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Abstract

The main objective of this work is to improve the energy efficiency (EE) of a multiple access channel (MAC) system,
through power control, in a distributed manner. In contrast with many existing works on energy-efficient power
control, which ignore the possible presence of a queue at the transmitter, we consider a new generalized cross-layer
EE metric. This approach is relevant when the transmitters have a non-zero energy cost even when the radiated
power is zero and takes into account the presence of a finite packet buffer and packet arrival at the transmitter. As the
Nash equilibrium (NE) is an energy-inefficient solution, the present work aims at overcoming this deficit by improving
the global energy efficiency. Indeed, as the considered system has multiple agencies each with their own interest, the
performance metric reflecting the individual interest of each decision-maker is the global energy efficiency defined
then as the sum over individual energy efficiencies. Repeated games (RG) are investigated through the study of two
dynamic games (finite RG and discounted RG), whose equilibrium is defined when introducing a new operating point
(OP), Pareto-dominating the NE and relying only on individual channel state information (CSI). Accordingly,
closed-form expressions of the minimum number of stages of the game for finite RG (FRG) and the maximum
discount factor of the discounted RG (DRG) were established. Our contributions consist of improving the system
performances in terms of powers and utilities when using the new OP compared to the NE and the Nash bargaining
(NB) solution. Moreover, the cross-layer model in the RG formulation leads to achieving a shorter minimum number of
stages in the FRG even for higher number of users. In addition, the social welfare (sum of utilities) in the DRG
decreases slightly with the cross-layer model when the number of users increases while it is reduced considerably
with the Goodman model. Finally, we show that in real systems with random packet arrivals, the cross-layer power
control algorithm outperforms the Goodman algorithm.
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1 Introduction
1.1 Motivation
The design and management of green wireless networks
[1–3] has become increasingly important for modern
wireless networks, in particular, to manage operating
costs. Futuristic (beyond 5G) cellular networks face the
dual challenges of being able to respond to the explo-
sion of data rates and also to manage network energy
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consumption. Due to the limited spectrum and large num-
ber of active users in modern networks, energy-efficient
distributed power control is an important issue. Sensor
networks, which have multiple sensors sending informa-
tion to a common receiver with a limited energy capacity
have also recently surged in popularity. Energy minimiza-
tion in sensor networks has been analyzed in many recent
works [4–6].
Several of the above described systems have some com-

mon features:

1. Multiple transmitters connected to a common
receiver
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2. Lack of centralization or coordination, i.e., a
distributed and decentralized network

3. Relevance of minimizing energy consumption or
maximizing energy efficiency (EE)

4. Transmitters that have arbitrary data transmission

These features are present in many modern systems like
a sensor network which has multiple sensors with limited
energy connected in a distributed manner to a common
receiver. These sensors do not always have information to
transmit, resulting in sporadic data transmission. Another
example would be several mobile devices connected to
a hotspot (via wifi or even Bluetooth). Due to these
features of the network, inter-transmitter communica-
tion is not possible and the transmitters are independent
decision-makers. Therefore, implementing frequency or
time division multiple access becomes harder, and a MAC
protocol (with single carrier) is often the preferred or
natural method of channel access.

1.2 Novelty
In many existing works, both network-centric and user-
centric approaches have been studied. In a network-
centric approach, the global energy efficiency (GEE) is
defined as the ratio between the system benefit (sum-
throughput or sum-rate) and the total cost in terms
of consumed power [7, 8]. However, when targeting an
efficient solution in an user-centric problem, the GEE
becomes not ideal as it has no significance to any of the
decision-makers. In this case, other metrics are required
to reflect the individual interest of each decision-maker.
Therefore, we redefine the GEE to be the sum over
individual energy efficiencies as a suitable metric of
interest [9].
The major novelty of this work is in improving the sum

of energy efficiencies for a communication system with
all the listed features above. In such a decentralized and
distributed network, as each transmitter operates inde-
pendently, implementing a frequency division or a time
division multiple access is not trivial. Therefore, we are
interested in looking at a MAC system where all trans-
mitters operate on the same band. Additionally, EE will
be our preferred metric due to its relevance. This metric
has been defined in [10] as the ratio between the aver-
age net data rate and the transmitted power. In [11, 12],
the total power consumed by the transmitter was taken
into account in the EE expression to design distributed
power control which is one of the most well-known tech-
niques for improving EE. However, many of the works
available on energy-efficient power control consider the
EE defined in [10] where the possible presence of a queue
at the transmitter is ignored. In contrast with the exist-
ing works, we consider a new generalized EE based on a
cross-layer approach developed recently in [13, 14]. This

approach is important since it takes into account: (1) a
fixed cost in terms of power namely, a cost which does
not depend on the radiated power and (2) the presence
of a finite packet buffer and sporadic packet arrival at the
transmitter (which corresponds to including the fourth
feature mentioned above). Although providing a more
general model, the distributed system in [14] may operate
at a point which is energy-inefficient. Indeed, the point at
which the system operates is a Nash equilibrium (NE) of
a certain non-cooperative static game. The present work
aims at filling this gap by not only considering a cross-
layer approach of energy-efficient power control but also
improving the system performance in terms of sum of
energy efficiencies.

1.3 State of the art
Nash bargaining (NB) solution in a cooperative game
can provide a possible efficient solution concept for the
problem of interest as it is Pareto-efficient. However, it
generally requires global channel state information (CSI)
[15]. Therefore, we are interested in improving the aver-
age performance of the system by considering long-term
utilities. We focus then on repeated games (RG) where
repetition allows efficient equilibrium points to be imple-
mented. Unlike static games which are played in one shot,
RG are a special case of dynamic games which consider a
cooperation plan and consist in repeating at each step the
same static game and the utilities result from averaging the
static game utilities over time [16]. There are two relevant
dynamic RG models: finite (FRG) and discounted (DRG).
The FRG is defined when the number of stages during
which the players interact is finite. For the DRGmodel, the
discount factor is seen as the stopping probability at each
stage [17]. The power control problem using the classic
EE developed by Goodman et al in [10] has been solved
with RG only in [18] where authors developed an operat-
ing point (OP) relying on individual CSI and showed that
RG lead to efficient distributed solution. Here, we inves-
tigate the power control problem of a MAC system by
referring to RG (finite and discounted) where the utility
function is based on a cross-layer approach. Accordingly,
we contribute to:

1. Determine the closed-form expressions of the
minimum number of stages for the FRG and the
maximum discount factor for the DRG. These two
parameters identify the two considered RG.

