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Abstract

Recent advances in the automotive industry enabled us to build fast, reliable, and comfortable vehicles with lots of
safety features. Also, roads are designed and made safer than ever before. However, traffic accidents remain one of the
major causes of death. Intelligent transport systems are expected to reduce if not prevent accidents with
interconnected vehicles and infrastructures. These vehicular ad hoc networks are highly dynamic and fragile.
Although the standardization efforts are mature enough, the non-emergency/service channel selection mechanisms
are not explicitly defined. In this paper, a novel cross-layer prediction-based algorithm is proposed to select the best
possible service channel to decrease collisions beforehand. Theoretical analysis regarding the mean squared error
prediction performance is established. It is shown that the proposed method outperforms the general
Markovian-based prediction schemes under various traffic load scenarios.
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1 Introduction
Transportation is by far one of the most important fea-
tures inmankind’s entire history. Especially in today’s busy
world, transportation is not only a necessity for personal
travel, but it is also necessary for the shipment of goods
across the globe. All these needs require infrastructure,
planning, and optimization to run safely and smoothly.
Recent advances in the automotive industry have

enabled us to build fast, reliable, and comfortable vehicles
with numerous safety features. At the same time, roads are
designed and built safer than ever before. However, traffic
accidents remain one of the major causes of death [1, 2].
The current situation implies that the further improve-
ments in technology for each individual vehicle will not
provide extra safety measures for transportation on the
whole. Thus, deployment of cooperative and coordinated
designs seems to be inevitable in order to extend contem-
porary safety measures. Even though preventing accidents
entirely is a difficult task, cooperative and coordinative
approaches provide a promising solution to make trans-
portation safer. Motivated by these, intelligent transport
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systems (ITS) envisage a network topology consisting
of interconnected vehicles and infrastructures [3, 4]. In
this regard, vehicles that are aware of each other and of
their surrounding environment will form an intelligent,
dynamic subnetwork which can be used in several ways
ranging from safety to infotainment. Early warning, inter-
section collision avoidance, and adaptive cruise control
are just a few of the potentially life-saving applications
available, which are depicted in Fig. 1 [5]. Advertisement,
web surfing, gaming, and video streaming are applications
falling into the infotainment category. One should keep in
mind that potential benefits of ITS are not limited to these
two categories. It is believed that ITS will pave the road to
green transportation as well [6, 7].
Vehicular networks are considered to be a special form

of ad hoc networks because of their high-level dynamic
topologies. From sparse and fast highways to congested
and slow downtown traffic, these network structures are
naturally desired to operate in the optimumway. However,
the extreme conditions caused by high mobility render
vehicular ad hoc networks (VANETs) to a short-lived
nature. Despite their inherent constraints, VANETs are
also a promising heterogeneous network type, since they
are planned to consist of contemporary cellular networks,
next-generation wireless networks along with vehicle-
to-vehicle (V2V) and vehicle-to-infrastructure (V2I) link
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Fig. 1 ITS applications. a Early collision/sudden brake warning. b Adaptive cruise control. c Intersection collision avoidance

support as well as device-to-device communications
options [8]. In order to encompass all of the aforemen-
tioned tasks and constraints, the IEEE 802.11p/1609 work
group strives to establish a standard known as wireless
access in vehicular environments (WAVE) [9].
Although the primary intent for V2V communications

systems is safety, like cellular phones and PDAs, entertain-
ment is the primary driving force for this kind of com-
munications technology. Infotainment applications make
driving more enjoyable and bring new opportunities to
the market [10, 11]. With specialized entertainment prod-
ucts to enhance the driver or the passenger experience,
these applications such as video streaming and voice over
IP (VoIP) require a high bandwidth connection to create a
seamless customer experience.
One should keep in mind that V2V communications

take place in the wireless spectrum which is a very valu-
able, finite, and public resource. This nature of the wireless
spectrum brings about multi-access interference (MAI)
issues. Interference causes poor signal reception, dras-
tic decrease in system capacity, frequent hand-offs, and
service interruptions. Unlike centralized network struc-
tures, with ad hoc vehicle networks, there are multi-
ple interference scenarios present simultaneously such
as cochannel interference (CCI), adjacent channel inter-
ference (ACI), narrowband interference (NBI), wideband
interference (WBI), and so on [12]. In the literature,
there are mainly three strategies to combat interference:

interference avoidance, mitigation, and cancellation. Of
these three strategies, it is obvious that interference avoid-
ance is the simplest and most effective one, since avoid-
ance strategy will pave the path for interference-free
communications. However, avoidance relies on identify-
ing unused resources. Thus, any avoidance strategy always
includes some sort of identification procedure to sense
the use of resources, then decides based on the data
and acts on it accordingly [12]. Note that even such an
effort might not be sufficient to prevent MAI problems
such as collision. Even though there are numerous col-
lision avoidance strategies in the literature, they are all
based on the assumption of having a channel selected
already at hand. It is evident that a successful colli-
sion avoidance strategy should definitely be preceded
by identification of statistically least occupied channel
in advance.
In light of the discussion above, Federal Communica-

