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Abstract

Analytical performance evaluation of a digital communication system remains a serious problem especially when a
sophisticated digital signal processing is considered. Moreover, it is difficult to obtain the expected performance of
such system using the Monte Carlo simulation method. In this paper, we propose a new semi-analytical approach for
predicting error probability in a digital communication system. This approach is based on Fourier transform inversion
formula to estimate the probability density function (pdf) of the observed soft sample at the receiver. Furthermore, we
applied a bootstrap method for selecting the optimal smoothing parameter to make the proposed semi-analytical
method more accurate. Simulation results show that the obtained semi-analytical error probability is close to the one
measured using Monte Carlo simulation and provides a significant gain in terms of computing time. Besides, the use
of the bootstrap method decreases the squared error between the true pdf and the estimated one.
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1 Introduction
Advanced wireless communication systems use sophisti-
cated digital modulation schemes as well as space–time
diversity in order to provide high data rates. The trans-
mission quality of these systems is determined by the
performance evaluation, which can be made using met-
rics such as the bit error probability (BEP), the block
error probability (BLEP), or throughput. However, unified
analytical expressions of these metrics are not available
for several digital communication systems. The common
method used to fix this problem is Monte Carlo simu-
lation in which one has to simulate the transmitter, the
transmission channel, and the receiver. Unfortunately, in
complex systems, this method becomes very prohibitive
in terms of computation time, and it requires a very
large number of transmitted samples to estimate very low
error probabilities. As a solution, semi-analytical perfor-
mance prediction (SPP) has been proposed in recent years
and it has been the subject of numerous studies. In [1],
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the authors have proposed the importance sampling (IS)
method for BER prediction. It has been found that for
simple memoryless systems (e.g., a BPSK modem [2]),
the efficiency of the IS technique is high and its imple-
mentation is relatively easier. However, its accuracy can
be severely degraded, especially when a complex system
receiver is used. For this reason, Abdi et al. have pro-
posed in [3] a low complexity prediction technique for
turbo-like codes. It is based on estimating the probabil-
ity density function (pdf) of the log-likelihood ratio (LLR)
at the output of the decoder using a normal density as
a reference. Nevertheless, it does not allow reducing the
complexity of the iterative decoding algorithm. In [4],
the authors have derived a semi-analytical expression of
the bit error probability using a non-parametric estima-
tion of the probability density of the observed samples.
It has been shown that the accuracy of the pdf estima-
tor is sensitive to the choice of the smoothing parameter.
The method we have proposed in [5] considers the esti-
mation of the pdf using kernel estimator [6] which uses
an efficient technique for selecting the smoothing param-
eter. In [7], we have compared some methods to make up
for the optimum smoothing parameter choice. The first is
the minimum integrated squared error (MISE) [8], which
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exhibited a significant squared error between the true pdf
and the estimated one. In the secondmethod, the smooth-
ing parameter is estimated using a cross-validation (CV)
method [9, 10]. Simulation studies have concluded that
the method called cross validation outperforms the other
method in terms of squared error. Nevertheless, this tech-
nique can lead to inconsistent estimator and requires too
much computing time.
In this paper, we propose a new semi-analytical

approach based on Fourier transform inversion to derive
a semi-analytical expression of error probability. In this
method, the probability density of the decision variable at
the matched filter output is estimated from the character-
istic function via Fourier transform inversion. This is due
to the fact that the characteristic function is defined as the
Fourier transform of the probability density function. In
addition, Fourier integrals can be numerically evaluated
by the fast Fourier transform (FFT) algorithm. Further-
more, in order to control the behavior of the probability
density estimator, we applied a bootstrap method for
selecting the optimum smoothing parameter. This leads
to an accurate semi-analytical error probability due to the
bootstrap approach efficiency.
The remainder of the paper is organized as follows. In

Section 2, we describe the system model considered in
this work. In Section 3, a new semi-analytical expression
of the error probability is derived, using Fourier inver-
sion approach. Some methods for selecting the smooth-
ing parameter are given in Section 4. Simulations and
numerical results are given in Section 5. Then, concluding
remarks are made in Section 6.

2 Systemmodel
The digital communication system considered in this
work is shown in Fig. 1. It consists of a transmitter, a
transmission channel, and a receiver. At the transmit-
ter end, a digital source delivers a bit-stream represented
by the binary sequences denoted by b = [b1, b2, . . . , bL]
and each has length L. The sequences of bits are then
passed to a digital modulation scheme which converts
them into sequences of symbols, each has length M and
whose elements take values in constellation set �. The
digital modulation can perform binary phase-shift key-
ing (BPSK), quadrature phase-shift keying (QPSK), or

high order modulation such as 16-quadrature amplitude
modulation (QAM) and 64-QAM. Other techniques, such
as single carrier frequency division multiple access (SC-
FDMA) or orthogonal frequency division multiplexing
(OFDMA), can be included in the transmitter to improve
the system reliability. After bit-to-symbol mapping, the
modulation transforms the symbol stream into an ana-
log signal suitable to be sent through the transmission
channel which can degrade the signal quality.
At the receiver, the channel output is passed to a

matched filter to reduce the noise effect. After that, the
demodulation is performed for symbol-to-bit conversion.
Finally, the receiver makes a decision to detect the infor-
mation bits.