2. Determine a distributed solution Pareto-dominating
the NE and improving the system performances in
terms of powers and utilities compared not only to
the NE but also to the NB solution even for high
number of users.

3. Show that the RG formulation when using the new
EE and the new OP leads to significant gains in terms
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of social welfare (sum of utilities of all the users)
compared to the NE

4. Show that the following aspects of the cross-layer
model improve considerably the system
performances when comparing to the Goodman
model even for large number of users:

• The minimum number of stages in the
cross-layer EE model can always be shorter than
the minimum number of stages in the Goodman
EE formulation.

• The social welfare for the DRG in the
cross-layer model decreases slightly when the
number of users increases while it decreases
considerably in the Goodman model.

5. Show that in real systems with random packet
arrivals, the cross-layer power control algorithm
outperforms the Goodman algorithm and then the
new OP with the cross-layer approach is more
efficient.

1.4 Structure
This paper is structured as follows. In section 2, we define
the system model under study, introduce the generalized
EE metric, and define the non-cooperative static game.
This is followed (section 3) by the study of the NB solu-
tion. In section 4, we introduce the new OP, give the
formulation of both RG models (FRG and DRG), and
determine the closed-form expressions of the minimum
number of stages and the maximum discount factor as
well. Numerical results are presented in section 5, and
finally, we draw several concluding remarks.

2 Problem statement
2.1 Systemmodel
We consider a MAC system composed of N small trans-
mitters communicating with a receiver. The ith transmit-
ter transmits a signal xi with a power pi ∈ [

0,Pmax
i

]
where

Pmax
i is the maximum transmit power assumed identical

for all users
(
Pmax
i = Pmax). The additive noise, which is

the same for all users, is an additive white Gaussian noise
denoted as n with zero mean and variance σ 2. We assume
that the users transmit their data over block fading chan-
nels. The channel gain between user i and the receiver
is given by gi. Thus, the baseband signal received at the
receiver is written as:

y =
N∑
i=1

xi|gi|2 + n. (1)

Therefore, the resulting signal-to-interference-plus-
noise ratio (SINR) γi corresponding to the ith transmitter
is given by [18, 19]:

γi(p) = pi|gi|2
σ 2 + ∑

j �=i pj|gj|2
, (2)

where p = (p1, p2, . . . , pN ) defines the power vector of
all users and can be written as p = (pi,p−i) with p−i =
(p1, . . . , pi−1, pi+1, . . . , pN ).
The purpose of this work is to determine how each user

is going to control its power in an optimum way. Game
theory, as a powerful mathematical tool, helps to solve
such an optimization problem where the utility function
is the EE which is a function of the users powers. Since the
system under study has multiple agencies each with indi-
vidual interest, the sum over individual energy efficiencies
will be considered as the performance metric reflecting
the individual interest of each decision-maker.

2.2 Energy efficiency metric
The EE is defined in [10] as a ratio of the net data rate to
the transmit power level and is given by:

χi(p) = Rf (γi(p))

pi
, (3)

where R is the transmission rate (in bit/s) while f :
[0,+∞) →[0, 1] denotes the efficiency function which is
sigmoidal and corresponds to the packet success rate ver-
ifying f (0) = 0 and lim

x→+∞ f (x) = 1. Authors of [11]
were the first to consider a total transmission cost of the
type radiated power (pi) + consumed power (b) to design
distributed power control strategies for multiple access
channels [13, 14] as follows:

χi(p) = Rf (γi(p))

b + pi
. (4)

In [13, 14], a more generalized EEmetric has been devel-
oped by considering a packet arrival process following a
Bernoulli process with a constant probability q and a finite
memory buffer of size K. The new EE expression is given
by:

χi(p) = Rq(1 − �(γi(p)))

b + qpi(1− �(γi(p)))

f (γi(p))

, (5)

where the function� identifies the packet loss due to both
bad channel conditions and the finiteness of the packet
buffer and is expressed as follows:

�(γi) = (1 − f (γi))�K (γi), (6)

where �K (γi) is the stationary probability that the buffer
is full and is given by:

�K (γi) = ρK (γi)

1 + ρ(γi) + . . . + ρK (γi)
, (7)

with:

ρ(γi) = q(1 − f (γi))
(1 − q)f (γi)

. (8)
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It is important to highlight that this new generalized EE
given by (5) includes the conventional case of (4) when
making q → 1.

2.3 Static cross-layer power control game
The static cross-layer power control game is a non-
cooperative game which can be defined as a strategic form
game [17].

Definition 1. The game is defined by the ordered triplet
G = (N , (Si)i∈N , (ui)i∈N ) where N is the set of players
(the N transmitters), S1, . . . ,SN are the corresponding sets
of strategies with Si = [

0,Pmax
i

]
and u1, . . . ,uN are the

utility functions given by:

ui(p) = χi(p), (9)

where χi(p) is given by Eq. (5).

In a non-cooperative game, each user (player) seeks to
maximize selfishly its individual utility function. The opti-
mum solution results then by setting ∂ui/∂pi to zero as
follows:

bγ ′
i �

′(γi) + q
(
1 − �(γi)

f (γi)

)2 [
f (γi) − piγ ′

i f
′(γi)

] = 0,

(10)

where γ ′
i = dγi

dpi = γi
pi , f

′ = df
dγi , and �′ = d�

dγi .
Authors in [13, 14] proved that such equation has a

unique best response. In the game G, this best response
defines the NE and is denoted as p∗ = (

p∗
1, p∗

2, . . . , p∗
N

)
.

However, the NE solution is not always Pareto-efficient
for many scenarios. We highlight in Fig. 1 that the NE
is not on the Pareto frontier (the outer boundary of the
achievable utilities region). Therefore, we are motivated to
design a more efficient solution than the NE. For this, as a
first step we investigate the NB solution.

3 Nash bargaining solution
Due to the inefficiency of the NE, a Pareto-efficient solu-
tion can be achieved by introducing the cooperation
between the players. The resulting solution is called NB
solution whose determination requires two elements [20]:

– The region of achievable utilities formed by the set of
the feasible utilities of all the players should be
compact and convex [21]

– The threat point is defined by the NE of the one-shot
game [22]

3.1 Compactness and convexity of the achievable utilities
region

We denote R the achievable utilities region defined as
follows:

R =
{
(u1,u2, . . . ,uN ) | (p1, p2, . . . , pN ) ∈ [

0,Pmax
i

]N}
.