tions Commission (FCC) allocates the 5.850–5.925-GHz
portion of the radio spectrum as dedicated short-range
communications (DSRC) for vehicular networks [13].
DSRC standard defines seven 10-MHz channels in this
range: one control, two reserved, and four non-safety
application channels as shown in Fig. 2. However, a
selection mechanism for these channels is not defined
explicitly.
It is obvious that selecting a channel randomly at

medium access control (MAC) layer is the simplest and
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widely adopted solution. However, a channel selection
mechanism solely relying on MAC layer functionalities
is not sufficient to provide satisfactory performance and
needs novel data dissemination strategies benefiting from
advanced techniques such as space time network cod-
ing [14]. Therefore, a cross-layer design including both
MAC and physical layer (PHY) operations is required. In
this regard, from the PHY layer perspective, a prediction
mechanism is required in order for the MAC layer to take
appropriate actions in advance. Failure to achieve these
cross-layer operations may cause the system to select an
interfering or busy channel and drastically lose band-
width and performance. Once the channel is selected, it
will be used until the next cycle and a busy or inter-
fering medium is subject to wait in collision avoidance
state. Also, note that the collision avoidancemechanism in
IEEE 802.11p uses carrier sense multiple access/collision
avoidance (CSMA/CA) and can only detect known type of
signals [9].
In the literature, there are mainly four categories

in selecting a service channel for VANET systems:
pre-allocation-based [15–19], randomized rotation-based
[20], minimum duration-based [21], and predictive-based
schemes [22]. Pre-allocation-based schemes employ a
static database and then select a channel based on that
database. Despite its simplicity, such an approach evi-
dently yields a poor performance under dynamic access.
Furthermore, the database itself should be updated fre-
quently. The randomized rotation-based algorithms take
advantage of a different version of frequency hopping.
Therefore, they inherently adopt both advantages and
disadvantages of frequency hopping approaches such as
improved fairness and lack of knowledge regarding the
state of the medium. Minimum duration-based methods
need to store the occupancy durations of each channel
so that the least used can be identified. However, the
performance of these methods converge with those of
pure random channel selection schemes. Predictive algo-
rithms seem to fit best for the channel selection task,
but they lack cross-layer and adaptive design leading to
poor and unsatisfactory performances [23]. On the other
hand, studies that focus on predictions taking advan-
tage of Markovian assumption rely heavily on selecting
the appropriate length of both prediction period and
history. In the absence of historical data (past observa-
tions), it is reported that prediction accuracy degrades
dramatically [22]. Studies which follow decision-making
processes based on a posteriori probabilities of the occu-
pancy state of a channel could also be considered in this
manner. Nevertheless, such attempts require some sort
of collaboration and coordination [24]. It is worth men-
tioning at this point that there are also studies in the
literature, which aim to be aware of spectrum conditions
on future positions along the path of any vehicle. Yet,

such a strategy mandates obtaining the location of each
vehicle via an already-existing reference such as Global
Positioning System (GPS) and an infrastructure which
allows the vehicles to share the digital maps across the net-
work [25, 26]. Therefore, in this study, a novel cross-layer,
adaptive channel selection mechanism is proposed. Even
though several predictive channel selecting mechanisms
presently exist, to the best of the knowledge of the authors,
this study is pioneering the incorporation of cross-
layer architecture with predictive strategy into vehicular
networks.
The rest of this paper is organized as follows: Section 2

describes the system and signal model along with the the-
oretical analysis. Section 3 covers the proposed scheme
in detail. In Section 4, the results are presented along
with relevant discussions. Finally, conclusions and future
directions are outlined in Section 5.

2 System and signal model
In this study, a cross-layer adaptive channel selection
mechanism is proposed for IEEE 802.11p suite. Therefore,
it is first desirable to discuss a complete characteriza-
tion of the proposed system in conjunction with layered
structure. Channel selection mechanism in V2V networks
relies on IEEE 802.11 suite including both PHY and MAC
layers [27, 28]. The PHY layer is responsible for various air
interface functionalities such as synchronization, chan-
nel estimation, and equalization. The MAC layer takes
care of channel access and scheduling operations. Note
that IEEE 802.11p and IEEE 1609.x are jointly known as
WAVE and specifically IEEE 1609.4 part extends MAC
tomultichannel-operations-enable mode. Peculiar to V2V
networks, WAVE multichannel operations are carried out
over two types of channels, namely control channel and
service channel. It is important to keep in mind that there
is a single control channel, whereas there are multiple ser-
vice channels in WAVE. Because the safety and control
signals/messages are sent over the control channel and
other types of application signals/messages are transmit-
ted over the service channels, a coordination mechanism
is necessary. It is obvious that a successful coordination
mechanism relies on the joint performance of both PHY
and MAC layers, which directly points out a cross-layer
design.

