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Abstract

efficiently operate at a low signal-to-noise ratio (SNR).

detection

A new ultra-low power (ULP) wireless sensor network (WSN) is proposed to monitor the vibration properties of critical
structures such as buildings, bridges, and the wings and bodies of aircrafts. The new scheme integrates energy
harvesting, data sensing, and wireless communication into a unified process, and it is fundamentally different from all
the existing WSNs. In the new WSN, self-powered sensors are employed to harvest vibration energy and measure
vibration intensity simultaneously, by utilizing the fact that the harvested energy accumulated through time is proportional
to the vibration amplitude and frequency. Once the harvested energy reaches a threshold, it is released as an impulse
with a wireless transmitter. An estimate of the structure vibration intensity can then be obtained by measuring the
number of binary impulses in a unit time. Such an approach does not require complicated analog-to-digital
conversion or signal processing, and it can achieve an ULP performance unrivaled by existing technologies. Optimum
and sub-optimum impulse density estimation algorithms are proposed to take advantage of the spatial correlation
among signals from the sensors. Analytical and simulation results demonstrate that the proposed scheme can

Keywords: Wireless sensor network; Structure health monitoring; Energy harvesting; Maximum a posteriori (MAP)

1 Introduction
Wireless sensor network (WSN) designed for structure
health monitoring (SHM) is expected to operate uninter-
rupted over a long period of time, under the constraints
of extremely limited battery capacity or very small energy-
scavenging devices. Ultra-low power (ULP) consumption
is one of the most formidable challenges faced by the
development of WSN for the autonomous monitoring of
critical structures, such as bridges, buildings, [1], and air-
crafts and spacecrafts [2]. Hence, an extremely stringent
power budget is required to power the operation of a wire-
less sensor, which transmits the measured data to a fusion
center (FC) through a wireless link.

Recently, there have been considerable efforts
devoted to the development of WSN for SHM systems
[1-6]. Most of the sensing systems are built with
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commercial-off-the-shelf (COTS) wireless sensor nodes,
such as Mica-Z Mote [3,4], Mica-2 Mote [5], and iMote
[6], etc. Even though these modules are designed with
low-power consumption as one of the design objec-
tives, their structures still follow a conventional sensing
framework, which includes sensing, analog-to-digital
conversion (ADC), digital signal processing (DSP), and
wireless transmission. These modules are designed sep-
arately, and they do not directly take advantage of the
unique features of SHM systems. In order to achieve ULP
performance, we need to break free from the conven-
tional sensing frameworks and seek fundamentally new
WSN structures. SHM possesses many unique features
that can be exploited to facilitate the ULP design. Many
of the structures, such as bridges, have a very slow chang-
ing rate, e.g., new data might only need to be collected
once every few seconds or minutes. As a result, SHM has
long latency tolerance with ultra-low data rate. In addi-
tion, Data collected by spatially distributed sensors often
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contain redundancy [7,8], which can be used to achieve
better power efficiency.

In this paper, we propose a new type of battery-free
ULP WSN by integrating energy harvesting, data sens-
ing, and wireless communication into a unified process.
The system is designed to monitor the structure vibra-
tion intensity, such as vibration amplitude and frequency,
which provides useful information about the local stress
intensity and the dynamic behaviors of the structure [9].
Vibration generates energy that can be harvested by a
sensor with piezoelectric devices [10,11]. The harvested
energy is expected to power the operations of the entire
sensor node. However, due to the low efficiency of cur-
rent piezoelectric materials, the harvested energy level is
usually much lower compared to that required to perform
any regular sensing, ADC, DSP, or communication func-
tions. Therefore, conventional sensing or communication
techniques can no longer be applied in such a system.

We propose to address this problem by utilizing the cor-
relation between energy and vibration, i.e., the harvested
energy accumulated through time is proportional to the
local vibration amplitude and frequency. Once the har-
vested energy reaches a predefined threshold, the energy
is released in the form of an impulse. The receiver can then
obtain an estimate of the vibration intensity by observing
the impulse density, i.e., the number of impulses in unit
time. Such an integrated harvesting, sensing, and com-
munication (IHSC) process exploits the unique features
of SHM systems, and it is fundamentally different from
conventional sensing schemes.

