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Abstract

In this paper, we investigate the optimality of training signals for linear minimummean square error (LMMSE) channel
estimation in multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) with
frequency-selective fading channels. This is a very challenging problem due to its mathematical intractability and has
not been analytically solved in the literature. Using the Lagrange multiplier method, we derive the optimality
conditions for training signal design. Important findings revealed on optimal training signals are twofold: (i) the
energies of the training signals on each subcarrier are equal, and (ii) on each subcarrier, the training signals
transmitted from the different antennas are orthogonal and of equal energy. We verify that our results are in line with
the design principles that have been derived in single-carrier MIMO systems. Two types of optimal training signal
examples that satisfy the optimality conditions are presented for practical implementations in MIMO-OFDM systems.
Simulation results show that the training signals based on the optimality conditions outperform other non-optimal
training signals in terms of channel estimation performance.
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1 Introduction
Recently, increasing interest has been concentrated on
multiple-input multiple-output (MIMO) orthogonal fre-
quency division multiplexing (OFDM) for broadband
wireless communication. The combination of OFDMwith
MIMO exploits the benefits from both techniques, i.e.,
the robustness to combat multipath delay spread and
an increase in system capacity [1-5]. For a practical
implementation of MIMO-OFDM systems, channel esti-
mation becomes very important for the system perfor-
mance. Imperfect channel estimation typically leads to
the increase of error rates and reduces transmission effi-
ciency. In this study, we focus on the problem of designing
MIMO-OFDM training signals for channel estimation, a
critical component in many modern wireless communica-
tion systems.
Several approaches on optimal training signal design

have been proposed in the literature. In the absence
of prior statistical information about the channel, sim-
ple least-squares channel estimation is used. In [6], the
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optimal placement of training signals is studied for a
single-input single-output (SISO) OFDM case. The opti-
mal training design is extended to theMIMO-OFDM case
in [7]. In [8], more general training structures for MIMO-
OFDM are presented that utilize frequency division, time
division, and code division multiplexing.
In the presence of prior statistical information about

the channel, a more efficient channel estimation tech-
nique can be used. Linear minimum mean square error
(LMMSE) estimators that incorporate prior knowledge
to improve channel estimation are known to be optimal
for this case. In [9,10], optimal conditions for training
signals are studied for SISO frequency-selective fading
channels. In [11], the results are extended to MIMO
frequency-selective fading channels, and it is revealed
that training signals across transmit antennas should be
orthogonal and training signals should be equi-powered.
The results are very simple but effective and thus have
been widely used as design guidelines for recent wireless
systems. One can intuitively generalize the main princi-
ples to multi-carrier systems while the optimality of the
principles has remained unproved for the multi-carrier
systems, i.e., OFDM. For example, downlink reference sig-
nals in commercial LTE systems are designed with the
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same principles. In [12], an optimal training design for
both least-squares estimators and LMMSE estimators is
studied assuming cyclic delay diversity OFDM systems.
Meanwhile, research interests have been shifted to more

practical issues onMIMO channel estimations. In [13,14],
a training signal design in the existence of inphase and
quadrature imbalances is considered for SISO-OFDM and
MIMO-OFDM systems. A robust training signal design
for LMMSE channel estimator in case of imperfect knowl-
edge of second-order characteristics of channels is studied
in [15-17]. Efficient algorithms that exploit the spatial
correlation of MIMO channels are proposed for training
signal design in [18,19].
In this paper, we aim to complete the puzzle with the

missing piece. We directly tackle a multi-carrier system
model and solve the optimality conditions of training sig-
nals for LMMSE estimator in MIMO-OFDM systems.
This is quite challenging because simultaneous consider-
ations on all MIMO dimensions, channel statistics, multi-
carriers, and multisymbols lead to an extremely complex
modeling and mathematically intractable problem. This
has never been solved in the literature to the best of our
knowledge. We analytically derive the optimality condi-
tions using the Lagrange multiplier method, which is the
principle contribution of this study.
The remainder of the paper is organized as follows.