(11)

As the strategies sets S1, . . . ,SN are compact since Si =[
0,Pmax

i
]
and the utility function ui is continuous, the

region R is compact for a given channel configuration
[22]. Since it is generally not convex, time-sharing has
been a solution to convexify it. In order to illustrate the
main idea of this technique applied to our problem, let us
consider a system of two users [22]. During a time frac-
tion τ , the users use the powers (p1, p2) to have utilities
(u1,u2). During a time fraction (1 − τ), they use another
combination of powers (p′

1, p′
2) to have (u′

1,u′
2) [15, 22].

Thus, the new achievable utilities region (for the two-user
system) is:

R̄ = {(
τu1 + (1 − τ)u′

1, τu2 + (1 − τ)u′
2
)

|0 ≤ τ ≤ 1, (u1,u2) ∈ R,
(
u′
1,u′

2
) ∈ R

}
.

(12)

We define R̄∗ the Pareto boundary (the outer frontier)
of the convex hull of R̄. Figure 1 shows the convexi-
fied achievable utilities region with the NE point, the NB
solution, and the Nash curve (both will be defined next).

3.2 Existence and uniqueness of the NB solution
LetRNB define the improvement region of utilities versus
the NE, and it is given by:

RNB =
{
ui ≥ uNEi |i ∈ [1, . . . ,N]

}
. (13)

The NB solution belongs to the region RNB. Here, in
the power control game G, there exists a unique NB solu-
tion denoted as uNB = (

uNB1 ,uNB2 , . . . ,uNBN
)
and is given

by [21]:

uNB = max
ui∈RNB

i∈[1,...,N]

N∏
i=1

(
ui − uNEi

)
, (14)

Since the NE can always be reached and the achievable
utility region is a compact convex set, the NB solution
exists. It is unique since it verifies certain axioms: individ-
ual rationality and feasibility, independence of irrelevant
alternatives, symmetry, Pareto optimality (efficiency), and
independence of linear transformations [21]. The NB
solution results from the intersection of the Pareto bound-
ary (R̄∗) with the Nash curve whose form is m =∏N

i=1
(
ui − uNEi

)
where m is a constant chosen such that

there is precisely one intersection point [22] (see Fig. 1).
Although the NB solution is Pareto-efficient, it generally
requires global CSI at the transmitters due to the Nash
product (m) introducing all the users utilities [15]. For
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Fig. 1 Pareto efficiency of the NB solution versus the NE

this reason, we are looking for another efficient solution
through the study of the dynamic RG.

4 Repeated game formulation
RG consist in their standard formulation, in repeating the
same static game at every time instance and the players
seek to maximize their utility averaged over the whole
game duration [16]. Repetition allows efficient equilib-
rium points to be implemented and which can be pre-
dicted from the one-shot static game according to the Folk
theorem, which provides the set of possible Nash equi-
libria of the repeated game [18, 23]. In a repeated game,
certain agreements between players on a common coop-
eration plan and a punishment policy can be implemented
to punish the deviators [16]. In what follows, we introduce
the new OP and characterize the two RG models.

4.1 New OP
The new OP consists in setting pi|gi|2 to a constant α

which is unique when maximizing the expected sum util-
ity over all the channel states. It is given by [19]:

α̃ = argmax
α

Eg

[ N∑
i=1

ui(p)

]
. (15)

The power of the ith player is then deduced as follows:

p̃i = α̃

|gi|2 . (16)

The new OP Pareto-dominates the NE and relies on
individual CSI at the transmitter. In order to implement a

cooperation plan between the players, we assume, in addi-
tion to the individual CSI assumption, that every player is
able to know the power of the received signal at each game
stage, which is denoted by [18]:

Py = σ 2 +
N∑
i=1

pi|gi|2. (17)

When assuming that pi|gi|2 is set to the constant α, the
received signal power can be written as:

Py = α
γi + 1

γi
. (18)

Accordingly, each transmitter needs only its individual
SINR and the constant α (depending only on pi and |gi|2)
to establish the received signal power Py. We assume that
the data transmission is over block fading channels and
that channel gains |gi|2 lie in a compact set

[
νmin
i , νmax

i
]

[18]. Thus, the interval to which the received signal power
belongs is � =

[
σ 2, σ 2 + ∑N

i=1 piν
max
i

]
. Since the players

detect a variation of the received signal power, a devi-
ation from the cooperation plan has occurred. Indeed,
when playing at the new OP, the received signal power
is constant and equal to σ 2(γ̃ + 1)

1− (N − 1)γ̃ . Consequently, when
any player deviates from the new OP, the latter quantity
changes and the deviation is then detected [18].
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4.2 Repeated game characterization
A RG is a long-term interaction game where players
react to past experience by taking into account what hap-
pened in all previous stages and make decisions about
their future choices [24, 25]. The resulting payoff is an
average over all the stage payoffs. We denote by t, the
game stage which corresponds to the instant in which
all players choose their actions. Accordingly, a profile of
actions can be defined for all players as p(t) = (p1(t),
p2(t), . . . , pN (t)). A history h(t) of player i at time t is the
pair of vectors (Py,t , pi,t) = (Py(1),Py(2), . . . ,Py(t − 1),
pi(1), pi(2), . . . , pi(t − 1)) and which lies in the set Ht =(
�t−1,P t−1

i

)
with Pi = [

0,Pmax
i

] = [0,Pmax] (as all the
users have the same maximum power) [18]. Histories are
fundamental in RG as they allow players to coordinate
their behavior at each stage so that previous histories are
known by all the players [25].We denote δi,t the pure strat-
egy of the ith player. It defines the action to select after
each history [18, 25]:

δi,t =
∣∣∣∣ Ht → [

0,Pmax
i

]
h(t) 
→ pi(t)

(19)

In RG literature, there are two important models [17]:

– The finite RG where the number of stages of the
game (denoted as T ≥ 1) during which the players
interact is finite

– The discounted RG where the discount factor
(denoted as λ ∈]0, 1[) is seen as the stopping
probability at each stage

The utility function of each player results from aver-
aging over the instantaneous utilities over all the game
stages in the FRG while it is a geometric average of the
instantaneous utilities during the game stages in the
DRG [18, 25, 26]. We denote δ = (δ1, δ2, . . . , δN ) the joint
strategy of all players.