The impulses from the sensors are detected at the FC
through an optimum multi-node maximum a posteriori
(MAP) detector, which exploits the spatial correlation
among the signals from the sensors. It should be noted
that the proposed multi-node MAP detector needs to
detect the presence of impulses from different sensors,
and this is different from the decentralized detection in
the literature [12-16], where the FC only needs to detect
the presence of a single event by collecting the noise-
free or noisy local detections from a number of sensors.
The multi-node MAP detector requires the a priori prob-
abilities of the impulses, which are not readily available
at the receiver. We propose an iterative method to esti-
mate the a priori probability of the impulses at the FC.
Simulations show that the iterative method usually con-
verges in less than five iterations. The theoretical mean
square error (MSE) of the estimated impulse density is
derived for a system operating in a Rayleigh fading chan-
nel. Both analytical and simulation results show that the
proposed IHSC scheme can operate at a very low signal-
to-noise ratio (SNR) by effectively utilizing the spatial
signal correlation.

The remainder of this paper is organized as follows. A
new WSN structure with integrated harvesting, sensing
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and communication is presented in Section 2. The opti-
mum impulse density estimation algorithms and the cor-
responding theoretical analysis are proposed in Section 3.
Simulation results are given in Section 4, and Section 5
concludes the paper.

2 A new WSN structure with integrated
harvesting, sensing, and communication

Consider a WSN consisting of a large number of low-
cost battery-free wireless sensor nodes uniformly dis-
tributed over the monitored structure. As illustrated in
Figure 1, each sensor node is equipped with a self-
powered nanowire sensor [10] for energy harvesting and
data sensing, and a simple radio frequency (RF) transmit-
ter, such as a simple resistor-capacitor (RC) oscillator. The
sensor performs the IHSC operation described as follows.

Definition 1. (IHSC): The energy collected by the
nanowire piezoelectric sensor is used to charge a capac-
itor. Once the harvested energy reaches a predefined
threshold, ETh, the energy is released as a single impulse
through the RF transmitter. Then the receiver can obtain
an estimate of the structure vibration intensity by measur-
ing the impulse density.

In the above IHSC procedure, it is assumed that the
energy harvesting rate, i.e., the energy harvested in unit
time, is proportional to the structure vibration intensity,
i.e., vibration amplitude and frequency. As a result, the
amount of time required for the harvested energy to reach
Ery is inversely proportional to the vibration intensity.
Therefore, the structure vibration information is carried
in the form of the time delay between two consecutive
impulses, or the number of impulses in unit time. The
proposed IHSC scheme utilizes the correlation among
structure vibration, energy, and time to get an estimate of
the structure vibration intensity.

Given the fact that the structure vibration is highly
correlated across the spatial domain, the density informa-
tion collected by spatially distributed sensors is correlated.
Such correlation information can be exploited by the FC to
increase the estimation accuracy even at an extremely low
SNR. Optimum and sub-optimum impulse density esti-
mation algorithms will be developed in the next section to
exploit the spatial correlation among sensors.

To facilitate analysis, we have the following assump-
tions regarding the statistical properties of the structure
vibration.

A.1) The amount of time for the harvested energy to
reach ETy is an exponentially distributed random variable
(RV) with mean p. A higher vibration intensity yields a
smaller u.

A.2) The time is discretized into small intervals with
duration Ty << u. For each interval, the receiver
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Figure 1 The block diagram of the wireless sensor network structure with integrated harvesting, sensing, and communication.

performs detection to find whether there is an impulse in
the interval. Define a RV, x,, where x,; = 1 represents
an impulse is transmitted by the node # at the kth detec-
tion interval and 0 otherwise. Based on Assumption A.1),
it can be easily shown that x, is a Bernouli RV with the
parameter

1)

A.3) Data collected from different sensor nodes are
correlated. The vibration correlation is translated to the
correlation among the Bernouli RVs, {xnk}];«\[:r The nor-
malized covariance coefficient between x,,,;, and x,;; is

Ty
p=Pryp=1)=1—¢ *~.

N E {[xmk - J_ka] [xnk - Q_an]} _ 9|m—n\

Vo0, ’
where 6 €[0, 1] is the spatial correlation coefficient, x,, is
the mean of x,,, 0’3,1 is the variance of x,,; and [E(-) is the
expectation operator.

