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Abstract

We propose an application-layer forward error correction (AL-FEC) code rate allocation scheme to maximize the
quality of experience (QoE) of a video multicast. The allocation dynamically assigns multicast clients to the quality
layers of a scalable video bitstream, based on their heterogeneous channel qualities and video playback capabilities.
Normalized mean opinion score (NMOS) is employed to value the client’s quality of experience across various possible
adaptations of a multilayer video, coded using mixed spatial-temporal-amplitude scalability. The scheme provides
assurance of reception of the video layers using fountain coding and effectively allocates coding rates across the
layers to maximize a multicast utility measure. An advantageous feature of the proposed scheme is that the
complexity of the optimization is independent of the number of clients. Additionally, a convex formulation is
proposed that attains close to the best performance and offers a reliable alternative when further reduction in
computational complexity is desired. The optimization is extended to perform suppression of QoE fluctuations for
clients with marginal channel qualities. The scheme offers a means to trade off service utility for the entire multicast
group and clients with the worst channels. According to the simulation results, the proposed optimization framework
is robust against source rate variations and limited amount of client feedback.

Keywords: Video multicast, Scalable video, Fountain coding, Rateless coding, Multicast optimization, Heterogeneous
clients, Quality of service

1 Introduction
1.1 Motivation
Multimedia delivery systems can be optimized to maxi-
mize the overall throughput (best effort) or to satisfy client
quality of experience (QoE) demands (QoS-guaranteed).
QoE-guaranteed optimizations may suffer from being
overly constrained, especially in large-scale multicasts.
Tracking the media processing capability, QoE demand,
and channel quality of every client can be daunt-
ing, prompting the search for better trade-offs between
bandwidth usage efficiency and optimization complexity.
Sometimes, no feasible solution exists due to bandwidth
limitations and/or clients with poor channels that require
forward error correction (FEC) codes with exceedingly
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large overheads. Therefore, having a screening process to
reduce excessive QoE demands is essential, especially in
large-scale multicasts. One may utilize a mechanism to
dynamically assign clients to available media quality lev-
els in order to improve resource utilization efficiency. For
example, using scalable bitstreams, the multicast server
may drop the highest enhancement layers when relatively
few users with high-quality channels and high-resolution
displays exist. The saved transmission resources could
be redeployed to serve clients with poor channels. The
multicast optimization needs to be performed repeatedly
due to client channel and source bitstream variations, as
well as to account for clients dynamically joining or leav-
ing the multicast at random times. Thus, low complexity
optimization methods are required.
In point-to-multipoint services such as multicast, the

transmission to the multicast clients may traverse dif-
ferent paths. As a result, the end-to-end transmission
channels may exhibit diverse behaviors and capacities.
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End-to-end QoE can be assured by providing sufficient
error protection. Feedback-based error correction such
as automatic repeat request (ARQ) and hybrid ARQ [1]
may not be feasible due to latency and possible feed-
back implosion at the multicast server. An alternative
which avoids these problems is to employ FEC coding.
In multicasting, we are faced with an ensemble of chan-
nels with different loss processes and require FEC that is
“universally” efficient. Fortunately, fountain codes [2] have
been demonstrated to well approximate the ideal. With
fountain codes, the receiver can recover the source sym-
bols with high probability when the number of correctly
received code symbols is slightly larger than the number
of source symbols. Crucially, this recovery capability is
independent of the loss pattern or channel memory. One
implication of this “independence” from channel memory
is that clients connected to distinct channels with differ-
ing memory behaviors that inflict the same amount of loss
will see the same throughput.
This paper is concerned with an efficient application of

fountain codes as an application-layer FEC (AL-FEC) code
to meet the QoE demands of video multicast clients with
heterogeneous channels and video quality requirements.
This approach offers the following advantages : 1) ser-

vice versatility since the service is agnostic to the under-
lying network infrastructures, enabling clients to join the
multicast through a variety of network connections; 2)
quick service deployment or reconfiguration, eliminating
the wait for infrastructure upgrade and enabling quick
launch of third-party services; and 3) extending the capa-
bility of an existing network (infrastructure) [3].

1.2 Related approaches
Multicast schemes have evolved with advances in source
and channel coding techniques. Receiver-driven layered
multicast (RLM) [4] is a landmark technique for multi-
casting to clients with heterogeneous channels. RLM is
a “client-pulled” scheme suitable for large-scale multicast
over the Internet. Subsequently, unequal error protection
(UEP) was proposed [5] and its application to multime-
dia transmission was studied [6]. Further works largely fall
into one of the following three categories: AL-FEC design
for UEP [7–13], link-layer scheduling [14–18], and joint
source-channel coding [19]. In practice, system design and
provisioning usually prefer separate source and channel
coding as well as low computation complexity.
Fountain codes are employed in many current mul-

timedia delivery standards [20, 21] due to their struc-
tural benefits, e.g., linear time encoding/decoding algo-
rithms and small overhead [22, 23]. Digital fountain-based
approaches in the AL-FEC design category [8–10] mainly
rely on altering the degree distribution and source symbol
selection process to provide UEP across different source
layers. In [24], the fountain-code degree distribution is

optimized to provide short code length performance. The
advantage of using rateless codes over conventional Reed-
Solomon codes in providing graceful-degradation was
reported in [12]. In [13], UEP and rateless coding are uti-
lized in streaming a scalable video from multiple servers.
This work aims to maximize the probability of successful
decoding through proper rate allocation amongst video
layers of different servers. Note that none of the above
fountain-code-based works consider client channel het-
erogeneity in their design. Moreover, these schemes treat
only one scalability dimension (PSNR) and do not opti-
mize the visual perceptual quality.
There are a number of notable link-layer scheduling

algorithms for multimedia multicast. A best-effort opti-
mization framework is proposed in [14] for Internet pro-
tocol television broadcast over worldwide interoperability
for microwave access (WiMAX) channels with consid-
eration of capacity variation in the multicast channel.
Sharangi et al. [17] proposed a scalable video transmission
scheduling optimization scheme for multiple multicasts
to share a set of WiMAX timeslots such that the aver-
age utility of the multicasts is maximized. A similar work
with a more elaborate model of physical layer parameters
and channel effects is proposed by Vukadinovic et al. [18].
While our problem (described below) and [17, 18] both
strive to balance serving individual clients versus overall
throughput, for our problem, the individuals are clients
with heterogeneous channels and playback requirements
within a multicast, whereas for [17, 18], the individuals are
distinct multicasts each of which targeting one channel
and one media quality.
Several multicast schemes benefiting from application-

layer FEC and file delivery over unidirectional transport
(FLUTE) [25] have been recently introduced [26, 27].
Adoption of dynamic adaptive streaming over HTTP
(DASH) to support multicast services is discussed in [28,
29]. A hybrid multicast architecture based on FLUTE and
DASH is proposed in [30] where FLUTE provides multi-
casting with application-layer FEC and DASH is utilized
for retransmission of lost frames over a unicast channel.
Bouras et al. [31] experimentally assessed the efficacy of
using standard raptor [32] codes as application-layer FEC
codes for multicasting video over 3GPP long-term evo-
lution (LTE) wireless networks. The assessment employs
non-scalable low-bit-rate video, and no service optimiza-
tion is performed.