2.1 System and signal model
The received signal at baseband which includes the ambi-
ent noise and probably an unknown signal is given input to
radiometer. The radiometer needs to decide whether the
unknown signal is present or not in the received signal,
which is expressed as

r(t) =
{

n(t), H0,
x(t) + n(t), H1,

(1)
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where n(t) is complex additive white Gaussian noise
(AWGN) with CN

(
0, σ 2

N
)
in the form of n(t) = nI(t) +

jnQ(t) as both nI(t) and nQ(t) being N
(
0, σ 2

N/2
)
and

j = √−1; x(t) is the complex baseband equivalent of the
unknown signal; and H0 denotes the hypothesis corre-
sponding to the absence of the unknown signal, whereas
H1 is the hypothesis corresponding to the presence of it.
Hence, the statement of the problem can be expressed
as deciding whether an unknown signal x(t) is present
by examining the statistical characteristics of the received
signal r(t) in the presence of noise n(t).
The unknown signal, x(t), can be decomposed into the

following form under the narrowband channel assump-
tion [29]:

x(t) = m(t)s(t)a(t), (2)

where m(t), s(t), and a(t) represent complex fading
channel process, slow-fading process, and the unknown
baseband signal, respectively. In addition, the unknown
baseband signal is assumed to be digitally modulated
as [30]:

a(t) = √
Ekejθk pk(t), (3)

where E, θ , and p(·) are the energy, phase, and the
complex-valued pulse shaping waveform, respectively for
the kth digital symbol with k = 0, 1, . . . ,M − 1 in an
M-ary scheme. Note that all three processes in (2) are
independent of each other and of n(t).
Formodeling the fading processes, physical radio propa-

gation environment should be examined. Transmit signals
reach the receiver antenna as multiple rays or paths. Due
to constructive and destructive superposition, received
signal power level fluctuates drastically leading to the
phenomenon known as fading. The resulting signal can be
represented with a complex fading channel process as

m(t) = h(t)ejφ(t), (4)

where h(t) and φ(t) refer to the amplitude and phase of the
complex channel process, respectively. In case there is suf-
ficiently large number of independent paths superposing
at the receiver antenna in the absence of a specular signal
such as in line-of-sight (LOS) environments, h(t) = |m(t)|
yields the Rayleigh distribution in accordance with the
central limit theorem (CLT). In addition, mobility gives
rise to correlation in the fading channel process [31]. If the
angle of arrival (AoA) of the paths at an omni-directional
antenna is assumed to be uniformly distributed [−π ,π)

on a 2-D plane, then Jakes’ Doppler spectrum occurs as a
special case. Correlation in temporal domain for this spe-
cial case is given by Rh(τ ) = J0

(
2π fD |τ |), where J0 (·) is

the zeroth-order Bessel function of the first kind, fD is the
maximum Doppler frequency with fcv/c, fc is the operat-
ing frequency, v is the mobile speed, and c is the speed of
light (c = 3 × 108 m/s).

Beside fast-fading process, transmitter–receiver sepa-
ration and the obstacles present in between affect the
received signal power as well. Loss in the received sig-
nal power due to the transmitter–receiver separation
is known as distance-dependent path loss. It decreases
monotonically as a function of the relative distance
between transmitter and receiver. Obstacles along the
propagation paths between transmitter and receiver cause
drastic fluctuations in the power level of the received sig-
nal too. This phenomenon is known as shadow fading.
Measurement data reveal that the first-order statistics of
the slow-fading phenomenon can be approximated by a
log-normal distribution. Therefore, the joint effect of path
loss and shadow fading could be modeled by a single
process of the form given below [29]:

s(t) = exp
(
1
2
μ(t) + σG

2
g(t)

)
, (5)

where μ(t)/2 represents mean, σG/2 is the standard devi-
ation of log-normal fading, and g(t) is a real-valued unit
normal process N (0, 1). It is not difficult to infer from
(5) that μ(t) represents the impact of distance-dependent
path loss varying over relatively longer periods of time.
As in complex fading process, experimental results also
report that g(·) exhibits correlation of an exponentially
decaying form [32]:

Rg(τ ) = E
{
g(t)g(t + τ)

} = exp
(

−v |τ |
dρ

)
, (6)

where E {·} is the statistical expectation and dρ refers to
the decorrelation distance. Field measurements show that
various environments have different decorrelation dis-
tances. For example in [32], dρ is calculated to be 5.75
and 350 m for urban and suburban environmental classes,
respectively. It is crucial to state that both (5) and (6) cor-
respond to simplified theoretical approximations which
are consistent to some extent with experimental results
available in the literature. However, there are some other
studies available in the literature related to shadowing
models such as static and dynamic shadowing [33].