3 Semi-analytical error probability derivation
3.1 Bit error probability definition
The receiver observes a set of N samples C =
{x1, x2, . . . , xN } at the output of the matched filter and
makes a decision to estimate the information bits. Due to
the channel effect, this decision can be erroneous. So, it
is important to measure the communication system effi-
ciency in terms of bit error probability (BEP). According to
the system model presented in Fig. 1, this bit error prob-
ability is defined to be the conditional probability that the
receiver makes a wrong decision on a transmitted infor-
mation bit. Assuming that the ith bit is transmitted, the
error probability is expressed as follows:

Pb = Pr [Error | bi sent]
= Pr

[̃
bi �= bi | bi sent

]
,

(1)

Let X be the random variable whose realizations are the
observed samples at the matched filter output and define
the decision region associated to the information bit bi as

Zi =
{
X ∈ R; Pr

[̃
bi = bi | X

]
> Pr

[̃
bi �= bi | X

]}
.

(2)

where b̃i is the estimation of the ith information bit at the
receiver end. The probability of error on the bit bi defined
in (1) is then re-expressed as

Pb = Pr [X /∈ Zi | bi sent] , (3)

Fig. 1 General system model
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We can express this error probability in terms of the
probability density of X to get

Pb =
∫
X /∈Zi

fX(x | bi sent) dx, (4)

To obtain the expression of the average bit error prob-
ability Pe, we divide the set of the observed samples C
into two subsets C0 and C1. The first subset contains N0
observed samples which corresponds to the transmission
of bi = 0. The second subset consist of N1 observed sam-
ples when the bit bi = 1 is transmitted. In this manner, the
probability density function of X can be viewed as a mix-
ture of two probability densities f (1)

X (x) and f (0)
X (x) of the

observed samples corresponding to the transmitted infor-
mation bits bi = 1 and bi = 0, respectively. Then, the
average bit error probability is written as

Pe = P1.Pr [X /∈ Z1|bi = 1] + P0.Pr [X /∈ Z0|bi = 0]

= P1.
∫ 0

−∞
f (1)
X (x|bi = 1) dx + P0.

∫ +∞

0
f (0)
X (x|bi = 0) dx.

(5)

where Pk = Nk
N , k = 0, 1, is the probability that bi = k is

transmitted.
For equally likely transmitted information bits, the aver-

age BEP is finally given by

Pe =
∫ +∞

0
f (0)
X (x|bi = 0) dx

=
∫ 0

−∞
f (1)
X (x|bi = 1) dx. (6)

Accordingly, for predicting the error probability Pe, one
has to estimate the probability densities f 1X (x) and f 0X (x).
In this paper, we will focus on the use of Fourier inversion
approach and its use for estimating error probability.

3.2 Probability density function estimation
Various techniques for estimating the probability den-
sity function have been developed in literature. The most
known of these methods is that based on kernel estima-
tor [11]. The approach we propose in this paper is based
on the fact that the pdf can be found from the characteris-
tic function of a random variable X via Fourier transform
inversion. This is expressed as follows:

f̃ (x) = 1
2π

∫ +∞

−∞
e−jtxϕX(t) dt, (7)

where ϕX is the characteristic function of a random vari-
able X, defined as

ϕX(t) = E
[
ejtX
]

=
∫ +∞

−∞
ejtxfX(x) dx, (8)

Given N observed samples {x1, x2, . . . , xN }, the expecta-
tion in (8) can be approximated by a finite sum. Hence, the
characteristic function ϕX can be written as

ϕ̃X(t) = 1
N

N∑
i=1

ejtxi , (9)

Consequently, the probability density function can be esti-
mated according to (7) by using the approximation of
ϕX(t) given in (9). However, the Fourier integral in (7) can
exhibit divergence for large values of the time variable t. To
solve this limitation, the characteristic function estimator
ϕ̃X(t) is multiplied by a damping function ψh(t) = ψ(ht)
to control the smoothness of the estimated probability
density function.
Therefore, the characteristic function expression

becomes

ϕ̃X(t) = 1
N

N∑
i=1

ejtxiψh(t). (10)

where h is a smoothing parameter.
It follows that the estimated probability density function

is given by (see proof in Appendix A)

f̃ (x; h) = 1
Nh

N∑
i=1

v
(
x − xi
h

)
, (11)

where

v(x) = 1
2π

∫ +∞

−∞
e−jtxψ(t) dt. (12)