Definition 2. A joint strategy δ satisfies the equi-
librium condition for the repeated game defined by(
N , (Si)i∈N , (vi)i∈N

)
if ∀i ∈ N , ∀δ′

i , vi(δ) ≥ vi(δ′
i , δ−i)

with vi = vTi for the FRG or vi = vλ
i for the DRG such that:

vTi (δ) = 1
T

T∑
t=1

ui(p(t)) for the FRG (20)

vλ
i (δ) =

+∞∑
t=1

λ(1 − λ)t−1ui(p(t)) for the DRG (21)

In RG with complete information and full monitoring,
the Folk theorem characterizes the set of possible equi-
librium utilities. It ensures that the set of NE in a RG
is precisely the set of feasible and individually rational

outcomes of the one-shot game [24, 25]. A coopera-
tion/punishment plan is established between the players
before playing [18]. The players cooperate by always trans-
mitting at the new OP with powers p̃i. When the power of
the received signal changes, a deviation is then detected
and the players punish the deviator by transmitting with
their maximum transmit power Pmax

i in the FRG and by
playing at the one-shot game in the DRG. In what follows,
we give the equilibrium solution of each repeated game
model and mention the corresponding algorithm [27–29].
It is important to note that in contrast with iterative algo-
rithms (e.g., iterative water-filling type algorithms), there
is no convergence problem in repeated games (FRG and
DRG). Indeed, the transmitters implement an equilibrium
strategy (referred to as the operating point) at every stage
of the repeated game.

4.2.1 Finite RG
The FRG is characterized by the minimum number of
stages (Tmin). If the number of stages in the game T ver-
ifies T > Tmin, a more efficient equilibrium point can be
reached. However, if it is less than Tmin, the NE is then
played. Assuming that channel gains |gi|2 lie in a compact
set

[
νmin
i , νmax

i
]
[18], we have the following proposition

[19]:

Proposition 1 (FRG equilibrium). : When supposing the
following condition is met: T ≥ Tmin with:

Tmin =
⌈

�

� − �

⌉
, (22)

such that:

� = Aνmax
i

bνmin
i + γ̄iσ 2B − Gνmax

i
bνmin

i + α̃H

� = Eνmin
i

bνmax
i + γ ∗

i

(
σ 2 + ∑

j �=i p∗
j ν

max
i

)
F

� = Cνmin
i

bνmax
i + γ̂i

(
σ 2 + ∑

j �=i pmax
j νmax

i

)
D

Then, the NE corresponding to the T-stage FRG is given
by the following action plan for any (T ,Tmin) and ∀t ≥ 1:

δi,t :

∣∣∣∣∣∣∣
p̃i for t ∈ {1, 2, . . . ,T − Tmin}
p∗
i for t ∈ {T − Tmin + 1, . . . ,T}

Pmax
i for any deviation detection

(23)

The quantities A, B, C, D, E, F, G, and H are defined
in Appendix and γ ∗

i is the SINR at the NE while γ̄i and
γ̂i are the SINRs related to the maximal utility and the
utility min-max respectively (the proof of this proposi-
tion is detailed in [19]). The corresponding algorithm is as
follows.
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Algorithm 1 FRG Algorithm
1) Each user transmits at the newOP with power p̃i during

the first phase of the game t ∈ {1, 2, . . . ,T − Tmin}.
2) In the second phase t ∈ {T − Tmin + 1, . . . ,T}, each

user plays the NE.
As the FRG has a finite number of stages, this phase
ensures the punishment of the deviator for two reasons
[18]:

� if it deviates at the last stage, it cannot therefore
be punished;

� if it deviates earlier, the punishment can be not
sufficiently severe.

3) The power of the received signal is assumed to be
constant during the first phase. When it changes, a
deviation is then detected.

4) The deviator is punished by other transmitters by
playing at their maximum transmit power Pmax

i .

4.2.2 Discounted RG
In the DRG, the probability that the game stops at stage
t is λ(1 − λ)t−1 with λ ∈]0, 1[ defines the discount factor
[17]. Accordingly, we can express the analytic form of the
maximum discount factor in a DRG when assuming that
channel gains |gi|2 lie in a compact set

[
νmin
i , νmax

i
]
[18].

Proposition 2 (DRG equilibrium). : When assuming the
following condition is met:

λ ≤ �

� + �
, (24)

with:

� = Aνmax
i

bνmin
i + γ̄iσ 2B − Gνmax

i
bνmin

i + α̃H

� = Gνmin
i

bνmax
i + α̃H − Eνmin

i
bνmax

i + γ ∗
i

(
σ 2 + ∑

j �=i p∗
j ν

max
i

)
F

Then, the NE corresponding to the DRG is given by the
following action plan ∀t ≥ 1:

δi,t =
∣∣∣∣ p̃i when all other players play p̃−i
p∗
i else (25)

For the proof, see Appendix. The corresponding algo-
rithm is as follows.

Algorithm 2 DRG Algorithm
1) Each user transmits at the new OP with power p̃i.
2) When the power of the received signal changes, a

deviation is detected.
3) The other transmitters punish the deviator by

transmitting at the one-shot game with power p∗
i .

5 Numerical results
In this section, we consider the efficiency function f (x) =
e−c/x with c = 2

R
R0 − 1. It has been proven in [30, 31] that

such a function is sigmoidal as it is convex on the open
interval (0, c/2] and concave on (c/2,+∞). The through-
put R and the used bandwidth R0 are equal to 1 Mbps and
1 MHz, respectively. The maximum power Pmax is set to
0.1 Watt while the noise variance is set to 10−3 W. The
buffer size K, the packet arrival rate q and the consumed
power b are fixed to 10, 0.5 and 5 × 10−3 W, respectively.
We consider Rayleigh fading channels and a spreading fac-
tor L introducing an interference processing (1/L) in the
interference term of the SINR.
In Fig. 2, we present the achievable utility region, the

new OP, the NE, and the NB solution. We stress that the
new OP and the NB solution dominate both the NE in the
sense of Pareto. The region between the Pareto frontier
and the min-max level is the possible set of equilibrium
utilities of the RG according to the Folk theorem.
In order to study the efficiency of the new OP ver-