2.2 Energy detection
Energy detector (or radiometer) is a simple, first-order
receiver which accumulates the energy of the received sig-
nal for a specific time interval. Collected energy, which
is called decision statistic, is then sent to a decision
device. Decision device compares the instantaneous deci-
sion statistic with a pre-defined threshold to come up with
a binary conclusion regarding the absence/presence of an
unknown signal. In discrete domain, assuming that the
detector has a sufficiently high sampling rate, the output
of the detector is calculated by
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d[ n]=
N−1∑
i=0

|r[ i] |2 (7)

where N is an arbitrary number of samples taken into
consideration and r[ ·] denotes the discrete counterpart
of the received signal, r(·). For H0, AWGN assumption
yields a central χ2 distribution withN degrees of freedom
(χ2

N ). For H1, d[ n] provides a non-central χ2
N distribu-

tion with an additional shape parameter. If N is selected
to be large enough, the decision statistic is assumed to
be asymptotically normally distributed with certain mean
and variance values in accordance with the CLT. Before
proceeding with the performance analysis of radiometer, it
is worthmentioning that the radiometer is a non-coherent
receiver and is known to be the “optimum” detector in
the absence of a priori knowledge about the received sig-
nal [34, 35]. Yet, it has very critical drawbacks. First of all,
noise-plus-interference uncertainty degrades the perfor-
mance of the radiometer drastically [36]. In addition, low
signal-to-noise ratio (SNR) regime leads to unsatisfactory
results [37]. Combining these two issues, one could easily
conclude that the radiometer performs poorly in detect-
ing spread-spectrum signals [38]. Furthermore, it is clear
that the performance of the radiometer is heavily depen-
dent on the SNR/signal-to-interference-plus-noise ratio.
For the sake of completeness, it is desirable to show how
the performance of the radiometer is related to SNR.
As stated earlier, the decision statistic d[ n] under the

AWGN assumption has a central χ2 distribution with N
degrees of freedom (χ2

N ) for H0, whereas it has χ2
N (m),

where m denotes the shape (non-centrality) parameter
[34] for H1. Based on these assumptions, one could easily
obtain the probability density function (PDF) for H0 sce-
nario as

fχ2
N
(x) = xN/2−1e−

x
2 /

(
2N/2	(N/2)

)
(8)

where 	(·) denotes the gamma function. Similarly, the
PDF for H1 scenario is given by

fχ2
N ,m

(x) = 1
2

( x
m

)N/4− 1
2 e−

m+x
2 JN/2−1

(√
mx

)
(9)

where Jk(·) denotes the k-th-order modified Bessel func-
tion of the first kind. Based on both fχ2

N
(x) and fχ2

N ,m
(x),

receiver operating characteristic (ROC) could theoret-
ically be derived by seeking for Pr

(
χ2
N > λH1

)
and

Pr
(
χ2
N ,m > λH0

)
, which correspond to probability of

detection and probability of false alarm, respectively.
Here, Pr

(
χ2
N > λH1

)
is given by Qg

(√
2γ ,

√
λ
)

where
λ denotes the decision threshold, Qg (·) is the general-
ized Marcum Q function, and γ is the instantaneous
SNR. Note that the optimum threshold selection man-
dates one to have knowledge about the SNR ([34] Eq. (35)).
It is not difficult to see that the same conclusion (with
more sophisticated calculations) holds also for the SINR

in case there are unknown activities within the spectrum
of interest apart from that of primary user [39].

3 Channel selection
Cross-layer channel selection mechanism relies on both
PHY and MAC operations as outlined in Fig. 3. In order
for the MAC layer to select a specific channel, a short-
term history of the time-domain statistics of candidate
channels are stored. Next, a short-term/next step predic-
tion is evaluated based on the collected data. Evaluation
is followed by selection step where the node chooses the
channel that has the maximum value of a pre-defined
metric.
The proposed channel selection metric is defined to

be the first-order difference of variance estimates of the
predicted value of the energy detection operation out-
put. As will be shown subsequently, variance estimates are
scaled appropriately in order not to violate Kolmogorov’s
assumptions for the probability metric. Before proceeding
further, prediction of the energy detector output should
be given. Assuming that the predicted value of the energy
detection operation, namely X̂k

n+1, is a wide-sense station-
ary (WSS) process, then

X̂k
n+1 =

L−1∑
i=0

αiXk
n−i + μXk (10)

expresses the weighted moving average prediction where
X̂k
n+1 denotes the predicted value for the n + 1-th step

MAC

PHY

Upper Layers

Energy 
Detector

Channel 
Selector

Fig. 3 Proposed cross-layer architecture
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based on past L historical data of the k-th channel; αis
denote the weighting coefficients; and μXk represents the
intercept of the prediction.
Once L past energy detector observations are at hand,

the channel selection mechanism then proceeds with cal-
culating the variance of the past observations as:

σ 2
Xk [ n]=

L−1∑
i=0

E
{(

Xk
n−i

)2} −
(
E

{
Xk
n−i

})2
(11)

where E
{
Xk
n−i

}
denotes the sample mean of the past L

observations. In order for the channel selection mecha-
nism to quantify whether a state transition takes place at
the prediction stage/step, (11) needs to be scaled so that
as mentioned above, Kolmogorov’s assumptions for the
probability metric are not violated:

ψX[ n]= �kσ 2
Xk [ n] (12)

where �k is a constant for the k-th channel which satisfies
0 < ψXk [ n]≤ 1.1 Finally, the channel selection mecha-
nism applies the first-order difference operator to (12) and
reaches the channel selection metric as