1.3 Proposed approach
allocation optimization problem for multicasting a scal-
able coded video (SVC) stream with the aim to maximize
service utility. We consider client heterogeneity in terms
of channel quality diversity andmedia decoding capability.
Application-layermulticast obviates the need to access the
lower network layers in order to control the transmission
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scheme. Clients may be connected to the service using dif-
ferent physical channels. For instance, mobile clients may
be able to access multiple network infrastructures and
engage in “vertical handoffs” across different networks.
From the perspective of the multicast service, the end-
to-end path to individual clients may traverse different
network infrastructures with their underlying physical-
layer error protectionmechanisms. For the purpose of our
AL-FEC coding optimization, the net effect of the end-
to-end channel capacity is parameterized in the form of
a “reception coefficient” (RC). The RC parameter enables
the application layer to use a memoryless erasure chan-
nel model (see (10) below) to represent, for instance,
lower layer FEC decoding performance in cellular net-
works or packet losses on the Internet. The diversity of
client channel capacities is modeled using probability dis-
tributions. The utility is based on using an objective video
quality measure to value client satisfaction across differ-
ent possible adaptations of the video layers. A client may
have a specific playback profile, which could be elastic
in the sense that the client may be willing to accept (or
even reject) playback of various layer adaptations, with
corresponding degrees of utility gained.
The allocation is performed to maximize a utility mea-

sure that permits balancing between individual client
utility and serving as many clients as possible. Our
problem provides an answer to the question: given an
application-layer multicast service bandwidth, a popula-
tion of clients with heterogeneous end-to-end channels
and devices (with different video playback capabilities),
determine how best to provision fountain codes across the
video layers in order to serve as many clients as possi-
ble while meeting their video perceptual-quality demands.
A byproduct of our problem solution is indicating which
clients cannot be served to meet their desired viewing
quality.
Our problem is fashioned to enable using standard foun-

tain codes or their equivalent. We believe this is a more
attractive proposition for multicast equipment/service
engineering than using customized fountain codes. A
client utility measure is defined based on a visual percep-
tual model [33, 34] that admits mixed spatial-temporal-
amplitude scalability. Our multicasting framework also
offers the flexibility to admit other advanced video quality
assessment models for mixed-scalability video. An advan-
tageous feature of the proposed method is that the opti-
mization complexity does not increase with the number
of clients, a property particularly appealing for large-scale
multicasts. Moreover, by employing statistical modeling
of client reception capabilities, the optimization can be
performed with different resolutions to trade off complex-
ity and performance. The reliability of decoding the video
layers in terms of outage probability (OP) is enforced to
be commensurate with the probabilistic decoding nature

of rateless codes. Compared to the previous multicast
optimization techniques based on fountain codes in [8,
10, 35], our work considers clients with heterogeneous
channels and video-playback quality demands and bene-
fits from a simple yet accurate model [36] of the client
decoding outage probability. The QoE of the proposed
multicast scheme has both guaranteed and best-effort
aspects. The qualities of the different video layers are
guaranteed, provided the client’s channel has commensu-
rate capacities. The best layer the client can access also
depends on the client population channel qualities and
demand profiles. Another aspect of our framework is that
it does not require altering the video bitstream or rate-
less code, avoiding compatibility issues with existing and
future standards, e.g., [37–39].
Additionally, we extend our previous work on video

multicast optimization [40] to suppress temporal qual-
ity fluctuations caused by source bit-rate variation. By
utilizing a quality-aware optimization that admits source
scalability, the proposed scheme provides a range of trade-
offs between transmission resource utilization efficiency
and stable client video playback quality. With some sim-
plifications, we obtain a convex optimization problem. It
turns out that the solution of the convex problem is a
highly accurate approximation.
The rest of this paper is organized as follows. Section 2

is devoted to the general problem formulation as well
as a convex formulation that admits lower computation
with moderate loss in accuracy. In Section 3, we extend
our formulation to a dynamic optimization that consid-
ers client dissatisfaction due to video quality fluctuations.
In Section 4, we assign values to the client utility parame-
ters in our formulated problem using a recently developed
video quality metric. The performance of the proposed
optimization framework is evaluated in Section 5. Finally,
conclusions are drawn in Section 6. The basic notations
used in this paper are listed in Table 1.

2 Proposedmultimedia multicast with
heterogeneous clients

2.1 System setup
Figure 1 illustrates the system setup. A media server
is responsible to provide various terminal (user device)
classes with a multilayer media, e.g., an H.264/SVC
encoded video stream. A hybrid network of wired and
wireless clients with heterogeneous channels is depicted.
For encoding, a sequence of video frames is partitioned
into consecutive time segments. Each segment, which
may comprise the frames say over a 1-s interval, is
encoded into a scalable bitstream. The generated bit-
stream embeds L layers with Sl source symbols per layer l,
l = 1, . . . , L. While the base layer is essential, the enhance-
ment layers introduce higher spatial or temporal reso-
lution or finer quantization resolution without altering
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Table 1 Basic notations

Symbol Definition

L Total number of embedded layers in a video stream.

Sl Number of source symbols per layer.

M Total number of client classes.

Nl Number of encoded symbols per layer.

Nmax Maximum amount of encoded symbols.

hm Highest video layer that clients in classm can potentially

decode.

0 ≤ δ ≤ 1 Reception coefficient (RC) for a client.

fm(δ)/Fm(δ) RC probability distribution / cumulative distribution for

classm.

πm Prior probability for classm clients.

Plout Outage probability constraint for layer l.

P(S,N, δ) Outage probability.

� Media server bandwidth (bit/s).

B Size of the encoded symbols (bits).

Tseg Duration of each video segment (s).

Rl Cumulative source rate up to layer l (bit/s).

Um(R) Utility-rate function of classm.

αm,l Incremental utility of layer l for a client in classm.

Um Total utility for classm.

NMOS Normalized mean opinion score.

I(x)

{
1, If x is true,

0, otherwise.

the spatio-temporal resolution of the preceding layer. We
assume that successful decoding of any layer relies on
successful decoding of all of its preceding layers. This
implies that layers with lower indices are more important
in the decoding process. Fountain coding [2] in the form
of raptor codes is applied to every layer of the bitstream
to provide protection against erasures caused by channel
errors in the physical layer. The code for layer l receives
Sl source symbols and generates Nl encoded symbols.
Unlike conventional Reed-Solomon codes, fountain codes
can potentially generate an infinitely large code sequence,
making the code rate Sl/Nl elastic, or the code “rateless.”
Generation of the rateless code sequence is determined
by specifying a degree distribution and a random num-
ber generator. Here, we exploit the elastic property by
choosing the code rate Sl/Nl to best suit an optimization
objective. Standardized raptor codes [41] have been opti-
mized so that a receiver that correctly receivesKl = Sl(1+
ε) encoded symbols from the transmission can recover
the message, with ε > 0 representing a small overhead
typically below 2 %. Successful decoding is probabilisti-
cally ensured by the total number of transmitted symbols
successfully recovered by the receiver [36]. For practical

considerations, we assume that Nl encoded symbols are
transmitted for the l-th layer such that

∑L
l=1Nl ≤ Nmax.

Nmax, which we call the “service bandwidth,” is set as part
of the service provisioning and may depend on the band-
width available to the server, the temporal duration of the
video segment, and other factors. For example, consider
a video sequence which is partitioned into segments each
with Tseg second duration and a server-allocated band-
width of � bit/s. Assuming that each symbol comprises
B bits, the maximum number of available transmission
symbols for each video segment is

Nmax =
⌊

�Tseg

B

⌋
(1)

and can be chosen and even varied across segments to
meet deadline requirements in streaming applications.
The multicast clients are modeled by M classes of media
players, each class comprising players that are capable
of decoding the media up to layer hm ∈ {1, . . . , L},
m = 1, . . . ,M, and have commensurate display reso-
lutions. Classes are indexed in increasing order h1 <

h2, . . . ,< hM. Clients with high-definition (HD) displays
may demand decoding up to a HD layer, while smart-
screen and portable device users may demand standard
definition (SD) or a lower resolution to suit their appli-
cation memory capacity and/or power consumption poli-
cies. For example in Fig. 1, multicast transmission of a
source with L = 8 layers to M = 3 classes of users is
considered. Mobile and portable TV clients can poten-
tially decode the video up to layers h1 = 3 and h2 = 6,
respectively, while all 8 layers are decodable by HD clients
(h3 = L = 8). Clients may also have different recep-
tion capabilities, e.g., due to having different bandwidths,
antenna systems, and radio propagation characteristics. A
reception coefficient (RC) 0 ≤ δ ≤ 1 is used to model the
client reception capability, where 1 − δ is the application-
layer packet loss rate due to loss phenomena in the lower
layers. We assume memoryless erasure channels (MECs)
with independent and identically distributed (i.i.d.) era-
sures between the server and the clients. A client channel
with RC δc has an erasure rate of 1 − δc and receives
an expected number of δcNmax transmitted fountain sym-
bols in a transmission period of one video segment. Note
that the actual number of the correctly received symbols
depends on the channel symbol erasure events. We define
the cumulative distribution function (CDF) of the channel
quality of class m clients as Fm(δ),m = 1, . . . ,M. Addi-
tionally, prior class probabilities πm > 0, m = 1, . . . ,M
with

