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Abstract

A novel direction of arrival (DOA) estimation method based on data level Multistage Nested Wiener Filters (MSNWF)
which is used to adaptive beamforming for subarray signal is proposed in this paper. The subarrays using the same
array geometry are used to form a signal whose phase relative to the reference signal is a function of the DOA.
The DOA is estimated by computing the phase shift between the reference signal and its phase-shifted version.
The performance of this DOA estimation method is significantly improved due to the application of MSNWF for
rejecting interference signals. The computation of the proposed method is simple, and the number of detectable
signal sources can exceed the number of antenna elements.
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1 Introduction
The smart antenna has been widely used in many appli-
cations such as radar, sonar, and wireless communication
systems in the last two decades [1–4]. In these sensor
networks implication systems and scenarios, direction of
arrival (DOA) is an important parameter needed to be
the estimates to determine the direction of the located
and tracked target or the position of the sensor nodes.
Considerable research efforts have been made in the
DOA estimation, and various array signal process tech-
niques for DOA estimation have been proposed [5–9].
The traditional DOA estimation techniques meanly in-

clude: (1) spectrum-based methods, such as Bartlett [4]
and Capon [5]; (2) subspace-based algorithm, such as
multiple signal classification (MUSIC) [7]; and (3) para-
metric methods, such as estimation of signal parameters
via rotational invariance technique (ESPRIT) [8–10]. In
Capon techniques, the DOAs are determined by finding
the directions in which their antenna response vectors
lead to peaks in the spectrum formed by the covariance
matrix of the observation vectors. However, the capacity
of this DOA estimation technique is less than the num-
ber of antenna elements, which is bounded by the
covariance matrix of the observation vectors. In MUSIC
techniques, the DOAs of target signals are determined
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by finding the directions in which their antenna
response vectors lead to peaks in the MUSIC spectrum
formed by the eigenvectors of the noise subspace. Thus,
the capacity of this DOA estimation is equal to the rank
of the reciprocal subspace of the selected noise subspace
and is also less than the number of the antenna ele-
ments. In ESPRIT techniques, two virtual subarrays
structures are proposed to obtain two signal subspaces.
The eigenvectors of the relevant signal subspaces are
rotated for the DOAs of the target signals. As a result, the
capacity of DOA estimation using ESPRIT is bounded by
the number of subarrays.
The disadvantage of the above application techniques

is that the number of signal sources is less than that of
antenna elements [11, 12]. In addition, these techniques
also require subspace estimation, eigen decomposition,
and inversion computation of the covariance matrix,
which leads to high computational complexity, and are
thereby limited to the applications where fast DOA esti-
mation is not required [13, 14]. Furthermore, in the
presence of interference, these techniques need to esti-
mate the DOAs of all the target signals and interference,
which also increases computational complexity and
decreases the accuracy of DOA estimation [15].
The application of adaptive beamforming in DOA esti-

mation has become the research focus on interference
existing [16]. In [16], Wang et al. developed a new struc-
ture of DOA estimation based on subarray beamforming.
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This technique has a clear advantage on the DOA estima-
tion when interference exists but still needs the computa-
tion of matrix inversion which is not easy to be applied to
a practical system. Based on this structure, a novel Multi-
stage Nested Wiener Filter-based (MSNWF) [17–20]
DOA estimation technique (MSNWF-DOA) is proposed
in this paper. This technique uses two subarray adaptive
beamformers based on the MSNWF to construct the same
array geometry for forming the phase shift and rejecting
interference at the same time. The DOAs of the target
signals are estimated from the phase shifts by using a
reference signal after the rejection of interference. There-
fore, the performance of DOA estimation is significantly
improved. This technique can be widely used for the
implementation of hardware systems such as wireless
communication system, active radar, sonar, space-time
adaptive process (STAP) systems [20, 21], and multiple
input and multiple output (MIMO) systems [22].
The advantages of the MSNWF-DOA estimation are

as follows:

1) Since the use of MSNWF in this technique realizes
the subspace eigen decomposition, computation of
inversion of the covariance matrix becomes
unnecessary and thus reduces the complexity of
computation; the MSNWF-DOA can be easily applied
in hardware platform [23].

2) The capacity of DOA estimation in the proposed
MSNWF-DOA technique can be far larger than the
number of antenna elements.

3) In MSNWF estimation techniques, the target DOA
is estimated after interference rejection [24]. In this
way, the estimation resolution and accuracy of
MSNWF-DOA are significantly improved.