A.4) Sensors deliver the impulses to the FC through
an orthogonal media access control (MAC) scheme,
such as the frequency division multiplexing access
(FDMA), to achieve a collision-free communication at the
FC.

With the above assumptions, the signal received by
the FC from the nth sensor at the kth interval can be
represented as

Yuk = v Ery - hnk “ Xk + Vik (3)

where +/Ety is the amplitude of the transmitted signal,
hyi is the gain of the channel, and v, is the additive

Gmn ()

white Gaussian noise (AWGN) with double-sided power
spectral density Np/2.

Based on the model in (3), define the average impulse
density of the nth sensor node over a duration of KT
as

_ 211521 KXnk

Vv
" KT,

(4)
With the proposed IHSC scheme, the impulse density is
proportional to the vibration intensity of the monitored
structure, thus it can be used as an important indicator of
the health condition of the structure.

3 Optimum impulse density estimation

In this section, we present an optimum receiver for the
estimation of the impulse density, V},, in a multi-node
system employing the IHSC scheme.

3.1 Iterative impulse density estimation

To utilize the spatial data correlation, we will jointly esti-
mate the data from all the nodes, x; =[x, - - , %]’ €
BN*1 based on the received signal vector, y;
Y1k - -yl L e CNX1, where ()T represents matrix
transpose, and C is the set of complex numbers. At the
detection interval k, the multi-node MAP detection of x;
is

X = argmax p (y[xx = b) P(x; =b), ()

beBN

where p(y; [xk b) takes the form of a multi-variant
Gaussian probability density function (pdf) with the mean
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vector b and the covariance matrix NylIy, with Iy being a
size-N identity matrix,

N
1 1 2
=b)= —— ——E wk — VETH - Bk - by| ¢ -
» (vl =) (TNo)™ exp[ No n:lyk e )

(6)

It should be noted that x; are mutually correlated with the
normalized correlation coefficient defined in (2).

The MAP detection rule described in (5) requires the
knowledge of pp, £ P(x; = b), which is unknown at the
receiver. To solve this problem, we propose to perform
joint estimation of py, and x; with an iterative method.

At the beginning of the iteration, it is assumed that the
data from all the nodes are uncorrelated, and the initial
value of the a priori probability is pl()o) = 0.5V, During the
ith iteration, we apply pl(: D from the (i — 1)th iteration
to (5) and get the estimates f(}(’), for k = 1,---,K. The
estimated values are then used to obtain an estimate of py,
as

0 _ 1N (20 b). Vb e BNX1
pb:EZS<xk— ),V € (7)
k=1
where the indicator function §(0) = 1, and §(x) = O if
x # 0.1t should be noted that the estimation of the a priori
probability in (7) implicitly takes into consideration of the
mutual correlation among the data in xk.

The iteration will be terminated if max{pg ) pl(j _1)} <€,
b

or the number of iterations exceeds a predefined thresh-
old. At the end of the iteration, we can get an estimate of
the impulse density of the nth node as
LS
V= Rk 8
n KT, kZ nk ( )

Simulation results demonstrate that the proposed iter-
ation method usually converges after less than five
iterations.

The optimum MAP detection requires the exhaustive
search of the space BY, and the complexity grows expo-
nentially with the node number, N. In a practical envi-
ronment, the correlation between two nodes decreases
as their distance increases. Therefore, joint detection of
two nodes that are further apart would render very small
performance gains over the case that they are detected
separately.

In recognition of this fact, when N is large, we propose
to divide the N nodes into G groups. Each group con-
tains up to N, = [%1 adjacent nodes. The iterative MAP
algorithm can then be applied to each group separately.
Such a method features a tradeoff between complexity and
performance. The optimum performance is obtained by
setting N, = N with the highest complexity. The complex-
ity can be reduced by decreasing Ny, at the cost of slightly
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decreased performance. Our simulation results show that
the performance at N, = 4 is very similar to its optimum
counterpart for a wide range of correlation coefficient.

3.2 Performance analysis

The MSE of the estimated impulse density in a multi-node
system with correlated information is presented in this
section.

To facilitate analysis, define U,, = Zle %o and U, =
Zle %k Then both U, and U, are binomial RVs, i.e.,
U, ~ B(K,p), and U, ~ B (K, q(N,0)), with p = P(x, =
1) and g(N,60) = P (% = 1|N,6). Then the MSE can

be written as 02 = ﬁﬂi (ILln - ilnlz), and it can be
calculated from the following proposition.