�k
n = D−1 (

ψXk [ n]
)

(13)

where D−1 (·) denotes the first-order difference opera-
tor being applied to its input. Now, the channel selection
mechanism is ready to provide the hard decision based on
(13) as follows:

d̂kn =
{
1, ζ < �k

n,
0, ζ ≥ �k

n,
(14)

where d̂kn denotes the predicted binary state of the k-th
channel at the n-th step for the next n + 1-th step and
ζ is an adaptive threshold below which is predicted to be
occupied.
There are some critical points in establishing the steps

(10) through (14). First and foremost, the depth of the
history, L, should be specified. Consequently, weight-
ing coefficients αis in (10) need to be determined in

an effective way as well. Second, �k in (12) should be
decided. Because (10) is a linear model in essence, any
minimization approach based on 2-norm (‖·‖2) such as
mean squared error (MSE) could be adopted in determin-
ing the weighting coefficients as shown subsequently. On
the other hand, determining the depth of the history, L,
is actually nothing but deciding the order of the linear
model adopted in (10) based on a specific set of crite-
ria. Mean magnitude residual statistics, sum of squares of
Pearson residuals, and Akaike information criteria (AIC)
are prominent model order selection strategies present
in the literature [40]. However, model order selection is
outside the scope of this study.
In what follows, it will be shown that the proposed

channel selectionmechanism has a prediction error which
cannot be reduced further and the aforementioned issues
will all be clarified.

Proposition 1 (Irreducible prediction error). The pro-
posed channel selection mechanism has an irreducible
prediction error variance, σ 2

e , which cannot be reduced fur-
ther and is a function of the threshold that is used by the
energy detector at the decision stage.

Proof. See Appendix.

Based on the analysis carried out in the Appendix, it
is seen that the channel selection mechanism relies heav-
ily on the threshold for the decision device operating
on an energy detector. There are several implications of
Proposition 1. First of all, it states that prediction error
variance reaches its lower bound with the first threshold
when there are multiple thresholds. For instance in [40],
a two-level threshold strategy is applied where the first
stage is clipping the original time series and the other is
used at the prediction stage. Similar multi-stage scenarios
take place in decision fusion schemes as well [41]. Hence,
with the aid of Proposition 1, it is known in advance that
the lower bound for the prediction error variance could

Fig. 4 Proposed channel selection mechanism
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only be achieved in case decision is obtained directly
from the original time series. Second, due to the posi-
tive semi-definite structure of error variance, multiple-
threshold strategies cannot outperform single-threshold
strategies in terms of prediction error variance given that
both single- and multiple-threshold strategies are of the
same mathematical structure such as both being linear
or non-linear and so on. Performance results and irre-
ducible prediction error will be investigated in the subse-
quent sections. A sketch of the proposed channel selection
mechanism is given in Fig. 4.

4 Numerical results
The performance of the proposed method is investigated
in various traffic conditions and scenarios. Also, a per-
formance comparison is established between the method
proposed and Markovian-based prediction scheme. In
the sequel, one might be interested in why specifically
Markovian-based scheme is selected for comparison pur-
poses. The reason is threefold: (i) Peculiar to the spec-
trum sensing problem, spectrum occupancy could best
be represented with a Bernoulli process, which is a spe-
cial case of Markov chain. Therefore, Markovian-based
structures provide a very high-level flexibility in both
modeling and analyzing the spectrum sensing problem.
(ii) Markovian-based schemes are vastly employed predic-
tion strategies present in the literature. This stems from
the fact that it has a simplistic design and tractable sta-
tistical analysis. Furthermore, depending on the problem
formulation, several adaptations and extensions such as
multi-layer Markovian or hidden Markov model (HMM)-
based approaches could easily be obtained with minor
modifications in the original model organization. (iii)
Finally, Markovian-based models are so versatile that they
could be exploited to tackle spectrum sensing problems
in different parts of open systems interconnection (OSI)
reference. For instance, it could be used both in PHY and
MAC layers to shed light on different aspects of spectrum
sensing problem.
Simulation setup considers several levels of traffic load

ranging from light occupancy to densely occupied sce-
nario based on the parameters reported in [42]. At this
point, it is worth mentioning why parameter selection is
based on the findings reported in [42]. (I) First and fore-
most, the proposed method requires both theoretical and
empirical analyses. Therefore, studies which focus on both
theoretical and empirical findings should be evaluated.
From this perspective, [42] is a prominent work in the
literature. (II) Also, as proposed, channel selectionmecha-
nism could be shared by both PHY and MAC layers in the
sense of cross-layer approach. In [42], the same strategy is
followed and both PHY and MAC layers are binded. (III)
Finally, as discussed above, a generic Markovian-based
structure for industrial, scientific, andmedical (ISM) band

depending on several important occupancy parameters is
provided in [42] such that it could be used for comparing
other findings with each other.
In simulating channel access, both busy and idle channel

statistics are taken into account. According to the empir-
ical observation-based model given in [42], busy and idle
channel state transitions can be well approximated by the
exponential distribution with a factor that changes with
the traffic load. For the proposed method, the first energy
detector is used to obtain the decision statistics. Next,
decision statistics are fed to the prediction stage. Predic-
tion is yielded by equal gain combining (αi = αj = 1