The most common choice for the damping function
ψ(t) is the Gaussian function ψ(t) = e−π t2 . Then, the
semi-analytical probability density function is done as

f̃ (x; h) = 1
Nh

N∑
i=1

1
2π

∫ +∞

−∞
e−jt (x−xi)

h e−π t2 dt

= 1
Nh

N∑
i=1

1
2π

e−
(

x−xi
2
√

πh

)2
. (13)

After replacing the probability densities using the esti-
mation above, and evaluating the integral in (5), the semi-
analytical bit error probability can be finally re-expressed
as (see proof in Appendix B)

Pe = P1
N1

N1∑
i=1

Q
(

(xi)1√
2πh1

)
+ P0

N0

N0∑
i=1

Q
( −(xi)0√

2πh0

)
. (14)

where (xi)0 and (xi)1 are the observed samples corre-
sponding to the transmitted bits bi = 0 and bi = 1,
respectively. h1 (respectively, h0) is the smoothing param-
eter which depends on the number of observed samples,
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i.e.,N1 (respectively,N0).Q(:) denotes the complementary
unit cumulative Gaussian distribution, that is

Q(x) = 1√
2π

∫ +∞

x
e−t2/2 dt. (15)

From (14), it is clear that the accuracy of bit error prob-
ability estimation depends on the choice of the optimal
smoothing parameter.

4 Smoothing parameter selection
As already mentioned, the important task in semi-
analytical BEP derivation is the selection of the smoothing
parameter which impacts the precision of the estimator
given in (14). The optimal smoothing parameter is defined
to be the value of h that minimizes the error between the
estimated pdf and the true pdf. The most common met-
ric to represent this error is the mean integrated squared
error (MISE) which is expressed as [12]

MISE(h) = E

[∫ +∞

−∞

[
f̃ (x; h) − f (x)

]2
dx
]
. (16)

The optimal smoothing parameter is selected so that it
minimizes MISE with respect to h:

hopt = argmin
h

(MISE(h)), (17)

Based on kernel estimator [11], the smoothing parameter
is calculated as (see Appendix C)

hopt =
(

R(K)

μ22(K)R
(
f ′′)
)1/5

.N−1/5, (18)

where R(g) = ∫
g2(u) du , μk(g) = ∫

ukg(u) du, and K(.)
represents the kernel function. Until now, it is difficult to
measure hopt since it depends on the unknown quantity
R(f ′′). To solve this problem, several types of MISE-based
methods have been suggested in literature. Hereafter, we
detail the most popular ones.

4.1 Rule-of-thumbmethod
The idea of rule-of-thumb [13] is to replace the unknown
probability density, f, in (18) by a standard normal distri-
bution that has mean μ and variance σ 2, i.e.,N (μ, σ 2). In
this manner, we get

R
(
f ′′) = (8

√
π/3)1/5σ . (19)

Consequently, a Gaussian kernel function K(x) =
1√
2π e

−x2/2 leads to

R(K) = (2√π
)−1/5 ; μ2

2(K) = 1, (20)

It follows that the smoothing parameter is done as

hopt,ROT = (4/3)1/5σN−1/5 = 1.06σN−1/5. (21)

4.2 Cross-validation method
In cross-validation (CV) method, instead of using a ref-
erence probability density, the idea is to estimate the
unknown quantity R

(
f ′′) in hopt formula. Furthermore,

CV approach considers the integrated squared error (ISE)
to select the optimal smoothing parameter. This error
metric is expressed as [14]

ISE =
∫ +∞

−∞

[̃
fX(x; h) − f (x)

]2
dx

=
∫ +∞

−∞
f̃ 2X (x; h) dx − 2

∫ +∞

−∞
f̃X(x; h)f (x) dx

+
∫ +∞

−∞
f 2(x) dx.

(22)

The third term
∫ +∞
−∞ f 2(x) dx does not depend on the

sample or on the smoothing parameter. Moreover, the
new function used to estimate h is called least squares
cross-validation (LSCV)-based method [15] expressed as

LSCV(h) =
∫ +∞

−∞
f̃ 2X (x; h) dx − 2

∫ +∞

−∞
f̃X(x; h)f (x) dx,

(23)

An approximately unbiased estimator of (23) is given by
[16]

LSCV(h) =
∫ +∞

−∞
f̃ 2X (x, h) dx − 2

N

N∑
i=1

f̃X,−i (xi, h) .