∑M
m=1 πm = 1 are used to reflect the distribution of

client population across different classes.
The media layers are not of the same importance to

the clients. QoE for a client depends on the probability
of successfully acquiring the layers the client desires. It is
possible for one or more desired layers not to be served
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Fig. 1 System setup. System setup for the proposed rateless-code-based video multicast

due to resource or channel limitations. For those clients
that are served a particular layer l, the probability of fail-
ing to decode the layer can be limited by setting outage
probability constraints Plout, 1 ≤ l ≤ L . While it is con-
ceivable that the clients desiring the same layer might
want different levels of decoding assurance, for simplicity,
we assign one assurance level, in the form of probabil-
ity 1 − Plout, to each media layer. Ideally, every additional
encoded symbol drawn from a digital fountain improves
the decoding probability of the code. Thus, if Nmax is
allowed to be sufficiently large, all clients with non-zero
RC will eventually achieve the targeted quality of service
(QoS). However, in a more realistic scenario with finite
transmission resources Nmax, and any given set of Nl, l =
1, . . . , L with

∑L
l=1Nl = Nmax, we can find a set of mini-

mum needed reception coefficients (MNRCs) δl such that
those clients with RC δc < δl and desiring the layer lmedia
will not reach the layer-decoding assurance probability
1−Plout. Since successful decoding of all layers j = 1, . . . , l
is necessary in order to enjoy the media quality of layer l,
we impose an unequal error protection (UEP) condition

0 < δ1 ≤ δ2 ≤ . . . ≤ δL ≤ 1. (2)

Later, we prove that this condition is necessary for
optimal utilization of transmission resources while simpli-
fying the utility function.

2.2 Utility function
Let um,l be the utility for class m clients decoding layer l
with decoding failure probability guaranteed to be below
a given outage probability threshold. Our “utility” differs
from the conventional average utility found in best effort
QoE formulations, wherein utilities associated with unac-
ceptable decoding failure probabilities are included in the
utility averaging. um,l is a function of the number of clients
who are able to decode layer l under the guarantee, as well
as the amount of utility they gain,

um,l = αm,l

∫ 1

0
fm(ξ)I

⎛⎝ l∏
j=1

[
1 − P(Sj,Nj, ξ)

] ≥
(
1 − Plout

)⎞⎠ dξ .

(3)

Here, fm(δ) is the RC probability distribution of clients
in class m, I(.) is the indicator function, P(Sj,Nj, δ) is the
probability of failing to decode the fountain code in layer j,
with Sj source symbols and Nj transmitted symbols, for a
client with RC δ, and αm,l is the incremental utility gained
by a class m client after decoding layer l, provided that all
preceding layers are successfully decoded. αm,l is obtained
from the utility-rate function of each client class, Um(Rl),
i.e.,

αm,l = Um(Rl) − Um(Rl−1), ∀ l,m > 0. (4)
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We show in Section 4 a specific way of using this
function to optimize viewing experience. In (4), Rl =∑l

k=1 Sk/Tseg is the cumulative source symbol rate up to
layer l with R0 � 0 and Um(0) � 0, ∀m. The product term
within the indicator function in (3) provides the probabil-
ity of successfully decoding all layers up to and including
layer l. With the MNRCs δl defined earlier, we can write∏l

j=1
[
1 − P(Sj,Nj, δl)

] =
(
1 − Plout

)
and then rewrite (3)

as

um,l = αm,l

∫ 1

0
fm(ξ)I(ξ ≥ δl) dξ

= αm,l

∫ 1

δl

fm(ξ) dξ = αm,l[1 − Fm(δl)] . (5)

We obtain the utility of class m clients Um by accumu-
lating the guaranteed utility of all useful layers. However,
we should make sure that the incremental utilities αm,l
for enhancement layer l contributes to Um only when
the clients can reliably decode the preceding layers. The
UEP conditions embodied in (2) represent the hierarchi-
cal decoding dependencies of the scalable video layers and
provide the needed assurance.

Um =
hm∑
l=1

um,l =
hm∑
l=1

αm,l[1 − Fm(δl)] . (6)

Not all the video layers can be useful for the clients of
a class due to screen resolution or other playback con-
straints. Therefore, in (6), hm ≤ L denotes the highest
video layer which can contribute to the utility of class m
clients.
Finally, the overall utility is obtained by summing over

the utilities of all client classes using the prior class prob-
abilities πm > 0,m = 1, . . . ,M,

Utotal =
M∑

m=1
πmUm =

M∑
m=1

πm

hm∑
l=1

αm,l[1 − Fm(δl)]

≡ Umax −
M∑

m=1

hm∑
l=1

α̂m,lFm(δl) (7)

where πm is absorbed into αm,l by defining α̂m,l = πmαm,l
and Umax = ∑M

m=1
∑hm

l=1 α̂m,l. Note that Umax is an upper
bound on the deliverable utility and only depends on
the media source and the priors. This bound is achiev-
able if the MNRCs δhm ,m = 1, . . . ,M are small enough
so that no client has to settle for a quality layer lower
than their maximum desired quality. However, this may
not be possible since the service bandwidth Nmax and
the OP constraints prevent the MNRCs from becoming
arbitrarily small. As a result, clients with poor RCs may
end up being not served their most desired video qual-
ity, or even worse, being unable to decode the base layer.

Utotal is to be maximized, as shown below. We empha-
size that the problem at hand is efficient utilization of
the multicast service bandwidth Nmax to provide guaran-
teed utility to individual multicast clients while serving
as many clients as possible. However, for a given Nmax
and set of client RC distributions, the problem solution
may not be able to service a portion of the clients with
exceedingly poor channels. These clients may be served
by increasing Nmax or providing alternate solutions, e.g.,
unicast (re)transmission, peer-assisted repair [42]. Such
solutions are outside the scope of this paper.

2.3 Outage probability
Let P(S,N , δ) be the probability that a client fails to decode
the S information symbols, given the client’s RC δ and the
number of transmitted symbols N. The performance of a
rateless decoder in decoding a source with S information
symbols after receiving K code symbols is given by the
decoding failure probability function Pf (S,K). Assuming
interleaving is used if needed, we consider a memory-
less erasure channel (MEC) with symbol erasure rate 1 −
δ ∈[ 0 , 1] assumed to be fixed during the transmis-
sion period of a video segment. For a given number of
transmitted code symbols, the outage probability can be
obtained from

P(S,N , δ) = EK |N [Pf (S,K)] (8)

with erasure probability 1−δ and i.i.d. erasure events, and
K is a binomial random variable. Moreover, the decoding
failure probability of rateless codes can bemodeled by [23]

Pf (S,K) =
{
1, if K ≤ S,
abK−S. if K > S, (9)

where a > 0 and 0 < b < 1 vary with the rateless
code structure, particularly the degree distribution, and
the precode rate. For example, a = 0.85 and b = 0.567
were used for the raptor code in [23]. Combining (8) with
(9), we obtain the outage probability of a rateless coded
source over a MEC

P(S,N , δ) =
N∑
k=0

(
N
k

)
δk(1 − δ)N−kPf (S, k)

= BinN ,δ(S) +
N∑

k=S+1

(
N
k

)
δk(1 − δ)N−kabk−S.

(10)

Here, BinN ,δ(.) is the binomial CDF with parameters
N and δ. Despite its accuracy, the closed-form repre-
sentation in (10) is not convenient for optimization in
which one needs to express other parameters as an explicit
function of the OP. To deal with this shortcoming, the fol-
lowing parametric model that was previously derived in
[36] offers a convenient approximation of (10):



Bakhshali et al. EURASIP Journal onWireless Communications and Networking  (2015) 2015:260 Page 7 of 21

P̃(S,N , δ) = 0.5 exp
[
−δ(N − S/δ)H

S(1 − δ)

]
for N ≥ S/δ.

(11)

Note that H ≈ 1.8 for the rateless codes used in [23]. As
shown in Fig. 2, this model accurately estimates the outage
probability (10) for various channel parameters.
In summary, we aim to maximize the utility in (7) sub-

ject to the bandwidth and the UEP constraints defined
in Section 2.1. The first term in (7) is not a function
of the optimization variables, MNRCs δl, l = 1, . . . , L.
Hence, the utility maximization can be transformed into
the following utility loss minimization problem:

Problem 1. (General formulation)

min
{δl}Ll=1

M∑
m=1

hm∑
l=1

α̂m,lFm(δl)

subject to
UEP constraints:δ1 ≥ 0, (12)

δl − δl+1 ≤ 0, l = 1, . . . , L − 1,
δL ≤ 1,

BW constraint:
L∑

l=1
Nl ≤ Nmax.