L ,∀i, j).
Along with the past measurement results, prediction is
quantified with the metric defined in Section 3. Finally,
a binary decision is reached so that MSE is obtained for
the performance evaluations. It should be stated at this
point that equal gain combining might not be the opti-
mal prediction strategy for many scenarios. However, it
establishes simplicity in implementation from the practi-
cal point of view because it skips the stage at which the
weighting coefficients are estimated. Therefore, equal gain
combining is adopted in the numerical results.
For Markovian-based prediction scheme, the first out-

put of a Bernoulli stochastic variable is used in order to
determine the initial state of the channel. Next, simulated
channel statistics are compared with a threshold whose
value can be adjusted according to several levels of traffic
load. Once busy/idle periods are shaped, prediction stage
is initiated. For the Markovian-based scheme, a specific
portion of the simulated data is fed to the predictor in
order to estimate the transition probability matrix. Then,
predictions are calculated based on the initial state (last
training data sample) and the transition probability matrix
estimate. Finally, MSE values are obtained for perfor-
mance evaluations and comparisons. General parameters
used in the simulations are given in Table 1.
Performance results for Markovian-based scheme are

plotted in Fig. 5. It is seen in Fig. 5 that the performance
of theMarkovian-based predictionmethod improves with
the increasing traffic load. This mainly stems from the fact
that underlying stochastic channel access becomes denser
with the increased traffic load; therefore, the number of
transitions between busy and idle states becomes less fre-
quent. Since it is known that steady-state behavior always
converges a biased binary estimation given that the tran-
sition probability matrix is not symmetric, prediction step
always yields a biased output in favor of the busy state.
Another important observation in Fig. 5 is that the perfor-
mance of the Markovian-based prediction scheme cannot
be improved any further by increasing the amount of his-
tory at the training stage. As can be verified from Fig. 5,
10 % of the entire data set is sufficient under each level of
traffic load to reach the same performance level in training
the Markovian-based scheme.



Boyacı et al. EURASIP Journal onWireless Communications and Networking  (2015) 2015:214 Page 8 of 13

Table 1 Common parameters used in the simulation setup

Parameters Values

Occupied state parameter λ−1 {15.9 9.10 4.48 2.90 1.98 1.39
1.01 0.74 0.55 0.36 0.21} ms
(based on ([42] §V.A, Table I, p. 103))

Idle state parameter μ−1 {1.11 1.08 1.05 1.03 1.02 1.03
1.03 1.02 1.03 1.03 1.03} ms
(based on ([42] §V.A, Table I, p. 103))

Sampling interval 200 ns

Low-pass filter duration (TA) Between 0 ms and 85 ms (based on
([45] §V.C, p. 444))

Number of samples for energy
detection (N)

20

Major propagation channel
characteristics

Rayleigh fading with Jakes’ spectrum

Average SNR under H1
scenario

10 dB

The performance of the proposed method for L = 2
can be seen in Fig. 5 as well under a generic scenario for
comparison purposes. Here, L = 2 is adopted, since in
conjunction with equal gain combining strategy it pro-
vides some sort of a lower bound for the performance of
the proposed predictor, as discussed above. This way, a
fair comparison platform between the proposed method
and the Markovian-based structures could be established.
First and foremost, the proposed method yields a sta-
tionary MSE in contrast to the Markovian-based scheme.
This is caused by the combined impact of both energy
detector and the equal gain combining. Recall that the
channel selection mechanism first collects the energy of

the received signal at a sufficiently high sampling rate
(generally satisfying the Nyquist criterion) for a very short
period of time. This implies that especially switching from
idle state to busy state can be captured in a few consec-
utive decision statistics produced by the energy detector.
Once consecutive, high-resolution, and very low-latency
decision statistics are fed to the prediction procedure, dra-
matic power fluctuations in the decision statistics due
to fading are smoothed out to some extent since equal
gain combining is nothing but applying a low-pass filter-
ing operation to its input. This way, the proposed method
firstly can capture the transitions very effectively, and
secondly, false alarms due to drastic power fluctuations
caused by fading are eliminated automatically. Hence, a
stationary output for the proposed method is established
as observed in Fig. 5.
The discussion above could be investigated in a better

way by examining Fig. 6. In Fig. 6, a single snapshot of the
prediction stage is plotted for ≈ 20 ms. As can be seen
from the figure, there are two plots corresponding to the
output of both the energy detector (decision statistic) and
the predictor. Based on the values given in Table 1, several
bursts are generated and passed through the energy detec-
tor. The decision statistics, output of the energy detector,
are stored. Next, a specific portion of the data stored (10 %
as discussed above) is used for estimating the weighting
coefficients of the predictor for L = 2. Then, the predictor
runs. Note that the prediction lags one sample behind its
input as expected. Nevertheless, one could conclude that
by looking at the time scale of the bursts, prediction reacts
very rapidly. Yet, it is observed in Fig. 6 also that the pre-
dictor fails to track the actual observations when dramatic
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Fig. 5Markovian-based prediction results along with the proposed method performance
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Fig. 6 A single snapshot of the prediction stage for ≈ 20 ms