(24)

where, f̃−i(xi), i = 1, . . . ,N , is the estimated density using
all the original observations except for xi.
It is well known that LSCV(h) is an unbiased estimator

of MISE(h) − ∫ +∞
−∞ f 2(y) dy. This is expressed as :

E (LSCV(h)) =E

[∫ +∞

−∞

[
f̃ (x; h) − f (x)

]2
dx
]

−
∫ +∞

−∞
f 2(x) dx

= MISE(h) −
∫ +∞

−∞
f 2(y) dy,

(25)

As developed in Appendix C, the E(LSCV(h)) estimator
is re-written as [17]

E(LSCV(h)) = 1
Nh

R(K) + h4

4
μ2
2(K)R

(
f ′′)− R(f ) + O

(
N−1).
(26)

A new method called biased cross-validation (BCV)
[18, 19] considers only the asymptotic MISE to estimate h:

AMISE = R(K)

Nh
+ h4

4
μ2
2(K)R

(
f ′′) . (27)
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Its idea is to replace the unknown quantity R
(
f ′′) by the

estimator:

R̃
(
f ′′) = R

(
f̃ ′′
X

)
− 1

N .h5
.R
(
K ′′)

= 1
N2

∑
i�=j

∑
Kh

′′ ∗ Kh
′′ (xi − xj

)
. (28)

where f̃ ′′
X is the second derivative of the kernel density esti-

mate and Kh(x) = 1
hK
( x
h
)
. The operator ∗ indicates the

convolution product.
By substituting (28) in (27), the BCV-based method is

presented as

BCV(h) = 1
Nh

R(K) + h4μ2
2(K)

2N2

∑
i�=j

∑
Kh

′′∗ Kh
′′(xi−xj).

(29)

Finally, the smoothing parameter based on cross-
validation method is done by

hopt,CV = argmin
h

(BCV(h)). (30)

4.3 Bootstrap method
Bootstrap procedures for selecting the smoothing param-
eter have been studied in previous work [20–22]. The idea
is to estimate the MISE using the bootstrap and then min-
imize it with respect to h. Let f̃X(x; g) be the estimate of
f (x) obtained from {x1, . . . , xN }, with a pilot smoothing
parameter g.
The straight forward approach to use the bootstrap

method would be to resample
{
x∗
1, . . . , x∗

N
}
from f̃X(x; g)

and then construct bootstrap estimates f̃ ∗
X (x; h) [23]. The

bootstrap estimator of the MISE is defined as

MISE∗(h) = E

[∫ +∞

−∞

[
f̃ ∗
X (x; h) − f̃X(x; g)

]2
dx
]
, (31)

According to (13), f̃ ∗
X (x; h) can be replaced by

1
Nh
∑N

i=1
1
2π e

−
(

x−x∗i
2
√

πh

)2
. Then, Taylor expansion of f̃X(x; g),

under the assumption that h → 0 as N → ∞, leads to an
asymptotic approximation to MISE∗ [24] as:

MISE∗(h) = 1
2Nh

√
2π

[
21/2 + 1 − 4

31/2
+ (N − 1)h(2π)1/2{

4
∫

h4 f̃ (4)
X (x; g) f̃X(x; g) dx − 9

2

∫
h4 f̃ (4)

X (x; g) f̃Y (x; g) dy

+
∫

h4 f̃ (4)
X (x; g) f̃Y (x; g) dx

}]
+ O

(
h6
)
,

(32)

After calculus simplification, this approximation can be
written as [24]:

MISE∗(h) = 1.074
2Nh

√
π

+ h4

4

∫
f̃ (4)
X (x; g) f̃X(x; g) dx + O

(
h6
)
,

(33)

By using some standard properties of a density function,
we re-express MISE∗(h) as

MISE∗(h) = 1.074
2Nh

√
π

+ h4

4

∫ (
f̃ ′′
X (x; g)

)2
dx + O(h6).

(34)

The optimal smoothing parameter hopt,boot is obtained
by minimizing MISE∗(h) with respect to h:

hopt,boot = argmin
h

(
MISE∗(h)

)
, (35)

The smoothing parameter based on bootstrap method
hopt,boot obtained from (35) is given as (see proof in
Appendix D):

hopt,boot =
⎛⎜⎝ 1.074

2
√

π
∫ (

f̃ ′′
X (x; g)

)2
dx

⎞⎟⎠
1/5

.N−1/5. (36)

As it can be seen from this equation, the optimal
hopt,boot value depends on the second derivative of the
estimate pdf

∫
( f̃ ′′

X (x; g))2 dx where the pilot smoothing
parameter g is selected using least squares the cross-
validation method [25]. This parameter is chosen so as to
minimize

LSCV(g) =
∫ (

f̃X(x; g)
)2

dx − 2
N

N∑
i=1

fX,−i(xi, g).