We first consider using exhaustive search to solve
Problem 1. The set of all δl, l = 1, . . . , L satisfying the
UEP constraints forms an L-simplex in L dimension. For
exhaustive search, the simplex volume is discretized using
an L dimensional cubic lattice L with |L| points. For
each point in L, say δl, l = 1, . . . , L, we first obtain the
required per layer transmission resources Nj in a forward
procedure using

Nl =

⎧⎪⎨⎪⎩
P−1

(
S1, δ1,Plout

)
l = 1,

P−1
(
Sl, δl, 1 − 1−Plout∏l−1

j=1[1−P(Sj ,Nj ,δl)]

)
l ≥ 2,

(13)

wherein P−1(S, δ, p) is the inverse outage probability func-
tion which yields the required number of transmitted
symbols N as a function of the number of source sym-
bols S, the reception coefficient δ, and the designated
outage probability constraint p. A convenient closed form
expression of P−1(S, δ, p) is obtained by rearranging the
terms in the approximated OP model (11). Having Nj, j =
1, . . . , L in hand, the bandwidth constraint is checked. If
the constraint is satisfied, the cost function is calculated;
otherwise, the cost is set to infinity. For a sufficiently fine
discretization, we regard the minimum cost point in L as
the “optimal” solution. Note that by using the bandwidth
constraint in the above manner, the exhaustive search
can be conducted over L − 1 dimensions. The complex-
ity O(DL−1) can be large, where D is the number of grid
points on each dimension.
After obtaining the optimal MNRCs, δ∗

l , l = 1, .., L, the
corresponding transmission resources per layer N∗

l ,∀l are
obtained. Clients whose highest media quality demand is
layer l but whose RCs are below δ∗

l have to settle for the
lower quality of layer i where i is the largest layer index
with δ∗

i no greater than the client’s RC. Ultimately, clients
with RCs below δ∗

1 are dropped from the multicast as they
cannot decode the base layer with the assured probability.
In contrast to other formulations such as [16] in which

clients are individually represented in the optimization,
here multicast clients are grouped and represented by
the distributions Fm(δ) and associated priors πm. Conse-
quently, the complexity of the proposed optimization is
independent of the number of clients. Moreover, client-
to-server feedback for the purpose of updating the RC

Fig. 2 Comparison between the closed-form outage probability and approximated outage probability model. Closed-form outage probability (10)
and the outage probability obtained from the approximatedmodel (11) as a function of transmitted fountain symbols for a source with size S = 1000
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distributions could be managed without feedback implo-
sion, e.g., the server could broadcast a threshold value
and clients with a locally generated random number above
the threshold would send their RCs to the server. This
threshold is adapted to the multicast population size such
that the server is not overwhelmed by excessive amount
of feedback messages. The RC distributions could be
parametrized or discretized with a suitably chosen reso-
lution to trade-off between computational complexity and
accuracy.

2.4 Simplified formulation
Next, we exploit simplifications of the outage probabil-
ity constraints to obtain a problem formulation that is
amenable to solution using gradient search. Let Ql(δ) =∏l

j=1
[
1 − P(Sj,Nj, δ)

]
be the probability of receiving lay-

ers 1 to l. Ql(δ) is monotonically non-increasing with l
and monotonically non-decreasing with δ. Moreover, due
to the fast-decaying nature of the decoding failure prob-
ability (9), Ql(δ) exhibits an abrupt transition for δ in the
neighborhood of δl. This can be seen from Fig. 3 which
shows Ql(δ) and [1 − P(Sl,Nl, δ)] for a closely spaced set
of δl ’s. It can be seen from Fig. 3 that in the neighborhood
of δl, the factor Ql−1(δ) = ∏l−1

j=1
[
1 − P(Sj,Nj, δ)

]
is nearly

one and the transition behavior of Ql(δ) is dominated by[
1 − P(Sl,Nl, δ)

]
. Hence, we can use the approximation

l∏
j=1

[
1 − P(Sj,Nj, δl)

] ≈ 1 − P(Sl,Nl, δl). (14)

Consequently, for a given set of δl, l = 1, . . . , L, the per-
layer transmission resources Nj can be obtained from

Nl = P−1
(
Sl, δl,Plout

)
, l = 1, . . . , L. (15)

Using (11) to estimate Nl as a function of the outage
probability, we have

Nl = Sl/δl + τl
H

√
1 − δl

δl
, (16)

where

τl = H

√
−Sl ln

(
2Plout

)
, Plout ≤ 0.5. (17)

Using this, the bandwidth constraint becomes

L∑
l=1

(
Sl/δl + τl

H

√
1 − δl

δl

)
≤ Nmax, 0 < Plout ≤ a.

(18)

As a result, a new optimization problem can be
formulated.

Fig. 3 Outage probability approximation. A comparison between Ql(δ) (solid blue line) and [ 1− P(Sl ,Nl , δ)] (dashed red line) for the different layers of
a three-layer video stream. δ1 = 0.526, δ1 = 0.572, δ1 = 0.607 for outage probability constraints similar to those expressed in Section 5
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Problem 2. (Simplified formulation)

min
{δl}Ll=1

M∑
m=1

hm∑
l=1

α̂m,lFm(δl)

subject to
UEP constraints: δ1 ≥ 0,

δl − δl+1 ≤ 0, l = 1, . . . , L − 1,
δL ≤ 1,

BW constraint:
L∑

l=1

(
Sl/δl + τl

H

√
1 − δl

δl

)
≤Nmax.

Unlike Problem 1, first order derivatives of the BW
constraint can now be easily obtained. Hence, gradient
descent algorithms with O(L log(1/e)) complexity, where
e is the required accuracy, can be deployed to solve
Problem 2. Since Problem 2 may have multiple local min-
ima, the quality of the gradient descent solution depends
on the algorithm initialization. In the next section, a con-
vex approximation to Problem 2 is obtained. In Section 5,
we present numerical results demonstrating the effective-
ness of the convex initialization to the gradient search.

2.5 Convex formulation
Problem 2 is not convex. We show that, by making further
simplifying approximations, the problem can be recast
into a convex optimization problem. In the first step, we
propose the following parametric CDF approximations.
Form = 1, . . . ,M,

Fm(δ) ≈ F̃m(δ) = cmδpm + 1 − cm, 0 < cm ≤ 1,
pm > 0, 0 ≤ δ ≤ 1,

(19)

where pm and cm are model parameters obtained by
regression. In Section 5, we investigate the ability of the
above approximations to represent client RC distribu-
tions.
Next, we further simplify the outage probability con-

straints. We use the following simpler model [36] for the
outage probability in order to estimate Nl for each layer:

Nl ≈ Sl + logb Plout/a
δl

, 0 < Plout ≤ a, (20)

where a and b are obtained from the decoding failure
probability function of the rateless code (9). Using this, the
bandwidth constraint becomes

L∑
l=1

Sl + logb Plout/a
δl

≤ Nmax, 0 < Plout ≤ a. (21)

After introducing a parameter transformation θl =
1/δl,∀l, we obtain

Problem 3. (Convex formulation)

min
{θl}Ll=1

M∑
m=1

hm∑
l=1

α̂m,lF̃m(1/θl)

subject to

UEP Constraints: θl+1 − θl ≤ 0, l = 1, . . . , L − 1,
θL ≥ 1,

BW Constraint:
L∑

l=1

(
Sl + logb P

l
out/a

)
θl ≤ Nmax.

We prove that Problem 3 is convex in the Appendix.
In Section 5, we examine the three problem formulations
numerically in different application scenarios and assess
their accuracies.