Proposition 1. For a multi-node system that employs
the optimum multi-node MAP detection, the MSE of the
estimated impulse density for each sensor node can be
calculated by

1
o= p [<K ~ 1 [p— a0 H4p + qN,0) — Za(N,G)] .
9)

where a(N,0) = E[x,x,«|N,0] is the cross-correlation
between x,,; and X,,x.

Proof. The proof is in Appendix A. O

The calculation of the MSE requires the knowledge of
q(N,0) and (N, 6). The analytical evaluations of the two
parameters for arbitrary N are quite tedious.

Here we only give the analytical expressions for N = 1,
i.e., the information from each node is detected indepen-
dently, thus g(1,6) = g(1) because the correlation 6 is not
used during the detection.

Lemma 1. The value of g(1) = P(x,x = 1[N = 1) ina
Rayleigh fading channel is given as follows

q(1) =p(1 = Py) + (1 — p)Py, (10)
where
P, = P{&nk = Olxyx = 1}
Etn-x—1n10 (11a)
= _— — d )
fo < <V2N0 -ETH x) exp(—x)d
Pr =P {&xu = 1|x, = 0}
(11b)

o ETH - %+ N10 )
= ) exp(—x)dyx,
fo Q(\/ZNO‘ETH X (=)

are the probabilities of missing detection and false
alarm, respectively, Q(x) = \/%71 fxoo exp (—”;) du is the

Gaussian-Q function, and 710 = Ny log 11‘%”.
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Proof. The proofis in Appendix B O

The cross-correlation «(1) = «(1,60) can be evaluated
asa(1) =P (¥ = Lk = 1) = (1 — Py p.

The probability expressions of missing and false alarm
given in Lemma 1 involve integrations over infinite limits,
which might cause instability during numerical evalua-
tions. We propose to calculate the results in Lemma 1 by
using the Laguerre’s method [17]

M

oo

/ f(@) exp(—ayda = wif(a)+Ru,  (12)
0 i=1

where a; is the ith zeros of the Lagueree polynomials
. e . S a;

Li(a), weights w; is defined as w; = D L@ and

Ry is the remainder term.

Based on (12), Py, and Py in a Rayleigh fading channel
can be represented as,

M E X —1n
TH * Xi 10
Py, ~ wWiQ| ———— )
" ; lQ(VZNo-ETH'x)
M
ETH - % + 10 >
Pr ~ w; _ ). 13
/ ; lQ(VZNO'ETH'xi 4
When N > 1, the value of ¢(N,0) and «(N, ) can be

evaluated through numerical simulations, the results of
which can then be substituted into (9) to obtain the MSE.

4 Simulation results

Simulation results are presented in this section to verify
the performance of the proposed ULP IHSC scheme and
the optimum and sub-optimum impulse density estima-
tion algorithms.

In the simulation, it is assumed that the mean, u, of
the exponentially distributed energy harvesting time is 1
s. The detection duration is 7y = 10 ms. The correlated
Bernoulli RVs, x,, are generated by using the method
described in [18]. The iterative impulse density detection
is performed over 100 s, which corresponds to K = 10*
detection intervals. The average SNR is calculated as v =
EK[T“MTS. Unless otherwise stated, the receiver does not have
any a priori knowledge of the probability, P(xx), or spatial
correlation coefficient, 6.

Figure 2 shows the MSE of the estimated impulse den-
sity for a one-node and a two-node system with the
optimum MAP detection at the FC. The simulation results
obtained from systems with both known and unknown a
priori probability at the receiver are plotted in the figure
for comparison. The spatial correlation coefficient of the
two-node system is 0 = 0.9. We have the following obser-
vations of the results. First, the system can operate at
extremely low SNR due to the low duty cycle and the
innovative IHSC scheme. When SNR = 0 dB, an MSE of
2 x 107* and 3 x 1073 is achieved by the one-node and
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Figure 2 MSE for systems with optimum impulse density estimation.

two-node systems, respectively. Second, when SNR > —4
dB, the iterative estimation methods with unknown a pri-
ori probability can achieve a performance that is almost
identical to that of a system with known a priori proba-
bility. This demonstrates the effectiveness of the proposed
iterative estimation method. Third, the analytical results
match very well with the simulation results when the
SNR > —4 dB. Fourth, at MSE = 1072, the two-node sys-
tem outperforms the one-node system by 5.5 dB. The per-
formance improvement is contributed by the utilization of
the spatial node correlation.