fluctuations occur in the received signal power. This is not
surprising since prediction could only take into account a
temporal windowwhose duration is L×TA. Therefore, any
burst whose duration, say TB, satisfying TB < L × TA will
yield a dramatic fluctuation in the decision statistic. Thus,
prediction will not be able to keep track of these sudden
changes in the received signal power.
It is desirable also to see the impact of traffic load on

the performance of the proposed method. Average error

rate performances for the proposed method under vari-
ous levels of traffic load are given in Fig. 7. Note that the
traffic load does not change the average error rate per-
formance drastically. However, it is observed from Fig. 7
that the traffic load might influence the performance of
the proposed method around 2 % on average between
the best- and the worst-case scenarios. Moreover, it is
seen that the proposed method exhibits its worst per-
formance under the average traffic load scenario. This is

0.02 0.04 0.06 0.08 0.1
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

Training Data Percentage

A
ve

ra
ge

 P
re

di
ct

io
n 

E
rr

or
 R

at
e

Load = 0.5
Load = 0.8
Load = 0.1

Fig. 7 The proposed method average error rate performance under various levels of traffic load
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not surprising since the entropy of the channel occupancy
statistics reaches its maximum when the load is 0.5 [43].
In conjunction with the aforementioned discussion, it

is important to check the collision rate performance of
the proposed channel selection mechanism. In order to
evaluate this, a single-channel access scheme is assumed.
As in the previous cases, channel access is shaped by the
parameters reported in [42] with a traffic load ranging
from light occupancy to densely occupied scenario. Based
on the predictor output, it is decided whether the channel
is accessed or not. Cases where “no access” takes place are
omitted since no access strategy will never yield a collision
for any single-channel access scheme. Hence, collision rate
is calculated for the predictor output when channel access
is allowed. The results are plotted in Fig. 8 under various
traffic loads. In parallel with the results given in Fig. 7,
collision rate reaches its maximum when the traffic load
is 0.5.
In the sequel, it is important to investigate how the

proposed mechanism behaves under various threshold
values. Recall that the proposed channel selection mech-
anism relies heavily on selecting an optimal thereshold
value, ζ , in (14). Three different threshold values and cor-
responding collision rates are given in Fig. 9. To better
understand how the proposed mechanism behaves under
various threshold values, Fig. 9 could be examined in con-
junction with Fig. 8, since Fig. 8 shows the results regard-
ing optimal threshold selection. As can be seen from both
Figs. 8 and 9, the proposed mechanism performs poorly
in case random threshold selection strategy is employed.
On the contrary, Fig. 8 implies that optimum threshold
gives rise to the minimum collision rate for all traffic load
rates. From the practical point of view, obtaining the opti-
mum threshold value might be difficult; therefore, cases
where optimum threshold is not available should be exam-
ined as well. In Fig. 9, two different suboptimal threshold
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Fig. 8 Collision rate for the proposed channel selection mechanism
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Fig. 9 Performance of the proposed mechanism under various
threshold values in terms of collision rates. Note that one of the
threshold values yields better performance under dense traffic load,
whereas the other performs better in light traffic load. However,
random threshold selection strategy leads to dramatic collision rates

values and corresponding collision rates are given. As can
be seen from the figure, depending on the traffic load, one
of the thresholds slightly outperforms the other in one
part, whereas the situation is reversed in the other part, as
expected.
It is worth mentioning that whether the theoretical

lower bound mentioned in the Appendix given with (23)
exists. As Proposition 1 implies, lower bound could be
reached in case the behavior of the decision device could
be characterized statistically, since (23) is a function of
the decision threshold, ζ . For the energy detector, it is
known that optimal decision threshold theoretically exists
as expressed in ([44] § III.B).
Before concluding this part, one might want to con-

template the worst-case scenario regarding the prediction
error variance. Selecting the weighting coefficients αi in
(10) plays an important role on the error variance behav-
ior. In this regard, any approach ignoring the actual obser-
vations, Xk

n−i, in (10) would lead to no-information case
and, therefore, yield the maximum entropy. It automat-
ically implies that the maximum entropy could only be
reached by setting αi = 0,∀i. In (10), such a setting gives
rise to a prediction, X̂k

n+1, which is equal to AWGN due
to the autoregressive (AR) structure with a certain mean
and variance pair. Theoretically speaking, AWGN could
take any real value; therefore, prediction error variance
diverges for the worst-case scenario.