Section 2 describes the system model of our work. After
Section 3 analytically derives the optimality conditions,
the optimal training signal design is discussed in Section
4. Section 5 presents two types of optimal training signal
examples for practical MIMO-OFDM systems. Simula-
tion results are provided in Section 6. Finally, Section 7
draws conclusions.
Notations: Uppercase and lowercase boldface letters are

used for matrices and vectors, respectively. The super-
script ‘∗’ denotes the conjugate transpose, superscript ‘T ’
denotes the transpose, and superscript ‘−1’ denotes the
matrix/vector inverse. We will use E [·] for expectation,
vec (·) for matrix vectorization, tr [·] for the matrix trace,
⊗ for the Kronecker product, and IN for theN×N identity
matrix.

2 Systemmodel
We consider aMIMO-OFDM system withQ transmit and
P receive antennas and perform an analysis in the fre-
quency domain to search for the properties of an optimal
training signal. For the best analytical tractability, we will
work directly in the frequency domain. The number of
OFDM subcarriers is N, and we consider a block of M
OFDM symbols transmitted across the channel. We use
the notation xn,q,m to denote the training signal transmit-
ted on the qth transmit antenna in themth symbol and on
the nth subcarrier. For the nth subcarrier, we may, there-
fore, consider that we transmit a matrix of training signals,

Xn, where xn,q,m is the element in the qth row and mth
column. The following notations are used in this paper:

• Xn: Training signal matrix for the nth subcarrier
(Q × M),

• Yn: Received signal matrix for the nth subcarrier
(P × M),

• Hn: MIMO channel matrix for the nth subcarrier
(P × Q),

• Wn: Received noise matrix for the nth subcarrier
(P × M).

Considering frequency-selective fading, a signal model
is given as

Yn = HnXn + Wn, (1)

where all elements of Hn are uncorrelated, and all noise
variables are independent, i.e., E

[
WnW∗

n
] = σ 2I. Aggre-

gating the matrices for all subcarriers gives

x =

⎡
⎢⎢⎣

vec (X1)
vec (X2)

...
vec (XN )

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

x1
x2
...
xN

⎤
⎥⎥⎦ , y =

⎡
⎢⎢⎣

vec (Y1)
vec (Y2)

...
vec (YN )

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

y1
y2
...
yN

⎤
⎥⎥⎦ ,

h =

⎡
⎢⎢⎣

vec (H1)
vec (H2)

...
vec (HN )

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

h1
h2
...

hN

⎤
⎥⎥⎦ , w =

⎡
⎢⎢⎣

vec (W1)
vec (W2)

...
vec (WN )

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

w1
w2
...

wN

⎤
⎥⎥⎦ ,

(2)

where x, y,h,w are respectivelyMNQ×1,MNP×1,NPQ×
1, and MNP × 1 matrices. By using a well-known
result regarding the vec operation, i.e., vec (AXB) =(
BT ⊗ A

)
vec (X), (1) becomes

vec (Yn) = vec (HnXn) + vec (Wn)

= vec (IPHnXn) + vec (Wn)

=
(
XT
n ⊗ IP

)
vec (Hn) + vec (Wn) ,

or can be rewritten as

yn =
(
XT
n ⊗ IP

)
hn + wn. (3)

Combining all the N equations in (3) yields

y =

⎡
⎢⎢⎢⎢⎢⎣

(
XT
1 ⊗ IP

)
(
XT
2 ⊗ IP

)
. . . (

XT
N ⊗ IP

)

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

h1
h2
...

hN

⎤
⎥⎥⎥⎦+ w,

or shortly denoted as

y = Xh + w, (4)
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where X (MNP × NPQ) is defined as

X =

⎡
⎢⎢⎢⎣

(
XT
1 ⊗ IP

)
(
XT
2 ⊗ IP

)
. . . (

XT
N ⊗ IP

)

⎤
⎥⎥⎥⎦ . (5)

3 Analysis on optimality conditions
In this section, the problem formulation for minimizing
the LMMSE channel estimation errors in MIMO-OFDM
systems is presented first. Then, optimal conditions for
the training signals are derived for an optimal training
signal design.