(37)

where fN ,−i(xi, g) is the density estimate based on all of
data expect xi. To justify the choice of the bootstrap
method for selecting the optimal smoothing parame-
ter, we have presented the integrated squared error as a
function of the smoothing parameter h. Figure 2 shows
the obtained results with bootstrap, cross-validation, and
rule-of-thumb methods. It is seen that the bootstrap
method outperforms the other methods in terms of the
integrated squared error between the true probability
density and the estimated density.

5 Simulations and results
In order to verify the obtained semi-analytical expres-
sion of error probability, computer simulations were done
using the system model presented in Fig. 1. We first val-
idated the probability density estimation using Fourier
inversion. We, then, used it to predict the semi-analytical
bit error probability of several transmission scenarios.
This probability is compared with the BER evaluated using
Monte Carlo simulation which considers a 95 % confi-
dence interval for all scenarios.
To measure the semi-analytical probability density of

the received sample, we have considered a digital modula-
tion scheme which uses bit-phase-shift keying (BPSK) for
bit-to-symbol conversion. The symbol stream is then sent
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through an AWGN channel. At the matched filter output,
the receiver observes N = 10, 000 samples and estimates
the probability density using Fourier inversion method.
The obtained probability density is compared to the theo-
retical density as shown in Fig. 3. It is seen that the density
curve corresponding to Fourier inversion method is close
to theoretical density curve. Moreover, we have evaluated
the semi-analytical bit error probability (BEP) using the
expression given in (14) in terms of signal to noise ratio
(SNR). The simulation results obtained from the semi-

analytical method are compared with those from Monte
Carlo simulation, as well as from the analytical method.
Besides, the analytical BEP is expressed as

Pth−bpsk = 0.5 erfc
(√

SNR
)
. (38)

where erfc(x) = 2√
π

∫ +∞
x e−x2 dx.

The simulation results are presented in Fig. 4. It is
shown that the proposed Fourier inversion-based semi-
analytical method offers the same performance as the
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Fig. 4 BEP performance prediction for BPSK modulation over AWGN channel

other methods. It is also observed that a significant gain
in terms of computing time is obtained (see Table 1).
In addition, to reach the bit error probability of 10−4,
Monte Carlo simulation requires a number of 1,000,000
samples while Fourier inversion uses only 10,000 observed
samples.
Furthermore, we have applied the proposed semi-

analytical approach to a transmission scenario that
employs SC-FDMA technique [26] to transmit the symbol

Table 1 Computing time comparison. This table summarizes an
experiment comparing the time (in seconds) to obtain bit error
probability

Computing time (s)

BEP Proposed SPP MC simulation

BPSK 10−6 2.106 154.179

10−5 1.760 14.001

10−4 1.013 1.441

QPSK 10−6 2.554 86.933

10−5 1.734 9.013

10−4 1.025 2.752

4-PAM 10−6 5.877 71.864

10−5 5.309 8.1315

10−4 3.663 4.333

SC-FDMA 10−6 2.631 54.810

10−5 2.048 8.131

10−4 1.671 1.453

BPSK bit-phase-shift keying, QPSK quadrature phase-shift keying, 4-PAM four-state
pulse amplitude modulation, SC-FDMA single carrier frequency division multiple
access, BEP bit error probability, SPP semi-analytical performance prediction,MC
Monte Carlo

stream at the output of the BPSKmodulation scheme. The
number of subcarrier is taken to be equal to 512. Figure 5
shows the results of the semi-analytical bit error probabil-
ity in terms of SNR. From the result, it is observed that
the proposed semi-analytical approach is accurate com-
pared to the Monte Carlo method with a significant gain
in terms of computing time (see Table 1).
After that, the semi-analytical performance prediction

(SPP) has been extended to a digital communication
system which performs the digital modulation using four-
state pulse amplitude modulation (4-PAM). The simula-
tions have been carried assuming a transmission through
an AWGN channel and with a number of the observed
samples equal to 10,000. Themeasured semi-analytical bit
error probability is depicted in Fig. 6. It has been com-
pared to that estimated by Monte Carlo simulation and
given analytically:

Pth−pam = 0.75 erfc
(√

0.2 SNR
)
. (39)

We notice that the Fourier inversion approach provides
the same performance as the Monte Carlo simulation and
the analytical method. Besides, it has been proven that the
computing time is significantly reduced with the Fourier
inversion approach (see Table 1). Indeed, to reach a bit
error probability of 10−3,Monte Carlo simulation requires
a number of samples equal to 100,000 while the pro-
posedmethod uses onlyN = 10, 000 samples. In addition,
the same performance in terms of bit error probability
has been obtained when quadrature phase-shift keying
(QPSK) modulation is considered. The simulation results
are presented in Fig. 7.
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Fig. 5 BEP performance comparison for SC-FDMA system over AWGN channel