5 Conclusions
In this paper, a cross-layer predictive channel selection
mechanism is proposed to increase utilization and per-
formance in WAVE multi-channel architecture. With this
selection scheme, channel history is used to predict the
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next state of the wireless channel. By taking advan-
tage of the cross-layer design, the MAC layer is fed
with energy detector statistics from the PHY layer to
make the best decision to find the most appropriate
non-emergency/service channel. The proposed method
implies a channel access protocol which improves the
effectiveness of collision avoidance procedure. Further-
more, the proposed architecture could be adapted to
various scenarios and conditions by appropriately select-
ing the model parameters. Analysis along with the results
shows that the proposed method outperforms the widely
deployed Markovian-based prediction method; therefore,
it is a promising candidate for the WAVE standard.
The cross-layer architecture allows the proposed me-

thod to be extended further in various ways. For instance,
both traffic and geographical information could be incor-
porated into the architecture as a pseudo-layer appended
into both PHY, MAC, and network layers. Moreover, pre-
dictive strategy could be enhanced further by taking into
account network traffic type statistics such as web access,
VoIP, video streaming, and gaming. Considering the fact
that different network traffic types exhibit distinct statis-
tical behaviors, enhanced predictive strategies could be
devised based on these statistical models and parameters
reflecting the stochastic nature of each traffic type.
Finally, collaborative, cooperative, and coordinated

access schemes could be incorporated into the model
proposed. This way, relays, horizontal and vertical han-
dover algorithms, and V2I link support can be optimized
since VANETs are considered to be an integral part of
next-generation wireless networks (NGWNs).

Endnotes
1Note that in (12) the case where ψX[ n]= 0 is excluded

since it implies σ 2
Xk [ n]= 0 pointing out absolute

certainty.

Appendix
Proof of Proposition 1
Proof. In order to prove Proposition 1, let L = 1 since

the analysis is more tractable and valid for any channel.
Therefore, the indices k and i will be dropped. However,
one should keep in mind that the proof holds for 1 < L
since (10) satisfies the linearity conditions.
Mean squared prediction error is given by

σ 2
e = E

{(
X̂n+1 − (αXn + μX)

)2}

=
ϕ(α)︷ ︸︸ ︷

σ 2
X̂n+1

+ α2σ 2
Xn − 2αE

{
X̂n+1Xn

}

+ μ2
X + 2μX

(
αE {Xn} − E

{
X̂n+1

})
︸ ︷︷ ︸

h(μX)

(15)

where h(μX) in (15) is the final term which should be
minimized. Because the condition that is sought for is
d

dμX
h(μX) = 0, it is clear that

μX = μX̂n+1 − αμXn (16)

is obtained whereμZ = E {Z} for any stationary stochastic
process Z. Note that ϕX̂n+1Xn

in (15) can be rewritten as

ϕ(α) = Var
(
X̂n+1 − αXn

)
(17)

where Cov
(
X̂n+1Xn

)
denotes the covariance E

{
X̂n+1Xn

}
.

In this regard, following the same reasoning as that for
h(μX), minimization of ϕ(α) in (15) seeks a solution for
d
dα

ϕ(α) = 0:

α = ρX̂n+1Xn

σX̂n+1

σXn
(18)

where ρX̂n+1Xn
∈ [−1, 1] denotes the cross-correlation

coefficient estimates bearing in mind that

ρX̂n+1Xn
=

Cov
(
X̂n+1Xn

)
σX̂n+1

σXn
(19)

Next, α in (18) can be plugged into ϕ(α) in (15) and after
some mathematical manipulations the following:

Var
(
X̂n+1 − αXn

)
= σ 2

X̂n+1

(
1 − ρ2

X̂n+1Xn

)
(20)

is obtained. Recall that ρX̂n+1Xn
∈ [−1, 1]; therefore,

ρ2
X̂n+1Xn

∈ [ 0, 1].
Once the prediction is established, one might want to

quantify the probability that the predicted value of the
energy detector is above a threshold so that the chan-
nel selection mechanism could act on it accordingly. In
this regard, the channel selection mechanism investi-
gates Pr

((
X̂n+1 − μX̂n+1

)
< ζ

)
. Considering the fact that

the energy detector yields always non-negative output as
declared in (7), X̂n+1 is actually a non-negative stochastic

process. Therefore, Pr
((

X̂n+1 − μX̂n+1

)2
< ζ 2

)
is read.

Applying Chebyshev’s inequality:

ζ 2
(
1 − Pr

((
X̂n+1 − μX̂n+1

)2 ≥ ζ 2
))

≤ σ 2
X̂n+1

(21)

is yielded. Then, combining both (20) and (21):

ζ 2
(
1 − ρ2

X̂n+1Xn

)
︸ ︷︷ ︸

ξ

(
1 − Pr

((
X̂n+1 − μX̂n+1

)2 ≥ ζ 2
))

︸ ︷︷ ︸
κ

≤ Var(X̂n+1 − αXn)

(22)
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is held. Note that all ζ 2, ξ , and κ are non-zero. Further-
more, both ξ , κ ∈ [ 0, 1]. This implies that

0 < ζ 2ξκ ≤ Var(X̂n+1 − αXn) (23)

revealing that prediction has an irreducible lower bound
of error and the lower bound is a function of the threshold
ζ used by the energy detector. This completes the proof.
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