The paper is organized as follows: In Section 2, the
signal model is described using a uniform linear array
system. In the Section 3, the basic structure of the
MSNWF-DOA estimation system, the MSNWF-based
adaptive beamforming, and the DOA computing of the
proposed method are presented. Design examples and
simulation results are given in Section 4 to show the
performance of resolution, capacity, and the effects of
snapshot length and the stages of MSNWF. Conclusions
are drawn in Section 5.
2 Signal model
Consider a uniform linear array (ULA) system that uses
M elements with adjacent element spacing d, deployed
at a base station. Assume the numbers of narrowband
signals and unknown interference sources are K and P,
respectively. And these signals are received by the ULA
system with different DOAs θk, k = 1, 2, ⋯, K + P.
Using complex envelope representation, the received
signals can be expressed by

x tð Þ ¼
XKþP

k¼1

a θkð Þsk tð Þ þ n tð Þ ð1Þ

where sk(t) denotes the kth signal component, k = 1, 2,
⋯, K for target components, and k = K + 1, K + 2, ⋯,
K + P for interference components. The a(θk) denotes
the steering vector of the array in direction θk, which
is given by

a θkð Þ ¼ 1; e−j2πd sin θkð Þ;⋯; e−j2πd M−1ð Þ sin θkð Þ
h iT

ð2Þ

and n(t) denotes a spatially stationary background noise
vector with zero mean, and the cross-covariance is
expressed as

E n t1ð ÞnH t2ð Þ� � ¼ σ2δ t1−t2ð ÞI ð3Þ
where I is the identity matrix.
Suppose that the received vector x(t) is sampled at n,

n = 1, 2, ⋯, L, the received signal in the matrix notation
can be expressed as

X ¼ A θð ÞSþN ð4Þ
where X and N are M × L matrices,

X ¼ x 1ð Þ; x 2ð Þ;⋯; x Lð Þ½ � ð5Þ
and

N ¼ n 1ð Þ;n 2ð Þ;⋯;n Lð Þ½ � ð6Þ
and A(θ) is a M × K matrix, which is expressed as

A θð Þ ¼ a θ1ð Þ; a θ2ð Þ;⋯; a θKð Þ½ � ð7Þ
and S is a K × L matrix, which is expressed as

S ¼ s 1ð Þ; s 2ð Þ;⋯; s Lð Þ½ � ð8Þ

3 MSNWF-DOA estimation
The proposed MSNWF-DOA uses the uniform linear
antenna array at the received end, and the geometry of
the array is similar to that used in ESPRIT techniques.
The antenna array is decomposed into equal-sized sub-
arrays, where two subarrays are used in conjunction with
two subarray MSNWF adaptive beamformers to obtain
an optimal estimation of a phase-shift reference signal
whose phase relative to that of the reference signal is a
function of the target DOA. The target DOA is then
computed from the estimated phase shift between the
reference signal rk and the phase-shifted reference signal
ejϕk rk . The block diagram of the MSNWF-DOA system
is illustrated in Fig. 1.



Fig. 1 Block diagram of the MSNWF-DOA system
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3.1 Subarray signal formation
Consider that the array is composed by a ULA of M
element as a receiver and decomposed into two sets of
M − 1 element virtual subarrays, A and B. The down-
converted baseband signal received by the mth, m = 1, 2,
⋯, M element of the antenna array is expressed by

xm nð Þ ¼
XKþP

k¼1

ej m−1ð Þϕk sk nð Þ ð9Þ

The vectors of the A and B are given by

yA nð Þ ¼ x1 nð Þ; x2 nð Þ;⋯; xM−1 nð Þ½ �T ð10Þ
and

yB nð Þ ¼ x2 nð Þ; x3 nð Þ;⋯xM nð Þ½ �T; ð11Þ

respectively. Let

b θkð Þ ¼ 1; ejϕk ;⋯; ejϕk M−2ð Þ
h iT

ð12Þ

Then, the subarray signals yA(n) and yB(n) can be writ-
ten as

yA nð Þ ¼
XKþP

k¼1

b θkð Þsk nð Þ þ nA nð Þ ð13Þ

and

yB nð Þ ¼
XKþP

k¼1

ejϕkb θkð Þsk nð Þ þ nB nð Þ ð14Þ

where vectors nA(n) and nB(n) are the background noise
at the subarray, respectively. The phase-shift factor be-
tween the kth components of signals yA(n) and yB(n)
which from the kth signal is given by

ejϕk ¼ e−j2πd sin θkð Þ=λ ð15Þ
Sampling yA(n) and yB(n), we can obtain
YA ¼ yA 1ð Þ; yA 2ð Þ;⋯; yA Lð Þ½ �
YB ¼ yB 1ð Þ; yB 2ð Þ;⋯; yB Lð Þ½ � ð16Þ