The impact of the spatial correlation coefficient, 6, on
the MSE performance is shown in Figure 3 for a two-node
system. As expected, the MSE performance improves con-
sistently as 6 increases. At MSE = 1073, the system with
0 = 1 outperforms that with & = 0.5 by 6.3 dB. The results
demonstrate that the proposed algorithm can effectively
utilize the spatial correlation between the nodes. Mean-
while, it shows that the stronger the spatial correlation, the
better performance can be obtained.

In Figure 4, the MSE of estimated impulse density is
shown for a multi-node system using MAP detection
scheme with different group sizes at the FC. The SNR
is —10 dB. As expected, the performance improves as the
group size increases. Most of the performance gains are
achieved when N, < 4, and they gradually diminish as
N; > 4, for all the systems considered in this example.
Based on the results, a window size of 4 yields the best
tradeoff between complexity and performance for a wide
range of the correlation coefficient, 6.

5 Conclusions

A new paradigm of an integrated harvesting, sensing,
and communication scheme was proposed for ultra-low
power structure health monitoring. The IHSC scheme
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Figure 3 MSE with different values of spatial correlation coefficient, 6.

was designed by exploiting the correlation between the
harvested energy and vibration intensity. The structure
vibration information is carried as the densities of the
impulses generated by the sensors. An optimum multi-
node MAP detector with iterative a priori probability esti-
mation was developed to estimate the impulse densities
from the spatially distributed sensor nodes. The theoreti-
cal MSE of the estimated impulse density was derived for
a one-node system operating in a Rayleigh fading channel.
Both the theoretical and simulation results indicated that
the proposed algorithm can effectively utilize the spatial
correlation among the sensors. The system can operate

——-60=0.5
—&-0=0.7
——0=0.9

MSE

1 2 3 4 5 6 7 8
The number of sensor nodes

Figure 4 MSE for systems with the sub-optimum impulse density
estimation.
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effectively at a SNR as low as —10 dB without battery or
external energy sources.

Appendix
A. Proof of Proposition 1

. 2 1 2
The MSE can be written as o &2 []E (uz) -

2 (Unlfln) —HE(LA[ﬁ)] Since U, and I:[,, are binomial
RVs, we have E (U2) = Kp(Kp — p + 1), and E (u,%) -

Kq(N,0)[Kq(N,0) — q(N,6) + 1].
Based on the definition of U/, and fl,,, we have

K K
E(Unlly) = Y paN,0) + Y E[wuin®]. (14)
Jjk=1 k=1
j#k

Combining the above equations leads to (9).

B. Proof of Lemma 1 A
When N = 1, the MAP detector in (5) decides X,z = b
given that x,; = b was transmitted when

o2
Yuk — VETH - Bk - b‘ -

2
Yk — v ETH - Bk - b‘ <n
(15)

P(xﬂkZiﬂ) ~
where n = Np - log Po=h)’ and b,b € B. The decision
rule in (15) can be alternatively written as

Z <1 — Ernlhul? (16)

where Z = 2R {/Eti - Mk -d- Vi), d = b—b. The decision
variable Z conditioned on /,;; and d is a Gaussian random
variable with 0 mean and variance 0% = 2Ny - Eth - [ k|2
Then the conditional probability

P = bl = b} = P(Z < 0 — Exalhl?)

Ernlhul® — )

V2N - ETH - Ikl

(17)

In a Rayleigh fading channel, fj;, ,2(x) = exp(—x), for
x > 0. Then the unconditional probability is

P S EtH-x—1 _
p’xnk—blxnk—b] —/(; Q(W) exp( x)dx

(18)
The results in (10) and (11) can then be obtained by sub-

stituting (18) into P (¥ = 1) = pP (X = & = 1) +
1-pP (&nk = Uxy = 0)'



Zhou and Wu EURASIP Journal on Wireless Communications and Networking (2015) 2015:107

Competing interests
Both authors declare that they have no competing interests.