sus the NB solution and the NE, we are interested in
comparing powers and utilities of the three equilibria by
averaging over channel gains for different scenarios (dif-
ferent number of users N in the system). In Fig. 3, we
plot the power and the utility that a user (in a system
of N users) can reach for each equilibrium. Thus, we
highlight that the new OP and the NB solution have bet-
ter performances than the NE as they Pareto-dominate
it. When N = 2, we notice that the new OP and the
NB solution are more efficient than the NE. It is clear
that the NB solution requires less power and provides
higher utility compared to the new OP, but it is impor-
tant to stress that values, in terms of powers and utilities,
are slightly different for both equilibria (new OP and NB
solution). When N > 2, we highlight that lower pow-
ers are provided with the new OP which leads also to
higher values of the utilities. Thus, we notice that the
new OP gives better performances than the NE and the
NB solution. Therefore, the new OP contributes not only
to improve the system performances better than the NE
for any given scenario but also enables important gains
in terms of powers and utilities when compared to the
NB solution for a system with a large number of users
(N > 2).
We are interested in studying the performances of the

social welfare
(∑

i ui
)
according to the FRG versus the NE

in a multi-users system. The corresponding expression is
given by:

wFRG
wNE

=
∑N

i=1
(∑T−Tmin

t=1 ũi(p(t)) + ∑T
t=T−Tmin+1 u

∗
i (p(t))

)
∑N

i=1
∑T

t=1 u
∗
i (p(t))

.

(26)
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Fig. 2 Pareto-dominance of the new OP and the NB solution versus the NE (L = 2)

In Fig. 4, we present the ratio of the social welfare corre-
sponding to the FRG (ωFRG) versus the NE social welfare
(ωNE). We proceed by averaging over channel gains lying
in a compact set such that 10 log10

(
νmax/νmin) = 20. We

highlight that the social welfare of the FRG reaches higher
values than the NE (ωFRG > ωNE). In addition, we notice
that the social welfare ratio increases with the number of

users for both models (Goodman and cross-layer). The
minimum number of stages Tmin according to the cross-
layer model is much lower compared to the one related
to the Goodman model. To illustrate this, when N = 3,
Tmin for the Goodman model is equal to 4600 while it is
3700 for the cross-layer model. This difference becomes
considerable with the increase of the number of users.
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Fig. 3 Better performances in terms of power and utility with the new OP for different number of users N
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Fig. 4 Improvement of the social welfare in FRG versus the NE as a function of the number of stages of the game T (L = 5)

Indeed, when N = 4, the minimum number of stages for
the Goodman EE is 14,300 while it is equal to 10,900 for
the cross-layer approach.
We are interested in plotting the minimum number

of stages as a function of the consumed power b and
the packet arrival rate q according to both EE mod-
els. Results, obtained by averaging over channel realiza-
tions, are drawn in Figs. 5 and 6. According to Fig. 5,

we stress that Tmin increases with the number of users
while it decreases with the spreading factor. It is clear
that for any values of N and L, it exists a consumed
power b �= 0 for which Tmin is less than Tmin when
b = 0. Thus, a good choice of the fixed consumed
power leads to a lower minimum number of stages
for the cross-layer model compared to the Goodman
model.

Fig. 5 Existence of Tmin for the cross-layer model (b �= 0) lower than Tmin of Goodman model (b = 0)
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Fig. 6 Lower values of Tmin of the cross-layer model when comparing to Goodman model (L = 5)

In Fig. 6, we highlight that the minimum number of
stages is an increasing function of the packet arrival rate
q according to the cross-layer model while it is a constant
function for the Goodman model since the latter does not
take into account the packet arrival process. One can con-
firm that the minimum number of stages is an increase
function of the number of users as deduced previously.
Simulations show that it exists a packet arrival rate q0
before which Tmin of the cross-layer model is much lower
than Tmin of the Goodman model for different number of
users. Simulations show that q0 ≈ 0.6 and for q ≥ q0, Tmin
of the cross-layer model converges to Tmin correspond-
ing to the Goodman model. It is important to highlight
that when N = 3 and q ≥ q0, Tmin of the cross-layer
model takes higher values than Tmin corresponding to the
Goodman model but values are quite similar. With the
increase of the number of users, the difference between
the minimum number of stages for both models becomes
noticeable. According to Figs. 5 and 6, one can conclude
that the cross-layer model can be exploited for short
games.
For the DRG model, we plot in the first step the

improvement of the social welfare (ωDRG) versus the one-
shot game (ωNE) for Goodman and cross-layer models
(b = 0 and b = 5× 10−3, respectively) as a function of the
spectral efficiency η = N/L. We simulated our algorithm
by averaging over channel gains for different number of
users. Results are given in Fig. 7. It is important to high-
light that the DRG social welfare reaches higher values
than the NE social welfare (ωDRG > ωNE). For low values
of the spectral efficiency, the social welfare ratio is quite

similar for both models while the difference becomes
noticeable when the spectral efficiency takes higher val-
ues. The social welfare ratio increases with the number of
users for both EE models. For each model, when N takes
high values, the social welfare ratios become closer (for
the cross-layer model, the curves corresponding to N = 3
and N = 4 are closer than with the curve of N = 2).
For this reason, we studied the variation of λmax as a

function of η and q for both EE models and for differ-
ent number of users. Results are given in Figs. 8 and 9.
According to Fig. 8, we deduce how λmax decreases with

Fig. 7 Improvement of the social welfare in DRG versus the NE for
Goodman and cross-layer models as a function of the spectral
efficiency η for different number of users N
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Fig. 8 Variation of λmax for Goodman and cross-layer models as a function of the spectral efficiency η with different number of users N

the number of users for both EE models. In addition, we
stress that the values reached by λmax becomes closer
when N takes higher values. This can explain Fig. 7.
The study of the variation of λmax versus the packet

arrival rate q (in Fig. 9) shows that the maximum discount
factor λmax decreases with the number of users and with
the packet arrival rate q as well. Simulations show that it
exists a packet arrival rate q1 before which the λmax corre-
sponding to the cross-layermodel takes higher values than

the maximum discount factor of the Goodman model for
different numbers of users. We notice that starting from
q1, the maximum discount factor of the cross-layer model
converges to λmax corresponding to the Goodman model.
In a second step, we plotted in Fig. 10 the variation of the

DRG social welfare as a function of λ ≤ λmax. We notice
that ωDRG is an increase function of λ. Thus, when λ =
λmax, ωDRG reaches highest value. However, we stress that
ωDRG decreases with the number of users especially for

Fig. 9 Variation of λmax as a function of the packet arrival rate q (L = 2)
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Fig. 10 Increase of ωDRG as a function of λ (L = 2)

the Goodman model while it is quite similar for the cross-
layer model. This confirms that the proposed new OP is
still quite efficient and can be utilized for games with high
number of users.
Finally, we plot for both RG models (FRG and DRG)

in Figs. 11 and 12 the social welfare when using the
cross-layer approach against the constant power b for two
different values of the packet arrival rate q (0.5 and 0.7).