3.2 Recursion algorithm of MSNWF
In the Wiener filter, the estimation of the desired signal
d0(n) from an observation vector x0(n) is optimal in the
minimum mean square error (MMSE) sense. The weight
vector wx0 of the Wiener filter can be obtained via solv-
ing the following Wiener-Hopf equations

Rx0wx0 ¼ rx0d0 ð17Þ
where Rx0 is the covariance matrix of x0(n), and rx0 is
the cross-correlation vector between x0(n) and d0(n).
The covariance matrix Rx0 cannot be readily estimated,
if x0(n) is of high dimension. Based on this, Goldstein
and Reed proposed that if the observation x0(n) is pre-
filtered by a full-rank matrix T ∈ ℂM × M, i.e., z1(n) =
Tx0(n), then the Wiener filter with the weight of wz1

which estimates d0(n) from z1(n) results in the same
MSE [9, 10, 16]. The assumed full-rank pre-filtering
matrix can be chosen as

T1 ¼ hH
1

B1

� �
ð18Þ

where H is the complex conjugate transpose operator.
Thus, the new observation vector can be written as

z1 nð Þ ¼ hH
1 x0 nð Þ

B1x0 nð Þ
� �

¼ d1 nð Þ
x1 nð Þ

� �
ð19Þ

where B1 is referred to the blocking matrix, B1h1 = 0,
and h1 = rx0d0/‖rx0d0‖2.
The solution of the Wiener-Hopf equations relative to

the transformed system is

wz1 ¼ R−1
z1 rz1d0 ¼ α1

1
−R−1

x1rx1d1

� �
ð20Þ

where α1 ¼ rx0d0k k2= σ2d1−r
H
x1d1R

−1
x1rx1d1

� �
, Rz1 is the co-

variance matrix of the new observation vector z1(n), and
rz1d1 is the cross-correlation vector between the new de-
sired signal d1(n) and the new observation vector z1(n).
And Rx1 ¼ B1Rx0BH

1 is the covariance matrix of the new
observation vector x1(n), σ2d1 ¼ hH

1 Rx0h1 is the variance
of the new desired signal d1(n), and rx1d1 = B1Rx0h1 is
the cross-correlation vector between x1(n) and d1(n).
The transform process produces a new vector Wiener

filter, which estimates the signal d1(n) from the observa-
tion vector x1(n), and a scalar Wiener filter is followed.
Repeating this process, a nested Wiener filter structure
can be obtained, which is defined as the original Multi-
stage Nested Wiener Filter [16–19]. In addition, the
group of orthogonal weight vectors extracted by earlier
several forward recursions spans the signal subspace,



Table 1 Date level recursive MSNWF

Forward recursion for i = 1, 2,⋯, D

ti ¼
XL−1

n¼1
d�i−1 nð Þxi−1 nð Þ

ti = ti/‖ti‖2

di nð Þ ¼ tHi xi−1 nð Þ; n ¼ 1;⋯; L−1

xi(n) = xi− 1(n) − di(n)ti, n = 1,⋯, L − 1

εD(n) = dD(n), n = 1,⋯, L − 1

Backward recursion for i = D − 1, ⋯ , 2, 1

ωiþ1 ¼
XL−1

n¼1
di nð Þε�iþ11 n½ �=

XL−1

n¼1
εiþ1 nð Þj j2

εi(n) = di(n) − ωi + 1εi+ 1(n), n = 1,⋯, L − 1

Calculate the Wiener filter coefficientXD Yi
n o
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which ensures that the MSNWF algorithm is completed
for the estimation of the direction of arrival and the
reduced-rank adaptive filtering. In order to avoid the
formation of blocking matrices required in the original
algorithm, Zoltowski et al. proposed a data level recur-
sive MSNWF algorithm [23, 24] as shown in Fig. 2,
which effectively reduces the computational complexity.
In Fig. 2, ti, i = 1, 2, ⋯, D is a match filter, D is the re-

cursive stage, εi, i = 1, 2, ⋯, D is MSE at the ith stage,
and ωi, i = 1, 2, ⋯, D is the coefficient of Wiener filter
calculated at the ith stage.
The flow diagram of the data level recursion MSNWF-