In another transmission scenario, we have considered
that the BPSK symbol stream is sent through a Rayleigh
channel generated using two independent Gaussian ran-
dom variables each with mean zero and variance 0.5.
Also, we have assumed that communication is done with
the receiver diversity. The number of receiver anten-
nas equals 2. To recover the transmitted information
symbols, the outputs of the receiver antennas are com-
bined using maximum ratio combining (MRC). We have
evaluated the semi-analytical bit error probability at
the output of the MRC combiner. Figure 8 presents

the BEP results for N = 20, 000 observed samples.
As for all scenarios, Fourier inversion curves are very
close to Monte Carlo simulation curves and analyti-
cal method curves where its analytical expression is
done by

Pbpsk−mrc = p2 (1 + 2.(1 − p)) . (40)

where p = 1
2 − 1

2 .
(
1 + 1

SNR
)− 1

2 . Also, it is observed
that a reduced computing time is obtained. This presents
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Fig. 6 BEP performance prediction for 4-PAMmodulation over AWGN channel
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Fig. 7 BEP performance prediction for QPSK modulation over AWGN channel

a major strength of the proposed approach and very
promising for many practical systems.

6 Conclusions
In this paper, we have considered a new semi-analytical
method for estimating the error probability for any digital
communication system. We have shown that the prob-
lem of error probability estimation is equivalent to esti-
mate the conditional probability density function (pdf)
of the observed soft samples at the receiver output. The

proposed method is based on Fourier inversion approach
for predicting the pdf. It has been shown that the accuracy
of this approach is very sensitive to the optimum smooth-
ing parameter selection. Furthermore, we have applied
the bootstrap method for selecting the optimal smooth-
ing parameter which makes the proposed semi-analytical
method more accurate. The simulation results have con-
cluded that with either the Monte Carlo (MC) simulation
technique or the new proposed semi-analytical approach,
we have the same performance. Moreover, the use of the

0 2 4 6 8 10 12 14 16 18 20
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Fig. 8 BEP performance for BPSK with MRC over Rayleigh channel
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bootstrapmethod can decrease the squared error between
the true pdf and the estimated one.

Appendix A Proof of (11)
Using the definition of Fourier transform inversion (7), the
probability density function is done as:

f̃ (x; h) = 1
2π

∫ +∞

−∞
e−jtxϕ̃X(t) dt, (A.1)

where ϕ̃X is the characteristic function defined in (10), so
we get :

f̃ (x; h) = 1
2π

∫ +∞

−∞
e−jtx 1

N

N∑
i=1

ejtxiψh(t) dt

= 1
N

N∑
i=1

1
2π

∫ +∞

−∞
e−jt(x−xi)ψh(t) dt

= 1
N

N∑
i=1

1
2π

∫ +∞

−∞
e−jt(x−xi)ψ(ht) dt

= 1
Nh

N∑
i=1

1
2π

∫ +∞

−∞
e−jt

(
x−xi
h

)
ψ(t) dt, (A.2)

Let us define

v(x) = 1
2π

∫ +∞

∞
e−jtxψ(t) dt. (A.3)

It follows that the expression of the semi-analytical
probability density function is expressed as

f̃ (x; h) = 1
Nh

N∑
i=1

v
(
x − xi
h

)
. (A.4)

Appendix B Proof of (14)
Let us recall that the semi-analytical bit error probability
is given by

Pe = P1.
∫ 0

−∞
f (1)
X (x|bi = 1) dx + P0.

∫ +∞

0
f (0)
X (x|bi = 0) dx,

(B.1)

where f̃1(x) and f̃0(x) are the estimated probability density
function of the observed samples (xi)1 and (xi)0, respec-
tively, which corresponds to transmitted information bits
bi = 1 and bi = 0, respectively. By using the obtained
semi-analytical probability density function in (13), we
can define

f̃ (1)
X (x; h) = 1

N1h1

N1∑
i=1

1
2π

e−j
(
x−(xi)1
2
√

πh1

)
, (B.2)

and

f̃ (0)
X (x; h) = 1

N0h0

N0∑
i=1

1
2π

e−j
(
x−(xi)0
2
√

πh0

)
, (B.3)

where h1 (respectively, h0) is the smoothing parame-
ter which depends on the number of observed samples,
i.e., N1 (respectively, N0). By substituting the estimated
pdf f̃ (1)

X and f̃ (0)
X in (B.1), we get

Pe = P1.
∫ 0

−∞
1

N1h1

N1∑
i=1

1
2π

e−
(
x−(xi)1
2
√

πh1

)2
dx

+ P0.
∫ +∞

0

1
N0h0

N0∑
i=1

1
2π

e−
(
x−(xi)0
2
√

πh0

)2
dx

= P1
N1h1

N1∑
i=1

1
2π

∫ 0

−∞
e
−
(

x−(xi)1√
2πh1

)2
/2
dx

+ P0
N0h0

N0∑
i=1

1
2π

∫ +∞

0
e
−
(

x−(xi)0√
2πh0

)2
/2
dx,

(B.4)

