. In our experi-
ments, we fix « = 4, 8 = 1 and rpax = 100 m. We
place wireless nodes in a square area of 700 x 700 m? ran-
domly, while changing the number of nodes, transmission
range r, and scheduling period 7. In addition, we ensure
that the resulting WSN is connected. For each experiment,
we change one network configuration while the other two
remain unchanged. Each experiment is conducted on 50
randomly generated topologies. Moreover, for each topol-
ogy, we run the algorithms ten times; for each run, we
select a source node uniformly and randomly. Hence, each
result is an average of 50 x 10 simulation runs.

6.1 Performance of HBA

In Figure 6a,b, we delineate the broadcast latency and
number of transmissions for different number of nodes,
respectively. The value of r is fixed at 50 m, and T
is set to 10. As shown in Figure 6a, we see that the
broadcast latency of HBA decreases as the number of
nodes increases. The reason is as follows. For a fixed
area, the network becomes denser when the number of
nodes becomes larger. As a result, when the network
becomes denser, there are more links and path lengths
become shorter. However, we observe that the number of
transmissions increases with higher number of nodes in
Figure 6b. The reason is that more hexagons will be filled
with nodes when the number of nodes becomes larger,
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and hence, more transmissions are required to propagate
the broadcast message to these hexagons.

Figure 6¢,d shows the performance of HBA under dif-
ferent r/rmax, where r is the transmission range in Gr,
and rmax is the maximum transmission range with a fixed
value of 100 m. In this experiment, the number of nodes
is fixed to 400, T is set to 10, and r ranges from 50 to 90
m. As shown in Figure 6c, the broadcast latency decreases
when r ranges from 50 to 80 m. This is because a larger
transmission range r leads to more links and higher con-
nectivity. As a result, HBA is able to find shorter broadcast
paths. On the other hand, according to Theorem 1, a larger
r also prevents more nodes from transmitting simultane-
ously, which will result in longer broadcast paths. Hence,
when the transmission range r exceeds 80 m in Figure 6c,
the broadcast latency starts to increase. We see that in
Figure 6d the number of transmissions decreases with
increasing r. This is because the number of hexagons used
to cover the network becomes smaller when r becomes
larger. Hence, there are fewer transmissions when r is
large.

Figure 6e,f depicts the performance of HBA for differ-
ent scheduling periods T. The value of T ranges from 5
to 25 (r = 50 m and the number of nodes is set to 400).
Note that the broadcast latency and number of transmis-
sions increase with higher T values. A larger T will result
in larger frames and thereby leads to higher broadcast
latency. Consequently, for each hexagon, a receptor needs
to transmit more times to its neighbors with different
active time slots.

6.2 Performance of HBA versus tree-based algorithm

In this section, we compare HBA against the tree-based
algorithm [7] for always-on networks. Recall that the
tree-based algorithm [7] is the first centralized method
designed for always-on networks under SINR-based inter-
ference model. In this respect, we note that HBA is the
first distributed algorithm designed for duty-cycle net-
works under the SINR-based interference model. In order
to compare HBA faithfully against the tree-based algo-
rithm [7], the scheduling period used by HBA is set to 1,
i.e, T = 1, meaning HBA also works in the always-on
mode.

As shown in Figure 7a, the broadcast latency of the tree-
based algorithm is around two times larger than that of
HBA. This is mainly because the tree-based algorithm is
conducted layer by layer based on the BES tree and nodes
in lower layers are prevented from transmitting until all
nodes in the current layer have finished their transmis-
sions even though these transmissions do not cause any
interference; instead, transmissions in HBA is handled
in a greedy manner, which allow nodes to transmit as
long as they do not result in interference. In addition, we
observe that the number of transmissions experienced by



DRDXXIXIX XXX

Page 11 0f 13

0.9

Broadcast Latency (slots)

0?00 500 700 800

600
Number of Nodes

(7]
%
8»

J ‘ ‘ EEY

Broadcast Latency (slots)
o
»

o
oh
3

0.6 07 08 0.9
7/Tmaz

(1]

>
n

o
&)

o0

Broadcast Latency (slots)
N
[

o
o

10 15 20 25
Scheduling Period

2,500
[72]
c
Ke) ¥
[
@
£ 2,000
[72]
C
©
o
'_
—
o
& 1,500
e}
€
3
z
4
400 500 600 700 800
Number of Nodes
1,300
o
c
o
81,2007
IS
[72]
c
o
= 1,100
—
o
o
8 1000
g
>
z ¥
0.5 0.6 0.7 0.8 0.9
f 7/Tmaz
1,400
(2]
5
-5 1,300
@
IS
2 1,200
©
=
S 1,100
c
[]
£
£ 1,000
z

10 15 20 25
Scheduling Period

Figure 6 Performance of HBA under different network configurations. The impact on broadcast latency and number of transmissions given
varying number of nodes, see (a, b), different r/ryqx values, see (¢, d), and scheduling period, see (e, f).

nodes using HBA is about 50% more than that of the tree-
based algorithm. This is because the tree-based algorithm
determines the transmitting nodes in the maximum inde-
pendent set centrally. This, however, does not consider the
cost of requiring all nodes to synchronize their wake-up
schedule and collating such information centrally.