3.1 Problem formulation
The standard LMMSE estimate of h, based upon the
observation of y, becomes

ĥ = E
[
hy∗] (

E
[
yy∗])−1 y (6)

By using (4), this becomes

ĥ = E
[
hh∗]X∗ (

XE
[
yy∗]X∗ + σ 2

wI
)−1 y

= RhhX∗ (
XRhhX∗ + σ 2

wI
)−1 y. (7)

The covariance matrix of the error can be expressed as

E

[(
h − ĥ

) (
h − ĥ

)∗] = E

[(
h − ĥ

)
h∗]

= Rhh− RhhX∗ (
XRhhX∗ + σ 2

wI
)−1 XRhh.

(8)

Using the well-known matrix identity,

(A + BCD)−1 = A−1 − A−1B
(
C−1 + DA−1B

)−1DA−1,

(8) can be rewritten as

E

[(
h − ĥ

) (
h − ĥ

)∗] =
(
R−1
hh + X∗X

σ 2
w

)−1

= σ 2
w

(
σ 2
wR

−1
hh + X∗X

)−1
. (9)

The MMSE becomes [20,21]

MMSE = σ 2
wtr

[(
σ 2
wR

−1
hh + X∗X

)−1
]
. (10)

Our goal is to find the matrix X in the form of (5)
that minimizes (10), subject to the total transmit energy
constraint.
Based on the assumptions of the channel, it can be

observed that

Rhh = R ⊗ IQ ⊗ IP, (11)

whereR (N×N) is a Toeplitz Hermitianmatrix of the form

R =

⎡
⎢⎢⎢⎣

r0 r1 · · · rN−1
rN−1 r0 · · · rN−2
...

. . .
...

r1 r2 · · · r0

⎤
⎥⎥⎥⎦ . (12)

We also have

X =

⎡
⎢⎢⎢⎣

(
XT
1 ⊗ IP

)
(
XT
2 ⊗ IP

)
. . . (

XT
N ⊗ IP

)

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣
XT
1

XT
2

. . .
XT
N

⎤
⎥⎥⎥⎦ ⊗ IP

= Z ⊗ IP, (13)

where Z (MN × NQ) is defined as

Z =

⎡
⎢⎢⎢⎣
XT
1

XT
2

. . .
XT
N

⎤
⎥⎥⎥⎦ . (14)

Furthermore,

X∗X = (Z ⊗ IP)∗ (Z ⊗ IP)
= (

Z∗ ⊗ IP
)
(Z ⊗ IP)

= Z∗Z ⊗ IP. (15)

Using some basic properties regarding ⊗ operations
and expressions in (11)∼(15), the MMSE in (10) can be
rewritten as

MMSE = σ 2
wtr

[(
σ 2
wR

−1
hh + X∗X

)−1
]

= σ 2
wtr

[(
σ 2
w

(
R ⊗ IQ ⊗ IP

)−1 + Z∗Z ⊗ IP
)−1

]

= σ 2
wtr

[(
σ 2
w

(
R−1 ⊗ IQ ⊗ IP

) + Z∗Z ⊗ IP
)−1]

= σ 2
wtr

[((
σ 2
w

(
R−1 ⊗ IQ

) + Z∗Z
) ⊗ IP

)−1]

= σ 2
wtr

[(
σ 2
w

(
R−1 ⊗ IQ

) + Z∗Z
)−1 ⊗ IP

]

= Pσ 2
wtr

[(
σ 2
w

(
R ⊗ IQ

)−1 + Z∗Z
)−1

]
. (16)

In addition, it is known that, for any matrices A and B,
there exists a permutation matrix � such that A ⊗ B =
� (B ⊗ A) �T [22]. Let � be a permutation matrix such
that R ⊗ IQ = �

(
IQ ⊗ R

)
�T . Using this relation in (16)

yields
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MMSE = Pσ 2
wtr

[(
σ 2
w�

(
IQ ⊗ R

)−1
�T + Z∗Z

)−1
]

= Pσ 2
wtr

[(
σ 2
w�

(
IQ ⊗ R

)−1
�T + ��TZ∗Z��T

)−1
]

= Pσ 2
wtr

[(
�

(
σ 2
w

(
IQ ⊗ R

)−1 + �TZ∗Z�
)

�T
)−1

]
.

(17)

Note that row permutations by � followed by column
permutations by the same � does not change the trace of
the matrix because any diagonal parameter may be per-
muted but still remains in the diagonal position. Thus, we
have

MMSE = Pσ 2
wtr

[(
σ 2
w

(
IQ ⊗ R

)−1 + �TZ∗Z�
)−1

]
.

(18)

Finally, our optimization problem is formulated as a
constrained optimization problem as

Minimize Pσ 2
wtr

[(
σ 2
w

(
IQ ⊗ R

)−1 + �TZ∗Z�
)−1

]

Subject to tr
[
Z∗Z

] = Etotal, (19)

where Etotal is the total transmit energy.

3.2 Optimality conditions
For simplicity of notations, we defineD (NQ×NQ) andA
(NQ × NQ) as

D ≡ �TZ∗Z�, (20)

and

A ≡
(
σ 2
w

(
IQ ⊗ R

)−1 + D
)
, (21)

where Z∗Z is Hermitian and block diagonal. We solve
the constrained optimization problem using the Lagrange
multiplier method. By letting μ be the Lagrange multi-
plier, the Lagrangian is expressed as

J (D,μ) = Pσ 2
wtr

[
A−1] + μ (tr [D] − Etotal) . (22)

To obtain the optimal solution, we set the derivatives of
the Lagrangian function J (D,μ) to zeros as

∂

∂x
J (D,μ) = 0, (23)

where x is an arbitrary parameter in D. We split our
approaches into two cases: diagonal parameters and off-
diagonal parameters in matrix D. To find the required
derivatives, we will use the following property. For any
matrix A depending on a parameter x [22],

∂

∂x
A−1 = −A−1

(
∂

∂x
A

)
A−1, (24)

which directly follows from the fact that AA−1 = I.
We first consider the diagonal parameters x in D and

derive the following lemma.

Lemma 1. By denoting the kth column of A−1 as ak, the
following condition should be satisfied in order to achieve
∂
∂x J (D,μ) = 0.

C1: ‖ak‖2 = c, for all k, (25)

where c is a constant.

Proof. Let x be the kth diagonal parameter in D. We
define the derivative of A with respect to x as

∂A
∂x

= E ≡ diag {0, . . . , 0, 1, 0, . . . , 0} , (26)

where E is a diagonal matrix in which only the kth diago-
nal element has a value of one. Using associating (24) with
(22), we have

∂

∂x
J (D,μ) = −Pσ 2

wtr
[
A−1EA−1] + μ

= −Pσ 2
wtr

[
A−1E

(
A−1)∗] + μ

= −Pσ 2
w ‖ak‖2 + μ (27)

where we use the fact that A−1 is a Hermitian matrix in
the second line. Applying ∂

∂x J (D,μ) = 0 finally gives

‖ak‖2 = μ

Pσ 2
w
, (28)

which holds for all diagonal elements in D without loss of
generality. This completes the proof.

We then consider the off-diagonal parameters χ in D
and derive the following lemma. Note that off-diagonal
parameters are complex numbers. We split each parame-
ter into two real parameters as χ = x + iy.

Lemma 2. By denoting the kth column of A−1 as ak, the
following condition should be satisfied in order to achieve
∂
∂x J (D,μ) = 0.