3 Utility smoothing
Source rate and/or service bandwidth fluctuations across
consecutive video segments could result in variations of
the optimized MNRCs. Hence, clients with RCs close to
the MNRCs may experience quality variations across suc-
cessive segments. One may encode video segments of
longer durations to reduce rate fluctuations at the cost
of additional server/client-terminal complexity, memory
requirements, and delay [43, 44]. Below, we reformulate
our problem to include suppression of client dissatisfac-
tion due to quality variations.
Major quality variations are due to unwanted switch-

ings between different layers. This mainly results from the
client’s RC crossing the MNRC of a layer subscribed by
the client. For example, if a client’s RC is always above the
MNRC for the base layer, no frame dropping would occur
(within the statistical assurance of the base layer out-
age probability constraint). Below, we extend our problem
formulation to include suppression of MNRC variation.
Numerical results shown later demonstrate the effective-
ness of the suppression in reducing quality switchings, and
more specifically, base-layer outage occurrences.
Let us assume that the client RC distributions do not

change significantly across consecutive video segments,
i.e., F(k)

m (.) ≈ F(k−1)
m (.),∀m, where k is the video seg-

ment index. Similar to (4), we define the incremental
dissatisfaction coefficients βm,l ≥ 0 to model the client
disappointment for not decoding layer l of the current
video segment that was successfully decoded previously.
Consequently, the disappointment of a classm client who
enjoyed layer l of the previous video segment but can only
decode the current video segment up to a lower layer l̂ < l
is proportional to

∑l
j=l̂+1 βm,j. Using βm,l, and consider-

ing the non-decreasing property (2) of the MNRCs δl, the
combined client dissatisfaction due toMNRC fluctuations
is expressed by
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D(k) =
M∑

m=1

hm∑
l=1

β̂m,l
[
Fm

(
δ
(k)
l

)
− Fm

(
δ
(k−1)
l

)]
I
(
δ
(k)
l ≥ δ

(k−1)
l

)
,

(22)

where β̂m,l = πmβm,l, and δ
(k−1)
l and δ

(k)
l , l =

1, . . . , hm,∀m are theMNRCs for the previous and the cur-
rent video segments, respectively. Subtracting D(k) from
the total utility in (7) to instrument a variation-induced
penalty term leads to the following optimization problem.

Problem 4. (Dynamic optimization)

min{
δ
(k)
l

}L
l=1

(1 − λ)D(k) + λ

M∑
m=1

hm∑
l=1

α̂m,lFm
(
δ
(k)
l

)
subject to

UEP constraints: δ
(k)
1 ≥ 0,

δ
(k)
l − δ

(k)
l+1 ≤ 0, l = 1, . . . , L − 1,

δ
(k)
L ≤ 1,

BW constraint:
L∑

l=1
N (k)
l ≤ N (k)

max.

0 ≤ λ ≤ 1 effects a balance between the two utility
loss terms. A small λ tends to prevent the MNRCs from
increasing excessively across two consecutive video seg-
ments. However, a longer-term gradual increase of the
MNRCs due to variations of the RC distributions Fm(.)
and source bit rate is still possible. However, an exceed-
ingly small λ may significantly reduce the overall utility
provided to the clients. Hence, a judicious choice of λ

would avoid letting clients with the worst channels from
unduly influencing the solution.

4 Utility optimization using a perceptual quality
metric

The proposed multicast optimization scheme can be
tailored to fit different application scenarios. Here, we
aim to maximize the clients’ subjective viewing experi-
ence by setting the marginal utility parameters αm,l using
a perceptual quality model that was developed using
subjective-viewing test results [33, 34]. Although peak
signal-to-noise ratio (PSNR) [45] has been widely used as
a measure of video quality, low correlation between PSNR
and video quality ratings provided by human viewers—
commonly reported as mean opinion scores (MOSs)—
is reported. The shortcomings of PSNR are more pro-
nounced when comparing video playback at different
spatial and temporal resolutions. More versatile objective
quality measures have been proposed as estimates of sub-
jective quality ratings. The objective video quality metric
introduced in [33] and [34] provides a normalized MOS

(NMOS) that can be used to quantify the quality between
different spatial, temporal, and quantization resolutions

NMOS(s, f , PSNR) =
(
1 − e−bs s

smax

1 − e−bs

)⎛⎝1 − e−bf
f

fmax

1 − e−bf

⎞⎠
×

(
1 − 1

1 + e0.34(PSNR−bp)

)
.

(23)

Here, s and f represent the number of pixels and frame
rate, respectively, while smax and fmax are their maximum
values. bs, bf , and bp are model parameters that depend
on the video content [33, 34]. This NMOS model is con-
veniently used to illustrate the method proposed herein.
More elaborate quality estimation methods such as the
video quality metric (VQM) [46] algorithmmay be advan-
tageously employed. We should mention that a slightly
advanced version of the NMOS model used in this work
was published in [47].
As an illustration, consider a scenario wherein the high-

est video layer successfully recovered by a terminal has
a spatial resolution lower than the playback capability;
specifically, a HD terminal receiving a SD video. The ter-
minal may display the SD video as received in the middle
of the HD display or adapt the video to the display by
upsampling. The perceptual quality metric in (23) is used
as a yardstick to compare the perceptual effects of various
possible adaptations.
NMOSm,l, non-decreasing with layer index l, repre-

sents the highest NMOS corresponding to the best pos-
sible adaptation—within the capabilities of the class m
terminals—that can be performed on the media up to
layer l ≤ hm. Recall that hm is the highest layer of the video
stream that class m terminals can potentially decode.
Furthermore, we may also model client playback prefer-
ences that can be set independently of the achieved video
quality. For example, a certain application may require
the spatial resolution not to be lower than some specific
level. We may use preference weights 0 ≤ Wm,l ≤ 1,
non-decreasing with respect to index l, to map NMOS
to multicast utility while accounting for clients’ playback
preferences. If class m users are unwilling to settle for
media playback at any layer l < hm, then Wm,l = 0 ∀l <

hm. Thus, we define our utility-rate function as

Um(Rl) = Wm,lNMOSm,l, (24)

which can be applied to (4) to calculate themarginal utility
coefficients αm,l ≥ 0.

5 Numerical simulations
In the following, we evaluate the performance of the
proposed optimization scheme when applied to multicas-
ting a video sequence with L = 3 layers to heteroge-
neous clients. Bitstream parameters for three H.264/SVC
encoded video sequences are summarized in Table 2. Sl
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Table 2 Specification of H.264/SVC coded video bitstreams

Video Layer
Resolution Frame rate Bit rate Y-PSNR Sl (source
(pixels) (frames/s) (kbps) (dB) symbols)

City

1 QCIF 176 × 144 15 104.3 33.4 261

2 CIF 352 × 288 30 548.6 33.5 1111

3 4CIF 704 × 576 60 3226.2 33.5 6694

Ice

1 QCIF 176 × 144 15 84.6 32.2 212

2 CIF 352 × 288 30 378.9 34.9 736

3 4CIF 704 × 576 60 2610.4 38.6 5579

Crew

1 QCIF 176 × 144 15 150.8 37.3 377

2 CIF 352 × 288 30 758.4 37.1 1519

3 4CIF 704 × 576 60 3560.4 37.7 7005

denotes the number of source symbols in each layer over
a Tseg = 1 s time segment, and each symbol comprises 50
bytes.
The bit rates given are for each layer. TheOP constraints

Pout = {
P1out,P2out,P3out

} = {
10−4, 4 × 10−4, 5 × 10−4} are

enforced. An equal error protection (EEP) scheme is used
as the baseline for the performance comparison. In the
EEP scheme, the transmission resources allocated to each
media layer is proportional to the relative size of that layer
in the source bitstream, i.e.,

Ne
l = NmaxSl∑L

k=1 Sk
l = 1, . . . , L.

We use the following metrics to evaluate the perfor-
mance gain and efficiency of different schemes, respec-
tively,

η ↑ � U − Ue
Ue

%, ε � U
Uopt

%, (25)

where U is the utility delivered to the clients, Uopt is the
maximum attained by using the optimal MNRCs, and Ue
corresponds to the utility of the EEP scheme. The interval
0 < δ ≤ 1 is partitioned into small sub-intervals and an
exhaustive search is performed to find the MNRCs δl, l =
1, . . . , L and subsequently Uopt . Nevertheless, this process
could be computationally expensive for a large number of
sub-intervals and source layers. To obtain a sub-optimal
solution with much lower complexity, first, the convex
problem (Problem 3) is solved. Next, a constrained gra-
dient descent (GD) algorithm is deployed to solve the
simplified formulation (Problem 2) using the convex solu-
tion as a starting point. The performance measures of
these two solutions are superscripted “CV” and “GD,”
respectively. The multicast clients may experience a wide
variety of channel conditions depending on fading and
their distance to the transmitting station [48]. For wide-
area cells, the range of channel qualities can be expected
to be broader than reported in [48]. Thus, the uniform
distribution and truncated Gaussian mixtures in Fig. 4
are selected to reflect distinct types of client RC statis-
tics with different balances between the number of clients
with poor and good channels. One thousand clients are
considered for these scenarios. In themulti-class scenario,
each class inherits a portion of clients based on the priors
πm,m = 1, . . . ,M. Next, samples of the client reception
coefficients (RCs) are generated for each distribution.