7 Conclusions

In this paper, we have studied the minimum latency
broadcast scheduling problem in duty-cycled WSNs. To
achieve interference-free broadcast, we designed a novel
algorithm, called HBA, for nodes that employ a ran-
dom duty-cycle schedule. We prove that HBA provides
a correct and interference-free schedule, produces a low
broadcast latency, and has low overheads. Our simulation
results show HBA to have better performance in terms of
broadcast latency than the tree-based algorithm [7]. As a
future work, we are currently looking into implementing

HBA in the more realistic and probabilistic interference
model where a message can be received successfully with
varying probability as per SINR levels.

Endnote

A p-approximation algorithm, with approximation
ratio p > 1, if given a problem instance / to minimize
and with optimal solution OPT (I), produces a solution
that is bounded by p - OPT (1).

Appendix
Lemma 3. Given a set L of links, if the mutual distance
of senders in L are greater than pr, set L is independent,

1/
— 8p 2 1
where p =1+ (1—(r/rm>‘* (a—z tagt 3)) :

Proof 5. Let (u,v) denote a link belonging to L. With
sender u as the centre, we partition the senders in L into
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concentric rings ring® with width pr. Ring ring® contains
all senders w of links in L satisfying kpr < d(w,u) <
(k + 1)pr. The first ring ring° only contains sender u. We
now consider all senders w € ring® for some integer k > 0.

First, we consider the distance between any senders w
in ring® and u. As per the construction of rings, we have
d(w,u) > kpr for ring ringk. Note that, d(u,v) < r and
p > 1. Applying the triangle inequality, the lower-bound of
d(w,v) for ring® is,

dw,v) > dw,u) — d(u,v)
> kpr—r (3)
> (p — Dkr

Next, observe that for any senders w in ring®, the disk
centered at w with a radius of % pr is non-overlapping with
other senders in ring®, and such a disk is fully contained
in an extended ring of ring®, with an extra width of % prat
each side of ring®. Then, by referring to the ratio between
the area of this extended ring and the disk with a radius

DERDXXDIXIXIXIRI]
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of % or, the number of senders contained in ring® is upper-
bounded by 8(2k + 1) as per Equation 4.

m(k +3/2)%(pr)? — w(k — 1/2)(pr)>

(37 =8(2k+1)

(4)

The total interference Iy emanating from ring® is
bounded by

Ik - Zweringk Pd(w’ V)_a
<82k + 1)P((p — 1)kr)™®

(5)
Summing up the total interferences I over all rings yields

I=3732 Ik

=Y 10182k + 1DP((p — 1)kr)™@

(6)

Recall that d(u,v) < r and N = P/Brs,,.., where ¥,y is
the maximum transmission range in the absence of inter-
ference. If v successfully receives a message from u if and
only if the following condition holds:

Pd(u,v)™®
SINR = ———
I+N
- Pr¢
T Y18k + DP((p — Dkr)=¢ + P/Bré,,,
B B
Y882k 4+ 1) (p — 1)K + (r/Tymax)®
<p

(7)
According to inequality 7, such SINR is at least 8 if and
only if

> BBCK+D(p— DK+ (/e <1 (8)

According to Riemann zeta function, we know that
Yoo kT < ﬁ + 1, where o > 2.
Plugging this in, we have

3™ 8k+ Dk <8 2 1 3) 9
k=1 - a—2 a-—1

According to inequality 8 and 9, we have

> 8BCK+1)(p = DT + (/)

:8,3< 2 +1+3> (0 = D7 + (r/Tmax)”
a—2 a-—1

<1

(10)

1/a

— 8 2 1
When po= 1+ (lf(r/rmax)a (ot—Z + a—1 +3)> ’
inequality 10 must hold; in other words, receiver v can
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receive the message successfully in L. In conclusion, set L is
independent.

Lemma 4. Given a set L of links, if the mutual distance of
receivers in L is greater than pr, set L is independent, where

1/a
— 88 2 1
p—l+<m(m+ﬁ+3)) .

Proof 6. Suppose that a link (u,v) is in L. With the center
as receiver v, we then divide the receivers in L into con-
centric rings ring®. Recall that the length of each link is
upper-bounded by r in L. For a sender w whose receivers lie
in ringk, d(w,v) is lower-bounded by pkr —r > (p — 1)kr.
That is, for ring, the distance between interfered sender
w and receiver v is no smaller than (p — 1)kr. Next, using
the same argument as Lemma 5, we conclude that L is also
independent.

Theorem 5. Given a set L of links, in order for set L to be
independent, it is sufficient to have:

1. The mutual distance of senders are all greater than
or; OR
2. The mutual distance of receivers are all greater than

or.
1/a

2 1
(ﬁ taat 3)) -

Proof 7. This is proved by Lemma 5 and 6.

where,o:l—l—( 88

1=/ rmax)®
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