The considered system is composed of two users and
the spreading factor L is fixed to 4. The idea consists in
studying the efficiency of the cross-layer approach regard-
ing the Goodman power control algorithm. Accordingly,
for each packet arrival rate, we plot the social welfare
with the cross-layer approach (powers at the equilib-
rium are determined normally according to q) and the
social welfare with the cross-layer power control but when

Fig. 11 Variations of the FRG social welfare against b for q = 0.5 and q = 0.7: the cross-layer power control approach outperforms the Goodman
algorithm
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Fig. 12 Plotting the DRG social welfare against b for q = 0.5 and q = 0.7: the cross-layer approach improves the power control when compared to
the Goodman algorithm

powers at the equilibrium are determined by the Good-
man algorithm (p[ q → 1] ). Indeed, the packet arrival rate
is assumed constant in the Goodmanmodel and equal to 1
(packets arrive with probability q = 1). For both RGmod-
els, we stress that the cross-layer power control approach
outperforms the Goodman algorithm for both values of
the packet arrival rate q. Important (relative) gains are
reached. To illustrate this, for q = 0.5 and b = 0.045 W
the relative gain is higher than 50 % in the FRG and the
DRG as well. Therefore, we conclude that the OP with the
cross-layer approach provides better performances and
is more efficient than the OP with the Goodman power
control approach.

6 Conclusions
In this paper, we have investigated RG for distributed
power control in a MAC system. As the NE is not always
energy-efficient, the NB solution might be a possible effi-
cient solution since it is Pareto-efficient. However, the
latter, in general, requires global CSI at each transmitter
node. Thus, we were motivated to investigate using the
repeated game formulation and develop a new OP that
simultaneously is both more efficient than the NE and
achievable with only individual CSI being required at the
transmitter. Also, we consider a new EEmetric taking into
account the presence of a queue at the transmitter with an
arbitrary packet arrivals.
Cooperation plans are proposed where the new OP is

considered and closed-form expressions of the minimum
number of stages for the FRG and the maximum discount

factor for the DRG have been established. The study of the
social welfare (sum of utilities of all the users) shows that
considerable gains are reached compared to the NE (for
the FRG and DRG). Moreover, our model proves that even
with a high number of users, the FRG can always be played
with a minimum number of stages shorter than when
using the Goodman model. In addition, the social welfare
in the DRG decreases slightly with the number of users
with the cross-layer approach while it decreases consider-
ably with the Goodman model. Finally, the comparison of
the cross-layer algorithm versus the Goodman algorithm
shows that in real systems with random packet arrivals,
the cross-layer power control algorithm outperforms the
Goodman algorithm. Thus, the new OP with the cross-
layer approach is more efficient. An interesting extension
to this work would be to consider the interference channel
instead of theMAC channel and generalize the framework
applied here. Another possible extension would be to con-
sider the multi-carrier case and the resulting repeated g
ame.

Appendix
Proof of λmax

Determination of themaximal utility
Let us determine the maximal utility that a player can get
and which is denoted as follows:

ūi = maxp−i maxpi ui(pi,p−i). (27)
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We denote ṗi the power maximizing the utility function
ui and which is the solution of the following equation:

b
γi
pi

�′(γi) + q
(
1 − �(γi)

f (γi)

)2 [
f (γi) − γif ′(γi)

] = 0,

(28)

with γ ′
i = dγi

dpi = γi
pi , f

′ = df
dγi and �′ = d�

dγi . Therefore, the
expression of the maximum utility function writes as:

u̇i(ṗi,p−i) = Rq(1 − φ(γ̇i))

b + ṗiq(1 − φ(γ̇i))
f (γ̇i)

, (29)

with:

γ̇i = ṗi|gi|2
σ 2 + ∑

j �=i pj|gj|2
. (30)

We have to study then the behavior of u̇i(ṗi,p−i) regard-
ing pj for j �= i, and then we determine the sign of
∂u̇i(ṗi,p−i)

∂pj which is given by:

∂u̇i(ṗi,p−i)

∂pj
= Rq

−b∂φ(γ̇i)
∂pj + ṗiq

(
(1 − φ(γ̇i))

f (γ̇i)

)2
∂ f (γ̇i)
∂pj(

b + ṗiq(1 − φ(γ̇i))
f (γ̇i)

)2 .

(31)

We are interested to study the sign of the numerator:

−b∂φ(γ̇i)

∂pj
+ ṗiq

(
(1 − φ(γ̇i))

f (γ̇i)

)2
∂f (γ̇i)
∂pj

=(
−b∂φ(γ̇i)

∂γ̇i
+ ṗiq

(
(1 − φ(γ̇i))

f (γ̇i)

)2
∂f (γ̇i)
∂γ̇i

)
∂γ̇i
∂pj

,
(32)

with:

∂γ̇i
∂pj

= −ṗi|gi|2|gj|2(
σ 2 + ∑

j �=i pj|gj|2
)2 < 0. (33)

The next step would be to determine the sign of the
expression −b∂φ(γ̇i)

∂γ̇i
+ ṗiq

(
(1 − φ(γ̇i))

f (γ̇i)

)2
∂ f (γ̇i)
∂γ̇i

. It is obvious

that ṗiq
(

(1 − φ(γ̇i))
f (γ̇i)

)2
∂ f (γ̇i)
∂γ̇i

> 0 since f is an increasing
function of the SINR. Therefore, we need to determine the
sign of ∂φ(γ̇i)

∂γ̇i
. We have:

∂φ(γi)
∂γi

= ∂((1 − f (γi))�(γi))
∂γi

= − ∂ f (γi)
∂γi

�(γi) + (1 − f (γi)) ∂�(γi)
∂γi

.
(34)

The sign of the first term is negative while the sign of the
second term is the same as ∂�(γi)/∂γi since (1− f (γi)) >

0 and we have:
∂�(γi)

∂γi
= ∂ρ(γi)

∂γi

∂�(γi))

∂ρ
. (35)

However ρ(γi) = q(1 − f (γi))
(1 − q)f (γi) and then:

∂ρ(γi)

∂γi
= −q

(1 − q)f 2(γi)
∂f (γi)
∂γi

< 0. (36)

As shown in [13], we have:

�(γi) = ρK

1 + ρ + ρ2 + . . . + ρK . (37)

The latter quantity can be expressed as:

1
�(γi)

= 1 + 1
ρ

+ 1
ρ2 + . . . + 1

ρK . (38)

Consequently, we have:

∂�(γi)

∂ρ
= �2(γi)

[
1
ρ2 + 2

ρ3 + . . . + K
ρK+1

]
> 0.