C2: a∗
kal = 0, for all k, l (k �= l) . (29)

Proof. Let χ appear in the kth column and in the lth
row in D. We first focus on the real part x. We define the
derivative of A with respect to x as ∂A

∂x = E, where E is
defined as a sparse matrix in which only the element in the
kth column lth row and the element in the lth column kth
row have a value of one. Using associating (24) with (22),
we have

∂

∂x
J (D,μ) = −Pσ 2

wtr
[
A−1EA−1]

= −Pσ 2
wtr

[
A−1E

(
A−1)∗]

= −Pσ 2
w

(
a∗
kal + a∗

l ak
)

(30)
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where we use the fact that A−1 is a Hermitian matrix in
the second line. Applying ∂

∂x J (D,μ) = 0 finally gives

Re
[
a∗
kal

] = 0, (31)

where Re [·] denotes the real part of a complex number.
Then, similar derivations with respect to the imaginary
part y yield

Im
[
a∗
kal

] = 0, (32)

where Im [·] denotes the imaginary part of a complex
number. Combining both results provides

a∗
kal = 0, (33)

which holds for all off-diagonal elements inDwithout loss
of generality. This completes the proof.

4 Optimal training signal design
In this section, we provide an optimal training signal sat-
isfying the optimality conditions derived in the previous
section.
Suppose that the matrix D is a multiple of the identity,

i.e., D = cI, where c is a real constant. Because R is a
Toeplitz Hermitian matrix, it can be written as

R = F�F−1, (34)

where F and � are a unitary matrix and a diagonal matrix,
respectively. In addition, we may write

IQ ⊗ R =
⎡
⎢⎣
F · · · 0
...
. . .

...
0 · · · F

⎤
⎥⎦

⎡
⎢⎣

� · · · 0
...

. . .
...

0 · · · �

⎤
⎥⎦

⎡
⎢⎣
F−1 · · · 0
...

. . .
...

0 · · · F−1

⎤
⎥⎦ ,

(35)

(
IQ ⊗ R

)−1=
⎡
⎢⎣
F · · · 0
...
. . .

...
0 · · · F

⎤
⎥⎦

⎡
⎢⎣

�−1 · · · 0
...

. . .
...

0 · · · �−1

⎤
⎥⎦

⎡
⎢⎣
F−1 · · · 0
...

. . .
...

0 · · · F−1

⎤
⎥⎦.

(36)

For shorter notations,
(
IQ ⊗ R

)−1 = F̄�̄−1F̄−1, (37)

where F̄ and �̄−1 are respectively defined as

F̄ =
⎡
⎢⎣
F · · · 0
...
. . .

...
0 · · · F

⎤
⎥⎦ , �̄−1 =

⎡
⎢⎣

�−1 · · · 0
...

. . .
...

0 · · · �−1

⎤
⎥⎦ (38)

Associating (37) in (21) gives

A−1=
(
σ 2
w

(
IQ ⊗ R

)−1 + D
)−1

=(
σ 2
wF̄�̄−1F̄−1 + cI

)−1

=(
σ 2
wF̄�̄−1F̄−1 + cF̄F̄−1)−1

= F̄
(
σ 2
w�̄−1 + cI

)−1 F̄−1

=

⎡
⎢⎢⎣
F · · · 0
...

. . .
...

0 · · · F

⎤
⎥⎥⎦

⎡
⎢⎢⎣

(
σ 2
w�

−1+cI
)−1 · · · 0

...
. . .

...
0 · · · (

σ 2
w�−1+cI

)−1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
F−1 · · · 0
...

. . .
...

0 · · · F−1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣
F

(
σ 2
w�−1 + cI

)−1 F−1 · · · 0
...

. . .
...

0 · · · F
(
σ 2
w�−1 + cI

)−1 F−1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣
C · · · 0
...

. . .
...