DOA estimation algorithm is given in Table 1.

w Dð Þ ¼

i¼1
−1ð Þiþ1

l¼1
−ωlð Þ � ti

Table 2 The flow diagram of computation of weight vector in
adaptive beamformer A

Initialization

tA 1ð Þ ¼ r�kyA nð Þ= r�kyA nð Þ		 		
2; n ¼ 1;⋯; L−1

Forward recursion for i = 2, 3,⋯, D

tA ið Þ ¼
XL−1

n¼1
d�A i−1ð ÞxA i−1ð Þ nð Þ

tA(i) = tA(i)/‖tA(i)‖2
3.3 MSNWF-DOA estimation system
In the MSNWF-DOA system, the optimal estimation
of the phase-shifted reference signal ejϕk rk in the mini-
mum mean square error sense can be obtained at the
output of the adaptive beamformer B, where the adap-
tive beamforming weights obtained from the adaptive
beamformer A with the MSNWF structure were used.
In the adaptive beamformer B, consider the case where

the phase-shifted reference signal ejϕk rk is the desired
signal, and the output of the adaptive beamformer B can
be used to estimate the desired signal. Since the phase-
shifted ejϕk is unknown, both the phase-shifted reference
signal and the weight vector of the adaptive beamformer
B are not available. However, the weight vector of the
adaptive beamformer B can be obtained from the opti-
mal weights of the adaptive beamformer A, which is
shown as follows:
In the adaptive beamformer A, the desired signal and

observation vector can be given by

dA0 nð Þ ¼ rk
xA0 nð Þ ¼ yA nð Þ

�
ð21Þ

The optimal weight vector of adaptive beamformer A
can be readily obtained according to Table 1 as shown in
Table 2.
In the adaptive beamformer B, the phase-shifted

desired signal and observation vector can be given by
Fig. 2 The structure of data level recursive MSNWF
dB0 nð Þ ¼ ejϕk rk ð22Þ

And the optimal weight vector of the adaptive beam-
former B can be obtained according to Table 1 as shown
in Table 3.
Substitute (13), (14), and (16) into Table 3, we have

tA 1ð Þ ¼ tB 1ð Þ ð23Þ

and

wA
k

Dð Þ ¼ wB
k

Dð Þ ð24Þ

Since wA
k

Dð Þ ¼ wB
k

Dð Þ , the weight vector wB
k

Dð Þ can be
obtained by calculating the optimal weight of the adap-
tive beamformer A.

4 Computation of DOA
The adaptive beamformer B based on the structure of
MSNWF can be simplified to a single stage Wiener filter
in virtue of obtaining its weight from the adaptive
dA ið Þ nð Þ ¼ tHA ið ÞxA i−1ð Þ nð Þ; n ¼ 1;⋯; L−1
xA ið Þ nð Þ ¼ xA i−1ð Þ nð Þ−dA ið Þ nð ÞtA ið Þ;

n ¼ 1;⋯; L−1
εA(D)(n) = dA(D)(n), n = 1,⋯, L − 1

Backward recursion for i = D − 1,⋯, 2

ωA iþ1ð Þ ¼
XL−1

n¼1
dA ið Þ nð Þε�iþ1ð Þ nð Þ=

XL−1

n¼1
εA iþ1ð Þ nð Þ

 

2

εA ið Þ nð Þ ¼ dA ið Þ nð Þ−ωA iþ1ð ÞεA iþ1ð Þ nð Þ;
n ¼ 1;⋯; L−1

Calculate the Wiener filter coefficient

wA Dð Þ
k ¼

XD

i¼1
−1ð Þiþ1

Yi

l¼1
−ωA lð Þ
� �n o

� tA ið Þ



Table 3 The flow diagram of computation of weight vector in
adaptive beamformer B