5.1 Single-class scenario
In this scenario, all clients are assumed to be capable
of decoding all three layers. Hence, M = 1 and h �
h1 = L = 3. Table 3 exhibits the optimization results for
Nmax = 13, 000 symbols.

Fig. 4 Class RC distributions. Prototypical (top) PDFs and their corresponding (bottom) CDFs. Approximated CDFs based on (19) are depicted in
dashed red lines
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The performance metrics are evaluated over four
crafted utility settings. On average, the proposed opti-
mization manages to increase the utility by a factor of
more than 2 compared to the EEP solution. The EEP
solution is highly inefficient when the majority of clients
experience poor channels, as in the �-III distribution
in Fig. 4. Note that the solution of the convex opti-
mization yields an average efficiency of 95.25 %. Adding
the GD search increases the efficiency to 99.50 %. The
optimization results as well as the solution of the EEP
approach for different service bandwidth constraintsNmax
are depicted in Fig. 5. The metric values are averaged over
the four distributions and utility settings (the 16 cases in
Table 3).
Due to the high efficiency of the initial convex solu-

tion, the GD step could be omitted in order to reduce
computation without significant performance penalty.

5.2 Multi-class scenario
Next, we consider a scenario with M = 2 client classes.
The class 1 clients with CIF resolution displays may only
decode the base layer and the first enhancement layer, i.e.,
h1 = 2. The clients in class 2 have 4CIF resolution dis-
plays and decoders capable of decoding the entire video
stream, i.e., h2 = 3. The four sample distributions in
Fig. 4 are used to model the client RC distributions of
both client classes, resulting in 16 possible distribution
pairings. For each pair of distributions, the simulation is
performed with different prior values. The utility param-
eters are obtained using the perceptual quality metric in
(24). The preference parameters are assumed to beWm,l =
0.9hm−l, l ≤ hm. The NMOS parameters for the test video
sequence are extracted from [33] and [34]. The simula-
tion results are shown in Table 4 in terms of metric values
averaged over the 16 pairings.
On average, the initial allocation provided by the con-

vex approximation achieves 97.57 % efficiency. Using the
GD algorithm, the efficiency is increased to 99.80 %.
Similar to the single-class scenario, most of the poten-
tial performance gain can be obtained using the convex
optimization.

5.3 Reduced-feedback scenario
It is worthy to investigate the optimization performance
when client RC statistics are collected only from a portion
of the multicast clients. Limiting channel state informa-
tion feedback could be an effective measure against feed-
back implosion at the server and for maintaining a low
error rate for amultiple access feedback channel. For all 16
pairings of the RC distributions in Fig. 4 for the class 1 and
2 clients, an ensemble of size nm = 1000,m = {1, 2} sam-
ples are drawn from each distribution to represent 1000
clients in each class (π1 = π2 = 1/2). The performance
is evaluated as a function of the fraction of clients from

each class that successfully send their RC andmedia player
capability information to the server—in terms of client-
to-server feedback ratio (CSFR), 0 ≤ CSFR ≤ 1. This
experiment is repeated 100 times for every CSFR and dis-
tribution pairing to ensure accuracy, especially for small
CSFR values. The histograms of the received RC feed-
back messages are used as estimates of the actual class
RC distributions and employed in the optimization. The
performance is compared to the scenario in which full
knowledge of all client RCs is revealed to the server, i.e.,
all clients successfully feedback their RCs to the server
(CSFR = 1). For each CSFR, the performance metrics of
all three tested video sequences are combined (4800 sim-
ulation runs per CSFR) and the results are illustrated in
Fig. 6.
The proposed optimization demonstrates good toler-

ance to limited RC feedback. Optimization based on RC
feedback from only 5 % of the clients still provides perfor-
mance close to 100 % feedback. Both convex optimization
and the GD algorithm maintain their performance in the
limited feedback regime. For a smaller pool of 100 clients
per class, the CFSR needed goes up to about 20 %. How-
ever, the small number of feedback clients, 20 in this
example, should be manageable. We believe this robust-
ness comes from the ability of the parametric CDF in
(19) to capture the general characteristics of the client RC
distributions.

5.4 Variable rate source scenario
Performing a resource allocation optimization repeatedly
for each video segment means that computation intensity
depends on segment duration Tseg. One way to reduce
computation is to use a large Tseg though Tseg may be
limited by other considerations such as media bitstream
access and formatting requirements. Another way is to
optimize the video less frequently by using longer-term
statistics. In this section, we aim to quantify the per-
formance penalty incurred when the optimization uses
longer-term statistics as compared to segment by segment
optimization. Note that a video bitstream may exhibit
large bit rate variations due to intra-coded frames. Longer
video segments can reduce the rate fluctuations at the cost
of additional buffering. Let us consider R(k)

l = S(k)
l /Tseg as

the source rate for layer l of video segment k with dura-
tion Tseg seconds and S(k)

l source symbols. We model the
source bitstream variations across different segments by

S(k)
l = Sl

(
1 + γ

(k)
l

)
, (26)

where Sl is the average length of layer l obtained from
Table 2 and γ

(k)
l , l = 1, .., L,∀k are L independent and

identically distributed uniform variables with support
[−γmax, +γmax]. For the special case γmax = 0, the source
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Table 3 Performance of optimized allocation for the single-class scenario (Nmax = 13, 000, αl � α1,l , ∀l)

Utility settings

City Ice Crew

RC δ
Distribution

Performance (%) Efficiency (%) Performance (%) Efficiency (%) Performance (%) Efficiency (%)

[α1 α2 α3] η
CV ↑ η

GD ↑ ε
CV

ε
GD

η
CV ↑ η

GD ↑ ε
CV

ε
GD

η
CV ↑ η

GD ↑ ε
CV

ε
GD

�-I

[ 1/3 1/3 1/3] 114.40 114.40 100.00 100.00 71.22 71.22 100.00 100.00 113.82 113.82 100.00 100.00

[ 1/4 1/4 1/2] 81.74 81.74 100.00 100.00 52.40 52.40 100.00 100.00 75.89 75.89 100.00 100.00

[ 1/2 1/4 1/4] 144.48 144.48 100.00 100.00 87.18 87.18 100.00 100.00 152.44 152.44 100.00 100.00

[ 4/7 2/7 1/7] 176.61 176.61 100.00 100.00 105.33 105.33 100.00 100.00 188.40 188.40 100.00 100.00

�-II

[ 1/3 1/3 1/3] 15.83 20.53 96.10 100.00 14.43 22.55 93.37 100.00 17.96 25.36 94.10 100.00

[ 1/4 1/4 1/2] 11.58 16.79 95.54 100.00 8.37 16.44 93.06 100.00 17.91 21.34 97.18 100.00

[ 1/2 1/4 1/4] 22.49 27.82 95.83 100.00 20.06 26.68 94.77 100.00 24.52 32.87 93.71 100.00

[ 4/7 2/7 1/7] 27.96 31.48 97.32 100.00 26.12 31.10 96.20 100.00 28.79 38.39 93.06 100.00

�-III

[ 1/3 1/3 1/3] 281.10 318.43 90.42 99.27 379.38 395.35 96.77 99.99 209.62 210.07 98.75 98.89

[ 1/4 1/4 1/2] 167.02 213.91 84.47 99.30 238.25 293.25 86.01 99.99 113.42 154.63 83.81 99.99

[ 1/2 1/4 1/4] 358.66 395.93 92.49 100.00 434.55 454.58 96.39 100.00 326.65 336.00 97.85 100.00

[ 4/7 2/7 1/7] 424.19 466.78 92.49 100.00 514.46 530.42 97.47 100.00 387.60 398.29 97.85 100.00

�-IV

[ 1/3 1/3 1/3] 38.68 54.54 89.73 100.00 32.92 40.35 90.02 95.04 32.22 34.00 95.58 96.87

[ 1/4 1/4 1/2] 27.40 27.83 91.47 91.78 22.02 31.10 93.07 100.00 23.06 24.59 97.07 98.28

[ 1/2 1/4 1/4] 61.61 72.15 93.88 100.00 50.69 53.27 95.22 96.85 41.34 59.93 88.37 99.99

[ 4/7 2/7 1/7] 78.11 83.92 96.84 100.00 61.30 70.15 94.80 100.00 57.03 72.07 91.01 99.72

Average 126.99 140.46 94.79 99.40 132.42 142.59 95.45 99.49 113.17 121.13 95.52 99.61
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Fig. 5 Single-class optimization results. Average utility traces (left) and efficiency of the single-class video multicast optimization (right) for various
transmission budgets

becomes a constant-rate source (CRS) and the optimal
allocation is independent of any particular video segment
k provided that the service bandwidth, the utility coeffi-
cients, and client RC distributions are fixed. The following
efficiency measure quantifies the performance penalty
due to performing the resource allocation optimization
using average statistics,

εCRS = 〈UCRS
(k)/U(k)〉. (27)

Here, 〈.〉 denotes averaging over segments. UCRS(k) is
the utility achieved for the k-th video segment when the
resource allocation optimization is performed only once
based on average rate-distortion statistics. Conversely,
U(k) is the maximum attainable utility when a separate
resource allocation optimization is conducted for each
video segment. The maximum number of transmitted
packets Nmax and the client RC distributions are assumed
to remain unchanged during the entire multicast. For
every γmax and 16 pairings of the candidate distributions,
100 samples of γ

(k)
l ,∀l are generated to represent vari-

able source rates for 100 video segments. The results are
plotted in Fig. 7 as a function of the max-to-min rate
ratio (MRR) for the video rates generated by (26) where
MRR � 1+γmax

1−γmax
.