0 · · · C

⎤
⎥⎥⎦ ,

(39)

where C is a Toeplitz Hermitian matrix. Thus, it is clear
that D = cI satisfies both the optimality conditions C1 in
(25) and C2 in (29). Solving D = �TZ∗Z� = cI for Z∗Z
yields

Z∗Z = � (cI)�T = cI. (40)

From (14) and (40), we finally reach the following
theorem on the optimal training signal.

Theorem (Optimal training signal). In MIMO-OFDM
systems where a sequence of a training signal is transmitted
at the transmitter through Q transmit antennas, N subcar-
riers, M OFDM symbols with the total transmit power of
Etotal, and LMMSE channel estimation is performed at the
receiver upon the reception of M OFDM symbols from P
received antennas, the training signal is ‘optimal’ in terms
of minimizing channel estimation errors if the training
signal satisfies the following conditions:

• The energy of the training signal in each subcarrier is
equal, i.e.,

tr
[
XnX∗

n
] = Etotal

N
, for n = 1, 2, . . . ,N . (41)

• On each subcarrier, the training signals transmitted
from the different antennas are orthogonal and of
equal energy, i.e.,

XnX∗
n = Etotal

NQ
I, for n = 1, 2, . . . ,N . (42)

5 Examples of optimal training signals
In this section, we use the theorem revealed in the previ-
ous section as a design guideline and present two exam-
ples of optimal training signal implementations. These
designs are practical owing to its simple structure. Note
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that optimal designs of training signals are not limited to
the following cases.

5.1 Sequential transmission on antennas
Assume that the number of OFDM symbols transmitted is
equal to the number of transmit antennas,M = Q, and let

Xn =

⎡
⎢⎢⎢⎢⎣

z(n)
1 0 · · · 0
0 z(n)

2
...

. . .
...

0 · · · z(n)
Q

⎤
⎥⎥⎥⎥⎦ , for n = 1, 2, . . . ,N ,

(43)

where z(n)
i are arbitrary complex numbers but satisfying∣∣∣z(n)

i

∣∣∣2 = Etotal
NQ . This implementation implies that each

successive OFDM symbol is transmitted on a different
antenna in a round-robin fashion. Figure 1 illustrates an
example of the optimal training signal design in this type
of optimal training signal implementation.

5.2 Interlaced transmission on antennas
Assume that the number of OFDM symbols transmitted
is equal to the number of transmit antennas, M = Q, and
N is a multiple of Q. In this implementation, we transmit
simultaneously from every antenna in each symbol inter-
val, but each antenna uses only every Qth subcarrier. Let
matrix � represent a cyclic shift operation, which causes
a cyclic shift by one element in the upward direction. For
example, if Q = 3, we have

� =
⎡
⎣ 0 1 0
0 0 1
1 0 0

⎤
⎦ , (44)

and it operates as

�

⎡
⎣ x1
x2
x3

⎤
⎦ =

⎡
⎣ x2
x3
x1

⎤
⎦ . (45)

We define the training signal matrix by

Xn = �(n−1)� , for n = 1, 2, . . . ,N , (46)

where �n is the nth power of �,

� =

⎡
⎢⎢⎢⎣
z1 0 · · · 0
0 z2
...

. . .
...

0 · · · zQ

⎤
⎥⎥⎥⎦ , (47)

and zi are arbitrary complex numbers but satisfying∣∣∣z(n)
i

∣∣∣2 = Etotal
NQ . This implementation implies that each

antenna always transmit in every OFDM symbol but using
only every Qth subcarrier. During the first symbol, for
example, Antenna 1 uses subcarriers 1,Q + 1, 2Q + 1, . . .,
Antenna Q uses subcarriers 2,Q + 2, 2Q + 2, . . ., etc.
During the second symbol, Antenna 1 uses subcarriers
2,Q + 2, 2Q + 2, . . ., and Antenna Q uses subcarriers
3,Q+3, 2Q+3, . . ., and so on. Figure 2 illustrates an exam-
ple of the optimal training signal design in this type of
optimal training signal implementation.