Using the following change of variable t1 = x−(xi)1√
2πh1

and

t0 = x−(xi)0√
2πh0

, we have

Pe = P1
N1

N1∑
i=1

1√
2π

∫ −(xi)1√
2πh1

−∞
e−t12/2 dt1

+ P0
N0

N0∑
i=1

1√
2π

∫ +∞
−(xi)0√
2πh0

e−t02/2 dt0

= P1
N1

N1∑
i=1

Q
(

(xi)1√
2πh1

)

+ P0
N0

N0∑
i=1

Q
( −(xi)0√

2πh1

)
.

(B.5)

Appendix C Proof of (18)
We can prove the expression of the smoothing parameter
using MISE method.

MISE = E

[∫ {
f̃ (x; h) − f (x)

}2
dx
]
, (C.1)

By using the theory of “Konig Huyghens”, we have

E
{
f̃ (x; h) − f (x)

}2 = var
(
f̃ (x; h)

)
+
(
E
(
f̃ (x; h)

)
− f (x)

)2
,

(C.2)

Let us use kernel estimator to estimate the probability
density function f̃ . We define the kernel function K(.) as
any function satisfies

∫
K(x) dx = 1 and:

f̃ (x; h) = 1
Nh

N∑
i=1

K
(
x − xi
h

)
. (C.3)
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Estimation bias: Let us consider that the expectation of
kernel function can be written as integrals of the convolu-
tion of the kernel density and the true density function:

E
(
f̃ (x; h)

)
= 1

N

N∑
i=1

E

(
1
h
K
(
x − xi
h

))
=
∫

K
(
z − x
h

)
f (z) dz, (C.4)

By using u = z−x
h , we have

E
(
f̃ (x; h)

)
=
∫

K(u)f (x + hu) du, (C.5)

So, we use a Taylor expansion of f (x+hu) in the argument
hu and with h → 0. For a ν′ th-order kernel, we take the
expansion out to the ν′ th-term to solve this integral:

f (x + hu) = f (x) + f (1)(x)hu + 1
2
f (2)(x)h2u2

+ 1
3!

f (3)(x)h3u3 + . . .

+ 1
ν!

f (ν)(x)hνuν + O(hν), (C.6)

where μν(K) = ∫ uνK(u) du.
So, integrating term by term and using that

∫
K(x)

dx = 1, to get∫
K(u) f (x + hu) du = f (x) + f (1)(x)hμ1(K)+ 1

2!
f (2)(x)h2μ2(K)

+ 1
3!

f (3)(x)h3μ3(K)

+ . . . + 1
ν!

f (ν)(x)hνμν(K) + O(hν)

= f (x) + 1
ν!

f (ν)(x)hνμν(K) + O(hν),

(C.7)

This means that

E
(
f̃ (x; h)

)
=

n∑
i=1

E

(
1
h
K
(
xi − x
h

))
= f (x) + 1

ν!
f (ν)(x)hνμν(K) + O(hν). (C.8)

The bias of f̃h(x) is then

Bias
(
f̃ (x; h)

)
= E

(
f̃ (x; h)

)
− f (x)

= 1
ν!

f (ν)(x)hνμν(K) + O(hν), (C.9)

To simplify the calculus, we take

Bias
(
f̃ (x; h)

)
= 1

2
f (2)(x)h2μ2(v) + O(h2). (C.10)

Estimation variance: Let us compute the variance
of f̃ (x; h) for a density estimator:

var
(
f̃ (x; h)

)
= E

[
f̃ (x; h) − E

(
f̃ (x; h)

)]2
= E

[(
f̃ (x; h)

)2 − 2 f̃ (x; h)E
(
f̃ (x; h)

)
+
(
E f̃ (x; h)

)2]
= E

((
f̃ (x; h)

)2)−2E
(
f̃ (x; h)

)
E

(
f̃ (x; h)

)
+
(
E f̃ (x; h)

)2
= E

((
f̃ (x; h)

)2)− 2
(
E

(
f̃ (x; h)

))2 +
(
E f̃ (x; h)

)2
= E

((
f̃ (x; h)

)2)−
(
E

(
f̃ (x; h)

))2
,

(C.11)

The kernel estimator is a linear estimate, so

var
(
f̃ (x; h)

)
= 1

Nh2
E

(
K
(xi − x

h

))2

− 1
N

(
1
h
E

(
K
(
xi − x
h

)))2
. (C.12)