Initialization
tB 1ð Þ ¼ ejϕk rkð Þ�yB nð Þ= ejϕk rkð Þ�yB nð Þ		 		

2;
n ¼ 1;⋯; L−1

Forward recursion for i = 2,⋯,D

tB ið Þ ¼
XL−1

i¼1
d�B i−1ð ÞxB i−1ð Þ nð Þ=

XL−1

i¼1
d�B i−1ð ÞxB i−1ð Þ nð Þ

			 			
2

tB(i) = tB(i)/‖tB(i)‖2

dB ið Þ nð Þ ¼ tHB ið ÞxB i−1ð Þ nð Þ; n ¼ 1;⋯; L−1

xB(i)(n) = xB(i− 1)(n) − dB(i)(n)tB(i), n = 1,⋯, L − 1

εB(D)(n) = dB(D)(n), n = 1,⋯, L − 1

Backward recursion for i = D − 1,⋯, 2

ωB iþ1ð Þ ¼
XL−1

i¼1
dB ið Þ nð Þε�B iþ1ð Þ nð Þ=

XL−1

i¼1
εB iþ1ð Þ nð Þ

 

2

εB(i)(n) = dB(i)(n) ‐ ωB(i+ 1)εB(i+ 1)(n), n = 1,⋯, L − 1

Calculate the Wiener filter coefficient

wB Dð Þ
k ¼

XD

i¼1
−1ð Þiþ1

Yi

l¼1
−ωB lð Þ
� �n o

� tB ið Þ
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beamformer A. Let r̂k nð Þ ¼ wB Dð Þ
k

� �H
yB denote the out-

put signal of beamformer B. Let

⌢

rk ¼ ⌢

rk 1ð Þ; ⌢

rk 2ð Þ;⋯;
⌢

rk Lð Þ½ �T ð25Þ
Thus, r̂k is an optimal estimation of the phase-shifted

reference signal ejϕk rk in the MMSE sense, which can be
written as

r̂k ¼ ejϕk rk þN ð26Þ

Let
⌢

ϕk denote an estimation of ϕk, which can be com-
puted by using the least square method such that the
square error between the two signal vectors r̂k and rk is
minimized, i.e.,

ϕ̂ k
min

r̂k−ejϕ̂ k rk
			 			

2
ð27Þ

In [10], Zhang et al. give the solution of the

optimization
⌢

ϕk , that is

ϕ̂ k ¼ arg r̂kr
H
k

� � ð28Þ
According to (15), an estimation of the target DOA

can then be obtained as
⌢

θk ¼ arcsin −λ ϕ̂ k=2πd
� � ð29Þ

5 Simulations
In this section, the performance of the proposed method,
including the resolution, capacity, and accuracy of the
MSNWF-DOA techniques will be evaluated through simu-
lations. In simulations 1 and 2, the resolution and the cap-
acity of the DOA estimation using the MSNWF-DOA
techniques will be illustrated and compared with other
techniques, such as MUSIC and ESPRIT. In simulations 3
and 4, the effects of the snapshot length and the stage of
MSNWF on the estimation accuracy will be investigated,
respectively.

5.1 Resolution of DOA estimation
A ULA of ten elements, with a spacing of d = λ/2 de-
ployed at the receiver was employed in the simulations,
to deal with a case where the DOAs of three signals and
two interference are closely distributed. Further assume
that the DOAs of the target incoherent signal compo-
nents are at −2°, 0°, and 2°. The DOAs of the interfer-
ence components are at −4° and 4°. The information
bit-to-background noise power spectral density ratio of
the received signal is set to 10 dB. The snapshot length
is fixed at 100, and the stage of MSNWF is set to 5. One
thousand simulation runs were performed.
The histograms of the resolution of DOA estimation

obtained for these three techniques are shown in
Fig. 3a–d. The histogram depicts the number of occur-
rences estimated DOA as a function of DOA degrees. In
Fig. 3a, the histogram of MUSIC technique shows two
peak values which deviate from the DOAs of the target
signals. In Fig. 3b, although the histogram of ESPRIT
technique shows three peak values, the peak values devi-
ate from the DOAs of the target signals. It is seen that
the MUSIC or ESPRIT technique cannot offer the
desired results when the DOAs of target signals are very
close. Correspondingly, in Fig. 3c, d, the histogram
shows three peak values, indicating that using the subar-
ray beamforming-based DOA (SBDOA) and the pro-
posed MSNWF-DOA, all three DOAs are successfully
estimated. However, the SBDOA requires O(M3) opera-
tions, and the MSNWF-DOA merely demands O(2 M2

+ 6 M) operations.