6 Simulation results
In this section, we verify the optimality of the training
signals through extensive computer simulations. We con-
sider a MIMO-OFDM system where the number of TX
antennas is Q = 4, the number of RX antennas is P = 4,
the number of OFDM subcarriers is N = 128, and the
length of the cyclic prefix is 32. The number of OFDM
symbols for a training signal is set toM = 4. A wide sense
stationary uncorrelated scattering (WSSUS) model is con-
sidered for a multipath channel [23]. Amultipath intensity
profile of an exponential distribution is used where the
number of delay taps is L = 128 and an exponentially
decaying factor is α. Doppler frequency is assumed to be
zero. The optimal training signal shown in Figure 1 is used
in the simulations. Five non-optimal training signals are
also generated for performance comparisons. Unlike the
optimal training signal that satisfies the conditions in (41)

Figure 1 An example of optimal training signals with sequential transmission on antennas (Q = 4,M = 4,N = 8).
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Figure 2 An example of optimal training signals with interlaced transmission on antennas (Q = 4,M = 4,N = 8).

and (42), the non-optimal training signals are created at
random but they all satisfy the total transmit power Etotal.
Figure 3 compares the LMMSE channel estimation

performances of different training signals. As the SNR
increases, the channel estimation error decreases. The
optimal training signal shows a considerable performance
gap compared to the other non-optimal training sig-
nals. For example, a SNR gain using the optimal train-
ing signal is more than 5 dB in most cases. Figure 4
shows how the LMMSE channel estimation performance
varies with the multipath intensity profile. With a small
exponentially decaying factor, large number of multi-
paths become dominant, resulting in high frequency
selectivity and relatively low LMMSE channel estima-
tion performance. As a small exponentially decaying
factor increases, the number of dominant multipaths

decreases, resulting in low frequency selectivity and rel-
atively high LMMSE channel estimation performance.
Again, the optimal training signal provides a huge per-
formance gap compared to the other non-optimal train-
ing signals in all cases. Figure 5 shows the LMMSE
channel estimation performance with respect to the
antenna dimension. As the number of antennas increases,
the MMSE of the optimal training signal does not
increase while those of non-optimal training signals con-
tinuously increases. Accordingly, the performance gap
between the optimal and non-optimal training signals
also increase. This is because the optimal training signal
is designed such that training signals transmitted from
the different antennas are orthogonal. In non-optimal
training signal, training signals simultaneously transmit-
ted from different antennas collide and interfere each
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Figure 3 MMSE versus SNR, where P = 4,Q = 4,M = 4,N = 128, L = 128, and α = 10.
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Figure 4 MMSE versus exponentially decaying factor, where P = 4,Q = 4,M = 4,N = 128, L = 128, and SNR = 30 dB.

other, which degrades the LMMSE channel estimation
performance.

7 Conclusions
In this paper, optimality conditions are analytically
derived and design guidelines for the optimal train-
ing signals are provided for LMMSE channel estima-
tion for MIMO-OFDM. On the basis of the analysis, we
clearly reveal that the training signal that satisfies the

following is optimal: (i) the energy of the training signal
on each subcarrier is equal, and (ii) on each subcar-
rier, the training signals transmitted from the different
antennas are orthogonal and of equal energy. Interest-
ingly, the optimality conditions of training signals for
LMMSE estimator inMIMO-OFDM systems are basically
in line with design principles known from single-carrier
MIMO systems; training signals across transmit anten-
nas should be orthogonal and training signals should be
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Figure 5 MMSE versus Number of Antennas, where P = Q = M,N = 128, L = 128,α = 10, and SNR = 30 dB.
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equi-powered. We mathematically prove that the sim-
ple generalization of the design principles with an addi-
tional dimension, i.e., multi-carriers, still holds optimality.
This work is important because the optimality conditions
of training signals for LMMSE estimation in MIMO-
OFDM systems have been mathematically proved. Future
research may include an extension of the results to more
practical channel statistics, e.g., correlated channels and
time-varying channels.
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