As developed in the bias, we have 1
hE
(
K
( xi−x

h
)) =

f (x) + O(1) So, 1
N
( 1
hE
(
K
( xi−x

h
)))2 is O ( 1N ) For the first

term of the variance, we can write the expectation of ker-
nel function as integrals of the convolution of the kernel
density and the true density and then use a first-order
Taylor expansion, to get

1
h
E

(
K
(
xi − x
h

))2
= 1

h

∫ {
K
(
z − x
h

)}2
f (z) dz

=
∫

K(u)2f (x + hu) du

= f (x)
∫

K(u)2 du + O(h)

= f (x)R(K) + O(h), (C.13)

where R(K) = ∫
K(u)2 du. Together, the estimation vari-

ance is written as

var
(
f̃ (x; h)

)
= f (x)R(K)

Nh
+ O

(
1
N

)
. (C.14)

Mean-squared error As defined, themean squared error
(MSE) is done as

MSE = E
{
f̃ (x; h) − f (x)

}2
= var

(
f̃ (x; h)

)
+
(
Bias

(
f̃ (x; h)

))2
= f (x)R(K)

Nh
+ 1

4

(
f (2)(x)

)2
h4μ2

2(K). (C.15)
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By integrating the MSE, the mean integrated squared
error (MISE) is done as

MISE = E

∫ {
f̃ (x; h) − f (x)

}2
dx

=
∫

Bias
(
f̃ (x; h)

)2
dx +

∫
var
(
f̃ (x; h)

)
dx,

(C.16)

Under an integrability assumption on f, we have

MISE = R(K)

Nh
+ 1

4
h4μ2

2(K)R
(
f ′′) . (C.17)

where R( f ′′) = ∫ f ′′(u)
2 du

The expression (C.17) is the measure that we use to
quantify the performance of the estimator.We can find the
optimal smoothing parameter by minimizing the expres-
sion of (C.17) with respect to h. The first derivative is
given by

d(MISE(h))
dh

= −R(K)

2Nh2
+ h3μ2

2(K)R
(
f ′′) , (C.18)

Putting this equal to zero, we will have the optimal
smoothing parameter:

hopt =
(

R(K)

μ22(K)R( f ′′)

)1/5
.N−1/5. (C.19)

Appendix D Proof of (36)
In this Appendix, we provide further details related to
the asymptotic expressions for the smoothing parameter
using the bootstrap method. Here the normal kernel is
used.

MISE∗(h) = E

∫ {
f̃ ∗

X(x; h) − f̃X(x; g)
}2

dx

=
∫

Bias∗
{
f̃ ∗

X(x; h)
}2

dx

−
∫

Var∗
{
f̃ ∗

X(x; h)
}
dx, (D.1)

where E∗, Bias∗, and Var∗ all involve expectations condi-
tionally upon x∗

1, x∗
2, . . . , x∗

N and all x∗ are sampled from
the smoothed distribution f̃X(x; h). Making a substitution
followed by a Taylor series expansion, this assumes that
h → 0 as N → ∞, gives an asymptotic approximation:

MISE∗(h) = 1
2Nh

√
2π

[
21/2 + 1 − 4

31/2
+ (N − 1)h(2π)1/2{

4
∫

h4 f̃ (4)
X (x; g) f̃X(x; g) dx

− 9
2

∫
h4 f̃ (4)

X (x; g) f̃X(x; g) dx

+
∫

h4 f̃ (4)
X (x; g) f̃X(x; g) dx

}]
+ O(h6),

(D.2)

To simplify this, the approximation can be written as

MISE∗(h) = 1.074
2Nh

√
π

+ h4

4

∫
f̃ (4)
X (x; g) f̃X(x; g) dx + O

(
h6
)
,

(D.3)

Using the condition that any probability density func-
tion satisfies[

f̃ ′′′
X (x; g) f̃X(x; g)

]+∞
−∞ =

[
f̃ ′′
X (x; g) f̃

′
X(x; g)

]+∞
−∞ = 0.

(D.4)

The asymptotic expression for bootstrap estimator of
MISE is

MISE∗(h) = 1.074
2Nh

√
π

+ h4

4

∫ (
f̃ ′′
X (x; g)

)2
dx + O

(
h6
)
,

(D.5)

The optimal smoothing parameter is selected so that min-
imizing the expression of (D.5) with respect to h. The first
derivative is given by

d(MISE∗(h))
dh

= − 1.074
2Nh2

√
π

+ h3
∫ (

f̃ ′′
X (x; g)

)2
dx + O(h6).

(D.6)

Putting this equal to zero, we will have the optimal
smoothing parameter

hopt,boot =
⎛⎜⎝ 1.074

2
√

π
∫ (

f̃ ′′
X (x; g)

)2
dx

⎞⎟⎠
1/5

.N−1/5.

(D.7)
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