(39)

Therefore, ∂�(γi)
∂γi

< 0 and hence ∂φ(γi)
∂γi

< 0. In
particular, we have ∂φ(γ̇i)

∂γ̇i
< 0. Thus, we have(

−b∂φ(γ̇i)
∂γ̇i

+ ṗiq
(

(1 − φ(γ̇i))
f (γ̇i)

)2
∂ f (γ̇i)
∂γ̇i

)
> 0 and finally

∂u̇i(ṗi,p−i)
∂pj < 0. We deduce then that u̇i is a decreasing

function of pj. It reaches its maximum when pj = 0 and
it is minimum when pj = pmax

j (for all j �= i). When sub-
stituting pj = 0 in the SINR expression, this allows the
determination of the optimal power:

b
|gi|2
σ 2 �′(γi(pi)) + q

(
(1 − �(γi(pi)))

f (γi(pi))

)2

[
f (γi(pi)) − γif ′ (γi(pi))

] = 0,
(40)

with: γi = pi|gi|2
σ 2 .

The latter equation is a function of the SINR. We deter-
mine then the solution in terms of SINR which we denote
γ̄i and for which the optimal power is p̄i = γ̄iσ 2

|gi|2 . This SINR
exists due to the quasi-concavity of ui in (pi,p−i) [13, 14].
Then, we have:

ūi = max
p

ui(p) = Rq(1 − φ(γ̄i))

b + γ̄iσ 2

|gi|2
q(1 − φ(γ̄i))

f (γ̄i)

. (41)

Determination of λmax

The SINR γ̃i refers to the SINR when playing the new OP
while γ ∗

i , γ̄i, and γ̂i are the SINRs at theNE, at themaximal
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utility and at the utility min-max respectively. In order to
simplify expressions, we define the following notations:

A = Rq(1 − φ(γ̄i))

B = q(1 − φ(γ̄i))
f (γ̄i)

C = Rq(1 − φ(γ̂i))

D = q(1 − φ(γ̂i))
f (γ̂i)

E = Rq(1 − φ(γ ∗
i ))

F = q(1 − φ(γ ∗
i ))

f (γ ∗
i )

G = Rq(1 − φ(γ̃i))

H = q(1 − φ(γ̃i))
f (γ̃i)

At a stage t, the equilibrium condition is [18]:

λūi(p(t)) + ∑
s≥t+1 λ(1 − λ)s−t

Eg
[
u∗
i (p(s))

]
≤ λũi(p(t)) + ∑

s≥t+1 λ(1 − λ)s−t
Eg

[
ũi(p(s))

] (42)

Knowing that
∑

s≥t+1 (1 − λ)s−t = (1 − λ)/λ, we have:

λūi + (1 − λ)Eg
[
u∗
i
] ≤ λũi + (1 − λ)Eg

[
ũi

]
(43)

⇐⇒ λ
A|gi|2

b|gi|2+γ̄iσ 2B + (1 − λ)Eg

[
E|gi|2

b|gi|2+γ ∗
i

(
σ 2+∑

j �=i p∗
j |gj|2

)
F

]
≤ λ

G|gi|2
b|gi|2+α̃H + (1 − λ)Eg

[
G|gi|2

b|gi|2+α̃H

]
(44)

⇒ λ
[

Aνmax
i

bνmin
i +γ̄iσ 2B − Gνmax

i
bνmin

i +α̃H

]
≤ (1 − λ)

[
Gνmin

i
bνmax

i +α̃H − Eνmin
i

bνmax
i +γ ∗

i

(
σ 2+∑

j �=i p∗
j ν

max
i

)
F

]
.

(45)

Let � and � define the following quantities:

� = Aνmax
i

bνmin
i + γ̄iσ 2B − Gνmax

i
bνmin

i + α̃H

� = Gνmin
i

bνmax
i + α̃H − Eνmin

i
bνmax

i + γ ∗
i

(
σ 2 + ∑

j �=i p∗
j ν

max
i

)
F

Thus:

λmax = �

� + �
. (46)

Competing interests
The authors declare that they have no competing interests.

Author details
1SERCOM Laboratory, Tunisia Polytechnic School, P.B. 743-2078 La Marsa,
Tunisia. 2Singapore University of Technology and Design, Singapore,
Singapore. 3L2S - CNRS - SUPELEC, 91192 Gif-sur-Yvette, University of
Paris-Sud, Paris, France. 4EMT Centre, INRS University, Ouest Montréal, Québec
H5A 1K6, Canada.

Received: 18 May 2015 Accepted: 25 November 2015

References
1. D Lister, in Proc. IEEE Internat. Conf. on Comm.Workshops (ICCWorkshops

2009). An Operators View on Green Radio (1st Int. Workshop on Green
Comm., 2009)

2. J Palicot, C Roland, On the Use of Cognitive Radio for Decreasing the
Electromagnetic Radiations, URSI 05, XXVIII General Assembly (2005)

3. GreenTouch, Communications Turns Totally Green. (Press Release, 2010)
4. Y Yu, VK Prasanna, B Krishnamachari, Energy minimization for real-time

data gathering in wireless sensor networks. IEEE Trans. Wirel. Commun.
5(11), 3087–3096 (2006)

5. S Bandyopadhyay, EJ Coyle, in Twenty-Second Annual Joint Conference of
the IEEE Computer and Communications. An Energy Efficient Hierarchical
Clustering Algorithm for Wireless Sensor Networks, INFOCOM 2003,
vol. 3 (IEEE Societies, 2003), pp. 1713–1723