As expected, optimization based on long-term statis-
tics results in lower efficiency. However, the performance
penalty is moderate since εCRS remains at above 90 % effi-
ciency even for a rate variation as large as MRR = 19.
We should mention that the efficiency εCRS of the EEP
solution remains below 65 % for Nmax = 15, 000 and
Nmax = 19, 000, respectively, reconfirming the poor per-
formance of the EEP solution for quality-aware multicast
transmission.

5.5 Multi-segment quality smoothing
In this scenario, the proposed dynamic utility maximiza-
tion (Problem 3) which penalizes quality fluctuations for
clients with marginal RCs is studied. We consider 9 con-
secutive segments of an H.264-SVC codedmultilayer (L =
3) Crew video sequence, each segment containing 32
frames with QCIF and CIF spatial layers, and the GOP
size is 16 frames with one intra-coded frame starting each
GOP. The base layer embeds the QCIF resolution with
frame rate of 15 frames/s. The quantization parameter
(QP) for the base layer is set to 44. The first enhance-
ment layer increases the frame rate from 15 to 30 frames/s
and additionally provides a better quantization resolution
with QP = 32. Finally, the last enhancement layer embeds
the CIF resolution with the frame rate and QP identical
to the previous layer. The NMOS model parameter val-
ues for this video sequence are bf = 7.23 dB, bs = 3.49
dB, and bp = 29.68 dB [33, 34]. We observed that the
encoded sequence provides nearly steady PSNRs across
the video segments. The achieved PSNRs are 30.5, 35.1,
and 35.2 dB for the base layer and the enhancement layers,
respectively. Based on these PSNR values and the model
parameters [33, 34], the average NMOS values are 0.31
for the base layer, 0.48 for the second layer, and 0.86 for
the third layer. These scores manifest a peak variation of
less than 5 % across different video segments. Two client
classes (M = 2) with equal population size (π1 = π2 =
0.5) are assumed. �-II and �-IV from Fig. 4 model the RC
distributions of the class 1 and 2 clients with QCIF and
CIF screen resolutions, respectively. The video decoders
of the class 1 clients are assumed to be capable of decoding
the base layer as well as the first enhancement layer, while
class 2 clients are capable of decoding all video layers.
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Table 4 Simulation results forM = 2 classes and L = 3 layers (π2 = 1 − π1)

Nmax π1

City Ice Crew

Performance (%) Efficiency (%) Performance (%) Efficiency (%) Performance (%) Efficiency (%)

η
CV ↑ η

GD ↑ ε
CV

ε
GD

η
CV ↑ η

GD ↑ ε
CV

ε
GD

η
CV ↑ η

GD ↑ ε
CV

ε
GD

10,000

0.1 139.75 185.02 88.71 99.41 94.55 95.79 98.36 99.25 729.00 840.57 93.21 97.99

0.3 148.06 180.00 92.00 99.71 91.98 93.47 98.59 99.59 694.42 774.50 96.11 99.23

0.5 164.39 193.34 93.25 99.99 97.00 100.11 97.52 99.45 711.10 793.00 96.85 99.77

0.7 187.93 222.15 92.66 100.00 116.24 118.15 98.30 99.34 754.36 842.38 96.01 99.09

0.9 230.60 284.35 91.00 100.00 158.42 159.80 99.24 99.98 868.80 1001.10 92.76 97.69

15,000

0.1 88.06 95.91 95.54 99.70 86.72 94.33 95.20 100.00 99.03 103.91 97.26 99.98

0.3 83.34 90.59 95.81 99.91 81.91 87.50 96.32 100.00 90.59 94.45 97.59 99.84

0.5 90.77 95.43 97.05 99.94 86.43 90.20 97.47 100.00 93.05 96.36 97.77 99.62

0.7 108.87 111.70 98.01 99.84 100.93 103.02 98.56 99.97 106.31 109.35 98.30 99.88

0.9 152.94 154.14 99.28 99.89 137.00 138.04 99.37 99.92 134.99 138.98 98.33 99.98

19,000

0.1 78.32 86.74 94.92 100.00 47.77 50.33 98.24 100.00 102.87 110.00 95.79 99.95

0.3 74.52 80.94 95.86 100.00 49.81 51.74 98.68 100.00 93.00 97.82 96.92 99.98

0.5 79.53 83.96 97.03 100.00 54.77 56.13 99.07 100.00 95.44 98.64 98.00 99.95

0.7 93.92 96.50 98.26 99.98 63.90 64.76 99.40 100.00 108.67 110.06 98.62 99.95

0.9 128.10 129.14 99.33 99.89 80.97 81.63 99.61 99.98 142.63 144.29 99.35 99.97

Average 170.55 189.21 96.53 99.92 125.46 126.49 99.41 99.96 321.61 357.09 96.87 99.52
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Fig. 6 Optimization results for the reduced-feedback scenario. Performance of the proposed optimization as a function of the fraction of clients that
successfully feedback their channel state information to the server for convex optimization (dashed lines) and GD method (solid lines)

Here, we aim to optimize the provided utility under
the constraint of limited service bandwidth Nmax. Addi-
tionally, failure in decoding the base layer is considered
unacceptable for both classes. Therefore, we set the dis-
satisfaction coefficients βm,1 = 1 ∀m and the rest of the
dissatisfaction coefficients to zero. The server is assumed
to transmit Nmax = 11, 000 symbols for each segment,
where each symbol consists of 16 bytes.
The video segment size, the optimized utility for various

values of λ, and the optimized MNRCs δ
(k)
l , l = 1, . . . , 3

are plotted as a function of the segment index k in Fig. 8.
This video sequence exhibits a significant rate increase at

the fourth segment. This raises the MNRC for the base
layer δ

(k)
1 when the quality fluctuation suppression term is

nulled (λ = 1). By increasing λ, the optimization increas-
ingly penalizes solutions that allow the base layer MNRC
to increase. Hence, the portion of clients that face tempo-
ral outage is reduced and a more stable visual experience
is provided. This is reflected in lower δ

(k)
1 values with

smaller variations. Given a fixed service bandwidth and
considering the fact that βm,l = 0 for l ≥ 2, the reduc-
tion in the MNRC fluctuations for the base layer comes
at the cost of increased variations of the MNRCs for the
enhancement layers, as reflected in the δ