Acknowledgements

This work was supported in part by the National Science Foundation under
Grant ECCS-0917041. The authors would like to thank Dr. Shuiging Yu for the
helpful discussions on the energy harvesting properties of piezoelectric
sensors. This work was supported in part by the National Science Foundation
under Grants ECCS-1202075 and ECCS-1405403.

Author details

!Litepoint Corporation, 965 West Maude Avenue, Sunnyvale, CA 94085, USA.
2Department of Electrical Engineering, University of Arkansas, 3217 Bell
Engineering Center, Fayetteville, AR 72701, USA.

Received: 16 October 2014 Accepted: 25 March 2015
Published online: 18 April 2015

References

1. JP Lynch, KJ Loh, A summary review of wireless sensors and sensor
networks for structural health monitoring. Shock Vibration Digest. 38(2),
91-128 (2006)

2. CEscriba, J Fourniols, New real-time structural health monitoring
microsystem for aircraft propeller blades. IEEE Trans. Aerospace Electronic
Syst. 27, 29-41 (2012)

3. KChintalapudi, T Fu, J Paek, N Kothari, S Rangwala, J Caffrey, R Govindan,
E Johnson, S Masri. Monitoring civil structures with a wireless sensor
network, in IEEE Internet Computing, vol. 10, (2006), pp. 26-34

4. SKim, S Pakzad, D Culler, ] Demmel. Health monitoring of civil
infrastructures using wireless sensor networks, in Proc. 6th Intern. Sym.
Information Processing in Sensor Networks. ISPN'07, (2007), pp. 254-26

5. RCardell-Oliver, K Smettem, M Kranz, K Mayer. Field testing a wireless
sensor network for reactive environmental monitoring, in Proc. IEEE Conlf.
Intelligent Sensors, Sensor Networks and Information Processing. SNIP'04,
(2004), pp. 7-12

6. JBeutel. Fast-prototyping using the BTnode platform, in Proc. Conf.
Design, Automation Test in Europe. DATE06, (2006)

7. JWu, N Sun. Optimal sensor density in a distortion-tolerant linear wireless
sensor network, in Proc. IEEE Global Telecommun. Conf., (2010)

8. JWu, G Zhou. A new Ultra-low power wireless sensor network with

integrated energy harvesting, data sensing, and wireless communication.,

in Proc. IEEE Inter. Conf.on Commu., (2011)

9. SLiu, M Tomizuka, G Ulsoys, Strategic issues in sensors and smart
structures. Struct. Control Health Monitor. 13, 946-957 (2006)

10. S Xu,YQin, CXu, Y Wei, R Yang, Z Wang, Self-powered nanowire devices.
Nat. Nanotechnol. 5, 366-373 (2010)

11. S Roundy, PK Wright, J Rabaey, A study of low level vibrations as a power
source for wireless sensor nodes. J. Comput. Commu. 26, 1131-1144
(2003)

12. FLi,JEvans, S Dey, Design of distributed detection schemes for
multiaccess channels. IEEE Trans. Aerospace Electronic Syst.

48, 1552-1569 (2012)

13. TM Duman, M Salehi, Decentralized detection over multiple-access
channels. IEEE Trans. Aerospace Electronic Syst. 34, 469-476 (1998)

14. JJ Xiao, ZQ Luo, Universal decentralized detection in a
bandwidth-constrained sensor network. IEEE Trans. Signal Process.
53,2617-2623 (2005)

15. G Ferrari, M Martalo, R Pagliari, Decentalized detection in clustered sensor
networks. IEEE Trans. Aerospace Electronic Syst. 47,959-973 (2011)

16. G Ferrari, R Pagliari, Decentalized binary detection with noisy
communication links. [EEE Trans. Aerospace Electronic Syst.
42,1554-1562 (2008)

17. M Abramowitz, IA Stegun, Handbook of mathematical functions with
formulas, graphs and mathematical tables, 9th Ed. (Dover Publications,
New York, USA, 1972)

18. AD Lunn, A note on generating correlated binary variables. Biometrika.
85, 487-490 (1998)

Page 7 of 7

Submit your manuscript to a SpringerOpen®

journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	Abstract
	Keywords

	Introduction
	A new WSN structure with integrated harvesting, sensing, and communication
	Optimum impulse density estimation
	Iterative impulse density estimation
	Performance analysis

	Simulation results
	Conclusions
	Appendix
	A
	B

	Competing interests
	Acknowledgements
	Author details
	References