6. M Cardei, MT Thai, Y Li, W Wu, in 24th Annual Joint Conference of the IEEE
Computer and Communications Societies. Energy-Efficient Target
Coverage in Wireless Sensor Networks, INFOCOM 2005, vol. 3
(Proceedings IEEE, 2005), pp. 1976–1984

7. A Zappone, E Jorswieck, Energy Efficiency in Wireless Networks via
Fractional Programming Theory. Foundations and Trends in Commun
Inf Theory. 11(3–4), 185–396 (2015)

8. C Isheden, Z Chong, E Jorswieck, G Fettweis, Framework for Link-Level
Energy Efficiency Optimization with Informed Transmitter. IEEE Trans.
Wirel. Commun. 11(8), 2946–2957 (2012)

9. S Lasaulce, Y Hayel, RE Azouzi, M Debbah, Introducing hierarchy in
energy games. IEEE Trans. Wirel. Commun. 8(7), 3833–3843 (2009)

10. DJ Goodman, NB Mandayam, Power control for wireless data. IEEE Pers.
Commun. 7(2), 48–54 (2000)

11. SM Betz, HV Poor, Energy efficient communications in CDMA networks: a
game theoretic analysis considering operating costs. IEEE Trans. Signal
Proc. 56(10), 5181–5190 (2008)

12. A Zappone, Z Chong, E Jorswieck, S Buzzi, Energy-aware competitive
power control in relay-assisted interference wireless networks. IEEE
Trans. Wirel. Commun. 12(4), 1860–1871 (2013)

13. VS Varma, S Lasaulce, Y Hayel, SE Elayoubi, M Debbah, Cross-layer design
for green power control. IEEE Int. Conf. Commun. (ICC), 4021–4026 (2012)

14. VS Varma, S Lasaulce, Y Hayel, SE Elayoubi, A Cross-Layer Approach for
Distributed Energy-Efficient Power Control in Interference Networks.
IEEE Trans. Veh. Technol (2014)

15. M Mhiri, K Cheikhrouhou, A Samet, F Mériaux, S Lasaulce, in 6th
International Conference on Network Games, Control and Optimization
(NETGCOOP). Energy-Efficient Spectrum Sharing in Relay-Assisted
Cognitive Radio Systems, (2012), pp. 86–91

16. S Lasaulce, M Debbah, E Altman, Methodologies for analyzing equilibria
in wireless games: a look at pure, mixed, and correlated equilibria. IEEE
Signal Process. Mag. 26(5), 41–52 (2009)

17. S Lasaulce, H Tembine, Game Theory and Learning for Wireless Networks:
Fundamentals and Applications. (Academic Press, Elsevier, 2011)

18. M Le Treust, S Lasaulce, A repeated game formulation of
energy-efficient decentralized power control. IEEE Trans. Wirel.
Commun. 9(9), 2860–2869 (2010)

19. M Mhiri, VS Varma, M Le Treust, S Lasaulce, A Samet, in First International
Black Sea Conference on Communications and Networking (BlackSeaCom).
On the Benefits of Repeated Game Models for Green Cross-Layer Power
Control in Small Cells, (2013), pp. 137–141

20. M Abidi, VT Vakili, in IEEE 18th International Symposium on Personal, Indoor
andMobile Radio Communications (PIMRC). A Game Theoretic Approach
for SINR-Constrained Power Control in 3G Cellular CDMA
Communication Systems, (2007), pp. 1–5

21. E Hossain, D Niyato, Z Han, Dynamic Spectrum Access andManagement in
Cognitive Radio Networks. (United States of America by Cambridge
University Press, New York, 2009)

22. EG Larsson, EA Jorswieck, Competition versus cooperation on the MISO
interference channel. IEEE J. Selected Areas in Commun. 26(7),
1059–1069 (2008)

23. J Friedman, A non-cooperative equilibrium for supergames. Rev. Econ.
Stud. 38(1), 1–12 (1971)

24. S Hart, Robert Aumann’s game and economic theory. Scand. J. Econ.
108(2), 185–211 (2006)

25. S Sorin, in Handbook of game theory, ed. by RJ Aumann, S Hart. Repeated
games with complete information, vol. 1 (Elsevier Science Publishers,
1992), pp. 72–107



Mhiri et al. EURASIP Journal onWireless Communications and Networking  (2015) 2015:257 Page 16 of 16

26. RJ Aumann, LS Shapley, Long-Term Competition-A Game-Theoretic
Analysis. preprint, 1–26 (1976)

27. Y Xu, J Wang, Q Wu, A Anpalagan, YD Yao, Opportunistic spectrum
access in unknown dynamic environment: A game-theoretic stochastic
learning solution. IEEE Trans. Wirel. Commun. 11(4), 1380–1391 (2012)

28. H Li, Multi-agent Q-learning for Aloha-like spectrum access in cognitive
radio systems. EURASIP J. Wirel. Commun. Netw. 2010, 1–15 (2010)

29. Y Song, SHY Wong, KW Lee, inMobiCom’11 Proceedings of the 17th
Annual International Conference onMobile Computing and Networking.
Optimal Gateway Selection in Multidomain Wireless Networks: A
Potential Game Perspective, (2011), pp. 325–336

30. EV Belmega, S Lasaulce, in VALUETOOLS’09 Proceedings of the 4th
International ICST Conference on Performance EvaluationMethodologies
and Tools. An Information-Theoretic Look at MIMO Energy-Efficient
Communications, (2009)

31. EV Belmega, S Lasaulce, Energy-efficient precoding for multiple-antenna
terminals. IEEE Trans. Signal Proc. 59(1), 329–340 (2011)

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Keywords

	1 Introduction
	1.1 Motivation
	1.2 Novelty
	1.3 State of the art
	1.4 Structure

	2 Problem statement
	2.1 System model
	2.2 Energy efficiency metric
	2.3 Static cross-layer power control game

	3 Nash bargaining solution
	3.1 Compactness and convexity of the achievable utilities region
	3.2 Existence and uniqueness of the NB solution

	4 Repeated game formulation
	4.1 New OP
	4.2 Repeated game characterization
	4.2.1 Finite RG
	4.2.2 Discounted RG


	5 Numerical results
	6 Conclusions
	Appendix
	Proof of max
	Determination of the maximal utility
	Determination of max


	Competing interests
	Author details
	References