(k)
2 and δ

(k)
3 traces

Fig. 7 Long-term statistics-based optimization results for a variable-rate source. Optimization efficiency based on the long-term statistics of a
variable-rate source for Nmax = 15, 000 (left) and Nmax = 19, 000 (right). Sources with different max-to-min rate ratios (MRRs) are emulated by
modifying the distribution of γ (k)

l in (26)
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Fig. 8 Dynamic optimization statistics. Traces of a video segment size, b provided utility calculated using (7), and c–e optimized MNRCs for the base
layer and the enhancement layers after solving Problem 3 with Nmax = 11, 000

in Fig. 8d and e. Note that the achieved utility is closer to
the upper-bound Umax for the video segments with fewer
source symbols. Umax depends on the video content and
its viewing quality but not the source rate. However, the

gap between the achieved utility and Umax depends on
the portion of clients who are unable to receive the video
layers they desire. Hence, for a constant Nmax, increas-
ing the source rate widens the gap, in proportion to the
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distribution of clients with marginal RCs. Additionally,
we observe that the penalty term with different weights
(1−λ) hardly affects the utility traces except for the fourth
segment that contains the sudden rate increase.
For the particular choice of βm,l values in this scenario,

the average fraction of clients that successfully enjoys the
base layer in one video segment but fails to decode the
base layer in the next segment can be obtained by aver-
aging the dissatisfaction measure (22) over the video seg-
mentsD = 〈D(k)〉. This metric is the marginal probability
that a satisfied user encounters frame drops or freezes in
the next video segment. Table 5 illustrates D for various
service bandwidths and λ. As expected, higher bandwidth
and smaller λ both contribute towards a more stable video
quality experience. Table 5 also provides data for Z which
measures the percentage of clients that experience outage
in decoding the base layer at least once during the nine
video segments. Due to the client RC distributions model-
ing a significant portion of clients with poor channels, and
a notable rate increase beyond the fourth segment, there
is always a portion of clients that experience outage for a
constant Nmax. When the variation suppression term D is
disabled, the outage percentage remains stubbornly high
even as the service bandwidth is substantially increased.
However, a lower outage rate Z is attainable by increasing
the penalty weight 1 − λ. If segments 4 to 9 are excluded
from the statistics for Nmax = 11, 000, Z is reduced from
16.03 to 3.24 % for λ = 1. However, for λ = 0.3, exclusion
of those segments reduces Z slightly from 3.6 to 2.85 %.
This signifies the performance of the proposed dynamic
optimization in reducing the sensitivity of client dropout
to high-rate video segments.
The outage statistics based on the Z measure for

the EEP solution is 19–30 % higher than the pro-
posed dynamic optimization. Figure 9 provides the out-
age burst-length statistics assuming that client channel
quality is unchanged during the transmission of the
nine video segments. The results are normalized to

the number of maximum length outage incidents for
the EEP scenario. It is clear that the proposed opti-
mization significantly reduces the number of outage
incidents.
Furthermore, we investigate the performance of the pro-

posed algorithm for a client with time-varying RC. We
consider a client with a poor average RC δc = 0.2. Based
on the MNRC δ

(k)
1 traces in Fig. 8c, the viewing expe-

rience of this client would be disturbed by base-layer
outage. We use truncated normal distributions with mean
μ = 0.2 and different standard variations σ to model
the probability distribution of its RC during the transmis-
sion of all nine segments. Examples of these distributions
are depicted in Fig 10. We calculate the frame-freeze rate
(FFR), defined as the percentage of frames not received
and may be replaced by the last decoded frame. The
results are depicted in Fig. 11. Using the proposed opti-
mization, the FFR is reduced by as much as 11 and 7 %
for narrow RC distributions (σ < 0.02) and wide distri-
butions (σ > 0.02), respectively. Note that the FFR for
the EEP solution is more than 99 % for this client due
to significantly higher values of the corresponding δ

(k)
1

traces.
In practice, it may be possible to vary the service band-

width Nmax with the source symbol rate. For instance, a
server simultaneously serving multiple independent video
streams can exploit a well-known advantage offered by
statistical multiplexing: the total source rate fluctuates far
less than the individual source rates. In such case, allowing
Nmax to vary, in conjunction with the proposed method,
would enable suppression of outage to negligible levels.
The MNRCs can also be transmitted as a side information
with negligible cost. Therefore, a client can select a video
layer for playback whose MNRC is at a safe margin below
the client’s RC. The client may use theMNRCs for the pre-
vious segments as input to an algorithm that selects the
actual enhancement layers for decoding and display, with
the aim to produce the best viewing experience. MNRC

Table 5 D is the percentage of clients that experience outage in decoding the base layer. Z is the percentage of clients that
experience outage at least once over the 9 video segments

Nmax
D (%) Z (%)

EEP λ = 1 λ = 0.8 λ = 0.6 λ = 0.3 λ = 0.1 EEP λ = 1 λ = 0.8 λ = 0.6 λ = 0.3 λ = 0.1

9000 3.38 4.40 3.62 2.51 1.89 1.89 58.20 38.81 34.47 25.00 19.40 19.40

10000 2.16 3.50 2.75 1.17 0.53 0.52 46.33 27.29 25.19 12.43 6.71 6.71

11000 1.87 1.70 1.03 0.22 0.12 0.04 42.02 16.03 11.73 4.39 3.62 2.88

12000 1.78 0.74 0.35 0.25 0.11 0.00 39.61 7.16 5.19 4.31 3.04 2.14

13000 1.71 0.41 0.17 0.08 0.01 0.00 37.57 4.89 3.21 2.35 1.71 1.67

14000 1.68 0.30 0.15 0.06 0.00 0.00 35.75 4.08 2.68 1.86 1.34 1.34

15000 1.71 0.36 0.15 0.07 0.01 0.00 34.15 4.06 2.37 1.67 1.09 1.06

16000 1.80 0.37 0.17 0.09 0.01 0.00 32.73 3.83 2.37 1.67 0.93 0.87
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Fig. 9 Outage burst statistics. Outage burst statistics for different solutions of the dynamic optimization, Nmax = 11, 000

smoothing helps the algorithm to achieve a good viewing
experience.

6 Conclusions
Considering heterogeneity of client channels and their
terminal capabilities, we introduced a QoE optimization
framework for video multicast that benefits from the
flexibility offered by scalable video coding and fountain
coding. The client’s ability to decode different video qual-
ity layers is exploited to maximize the overall utility of the
multicast transmission. Utility is formulated based on a
perceptual quality metric that can differentiate between
various possible adaptations of a multilayer video stream
with a combination of spatial, temporal, and granular
scalability. The optimization effects a balance between
QoS-guaranteed service and best-effort service. Catering

to the probabilistic decoding nature of rateless codes, out-
age probability constraints are applied to guarantee that
the video quality layers are received with a high level of
assurance. Clients that cannot be served meeting such
guarantees may be served with a lower playback quality
from the lower video layers. Clients demanding high-
quality playback but present in small numbers may be
similarly treated. Clients with exceedingly poor channels
may be dropped from the multicast. On the other hand,
given a sufficient transmission rate, clients are served the
highest quality playback level they desire. The optimiza-
tion complexity is independent of the number of clients
and scales only with the number of client classes. Addi-
tionally, a convex optimization approximation is proposed
which has shown to attain close-to-optimal performance
with even lower computational complexity. The proposed

Fig. 10 RC distribution of a client with dynamic channel. RC distribution of a client with an average RC δc = 0.2
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Fig. 11 FFR for dynamic optimization. Frame-freeze rate for the test client with time-varying channel under dynamic optimization

optimization framework is also shown to provide robust
performance when limited client feedback information is
available. Finally, by introducing a penalty term to the
multicast utility, the QoE optimization is extended to sup-
press client playback quality variations due to source bit
rate and/or service bandwidth fluctuations. Despite the
above promising results, a possible future work would be
to assess the efficacy of the proposed scheme in more
full-fledged application scenarios similar to [49].

Appendix
Convexity analysis of Problem 3
For the convexity analysis, we form the Hessian matrix
H from the second derivatives of the cost function with
respect to the optimization variables θl, l = 1, . . . , L,

H = [
Hjk

] =
⎡⎣ ∂2

∂θj∂θk

M∑
m=1

hm∑
l=1

α̂m,lF̃m(1/θl)

⎤⎦ j, k = 1, . . . , L.

The diagonal elements can be obtained from differenti-
ating (19)

Hjj =
M∑

m=1
α̂m,j

∂2

∂θ2j

(
cmθ

−pm
j + 1 − cm

)

=
M∑

m=1
α̂m,jcmpm(pm + 1)θ−(pm+2)

j . (28)

Since cm, pm, α̂m,j ≥ 0 and θj ≥ 1, ∀j,m, we conclude
that Hjj ≥ 0,∀j.
Similarly, it can be shown that the off-diagonal terms of

the Hessian matrix Hjk , j �= k are zero. As a result, H is
positive semidefinite and the cost function is convex [50].

The UEP constraints in Problem 3 are linear since they
are of the form θj+1 − θj ≤ 0 with j = 1, . . . , L and
θL+1 � 1. Furthermore, the bandwidth constraint is also
linear. Hence, the constraints form a polyhedron which is
a convex set. Since the convexity of the cost function was
previously established, Problem 3 is a convex optimization
problem.
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