5.2 Capacity of DOA estimation
This simulation deals with a case where the number of sig-
nals is larger than that of antenna elements. The simulation
conditions are kept the same as those in simulation 1 ex-
cept for the number of signal sources considered. The
DOAs of nine target signal components are set from −40°
to 40° with interval 10°, and the DOAs of six interference
components are set from −25° to 25° with interval 10°.
Histograms of the obtained estimated DOAs are shown

in Fig. 4a–d. In Fig. 4a, b, the histograms show the devi-
ated peak values and demonstrate that these two tech-
niques cannot provide acceptable DOA estimation, when
the number of antenna elements is less than the total
number of target signals and interference. In contrast, in
Fig. 4c, d, the histograms show that all nine target
DOAs are successfully estimated when using the SBDOA
and MSNWF-DOA techniques. As can be seen, the
probability of the success of DOA estimation in



(a) Resolution of MUSIC estimation

(b) Resolution of ESPRIT estimation

(c) Resolution of SBDOA estimation

(d) Resolution of MSNWF-DOA estimation

Fig. 3 Comparison of the resolution of DOA estimation for signal sources that are closely distributed. a Resolution of MUSIC estimation. b
Resolution of ESPRIT estimation. c Resolution of SBDOA estimation. d Resolution of MSNWF-DOA estimation
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MSNWF-DOA technique is close to that in the SBDOA
technique.

5.3 Effects of snapshot length on estimation accuracy
In the simulation of snapshot length effect, the snapshot
length for adaptive beamforming and DOA computation
are set to different values, 20, 50, 100, 200, and 500, and
the stage of MSNWF is set to five. The DOA of the tar-
get signal is fixed at 0°, and the DOAs of the interfer-
ence are set from −90° to 90° with interval 10° except 0°.
The root mean square error (RSME) of the estimated
target DOA averaged over 1000 simulation runs versus
the signal-to-noise ratio (SNR) of the target DOAs and
the snapshot length are illustrated in Fig. 5.
The proposed MSNWF-DOA technique leads to a

RSME of less than 5°, as can be seen, when using a small
snapshot length such as 50. The RSME obviously de-
creases as the snapshot length increases. This demon-
strates the fast DOA tracking can be implemented by
using the proposed MSNWF-DOA technique.
5.4 Effects of the stage of MSNWF on DOA estimation
accuracy
In the simulation of the MSNWF stage effect, the recur-
sion stages of MSNWF for adaptive beamforming are set
to different values, 3, 5, and 9. The snapshot length is
set to 200. And other simulation conditions are kept the
same as those in the simulation for the snapshot length
effect. The RSME of the estimated target DOA averaged
over 10,000 simulation runs versus the SNR of the target
DOAs, and the stage of MSNWF are demonstrated in
Fig. 6. The SBDOA can be considered as the full-rank of
MSNWF-DOA. The RSME decreases as the MSNWF
stage increases. This figure shows that the RSME is less
than 2.1°, when using stage 5 as the MSNWF stage, and
the RSME of MSNWF-DOA is better than the RSME of
SBDOA, when using stage 9 as the MSNWF stage.

6 Conclusions
A novel DOA estimation method based on data level re-
cursive MSNWF has been proposed in this paper. In this
technique, two subarray adaptive beamformers based on
the MSNWF are used to form the phase shift and reject
interference at the same time. The DOAs of target sig-
nals are estimated from the phase shift by using a refer-
ence signal after interference rejection. Therefore, the
performance of DOA estimation such as resolution, cap-
acity, and accuracy are significantly improved. And the
complexity of computation is also significantly reduced
by avoiding the calculation of the covariance matrix



(a) Capacity of MUSIC estimation

(b) Capacity of ESPRIT estimation

(c) Capacity of SBDOA estimation

(d) Capacity of MSNWF-DOA estimation

Fig. 4 Comparison of the capacity of DOA estimation when the number of signal and interference sources exceeds the number of antenna
elements. a Capacity of MUSIC estimation. b Capacity of ESPRIT estimation. c Capacity of SBDOA estimation. d Capacity of
MSNWF-DOA estimation

Fig. 5 RSME of the estimated DOA for different snapshot length L
and the SNR of signal

Fig. 6 RSME of the estimated DOA for different recursion MSNWF
stage D and the SNR of signal
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inversion when getting the optimal weight vector of the
beamformer. This technique can be widely used for the
implementation of hardware systems such as wireless
communication system, active radar, sonar, STAP sys-
tems, and MIMO systems. Numerical simulations dem-
onstrating the effectiveness and advantage of this
technique are presented.
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