
Li and Ko EURASIP Journal onWireless Communications and
Networking  (2016) 2016:17 
DOI 10.1186/s13638-015-0492-1

RESEARCH Open Access

Geographical model-derived grid-based
directional routing for massively dense WSNs
Jing-Ya Li and Ren-Song Ko*

Abstract

This paper presents the grid-based directional routing algorithms for massively dense wireless sensor networks. These
algorithms have their theoretical foundation in numerically solving the minimum routing cost problems, which are
formulated as continuous geodesic problems via the geographical model. The numerical solutions provide the
routing directions at equally spaced grid points in the region of interest, and then, the directions can be used as
guidance to route information. In this paper, we investigate two types of routing costs, position-only-dependent costs
(e.g., hops, throughput, or energy) and traffic-proportional costs (which correspond to energy-load-balancing). While
position-only-dependent costs can be approached directly from geodesic problems, traffic-proportional costs are
more easily tackled by transforming the geodesic problem into a set of equations with regard to the routing vector
field. We also investigate two numerical approaches for finding the routing direction, the fast marching method for
position-only-dependent costs and the finite element method (and its derived distributed algorithm, Gauss-Seidel
iteration with finite element method (DGSI-FEM)) for traffic-proportional costs. Finally, we present the numerical
results to demonstrate the quality of the derived routing directions.

Keywords: Wireless sensor network, Geographical routing algorithm, Geodesic problem, Fast marching method,
Finite element method

1 Introduction
With their embedded computation and communication
capabilities, wireless sensor networks (WSNs) can extend
the senses of human beings to normally inaccessible loca-
tions and operate unattended for a long period of time,
thus opening up the potential of many new applications
[1]. Such applications bring up many challenges in net-
work maintenance since sensors may be unreliable in
hazardous situations which prohibit any human interven-
tion to repair or replace malfunctioning sensors. Thus,
compared to the cost to access WSNs, advanced develop-
ments inmanufacturing techniques will make it preferable
to deploy a large number of sensors in the region of inter-
est (ROI) in one time, in which sensors can self-organize
to operate. However, such a deployment strategy may lead
to a massively dense WSN which poses many challenges
for efficient algorithm design due to the problem scale and
hardware constraints.
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For such large-scale networks, the complexity of topo-
logical algorithms that model the networks by graphs and
then describe network operations by nodes and edges may
inevitably increase with the number of nodes and edges,
since optimizing, particularly globally, the network per-
formance may require the consideration that all nodes or
edges determine the best node or edge to perform a given
operation. However, two characteristics of WSNs suggest
an alternative approach:

1. WSN applications are usually spatial-oriented, and
spatially close nodes tend to perform the same role in
networks.

2. Extending the working duration of the whole WSN is
more important than keeping each sensor node alive.
In other words, it may be preferable to exhaust
individual nodes in an attempt to achieve better
overall performance.

Therefore, rather than optimizing the performance of
individual nodes by micro-controlling node operations,
the high role substitutability of WSNs allows networks to
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be managed via geographical parameters, i.e., use the geo-
graphical parameters to locate appropriate sensor nodes
to perform assigned tasks. Thus, network operations are
described by geographical parameters, not node identi-
ties, and the complexity, even when considering global
optimization, depends on the ROI, not the number of
nodes and edges.
Furthermore, one advantage of geographical approaches

is that wemay use “distributions” or “vector fields” defined
in geographical space to describe network states or oper-
ations, and these distributions or vector fields have some
nice mathematical properties under massively dense net-
works, such as differentiability or integrability, which
allow many techniques developed in classical mathemat-
ical analysis to be applicable. For example, several stud-
ies [2–6] have used geographical approaches to analyze
WSN routing problems from a macroscopic perspective.
Without the complexity of detailed descriptions in micro-
managing individual nodes, the geographical descriptions
can still provide sufficient information to allow meaning-
ful analysis and optimization at the macroscopic level and
the derivation of useful insights.
In this paper, we adopt the geographical model to

study the minimum routing cost problems for massively
dense WSNs in which the problems are formulated as
continuous geodesic problems. We use density distribu-
tions to describe how nodes are deployed and routing
vector fields for how information are transmitted. The
relationship between density distributions and various
routing costs may be further analyzed, and the equiva-
lence between geodesic problems and optimum routing
vector field problems can be established. We investigate
two types of routing costs, position-only-dependent costs
which are presented in the preliminary work [7] and
traffic-proportional costs. Position-only-dependent costs
may be the number of hops, throughput, or transmis-
sion energy, and traffic-proportional costs correspond to
energy-load-balancing. While the routing problems with
position-only-dependent costs can be tackled directly
from geodesic problems, routing vector field problems
provide a better approach to solve the routing problems
with traffic-proportional costs.
Numerically solving continuous geodesic problems or

routing vector field problems requires discretizing contin-
uous functions involved in problems in a systematic way
and then producing solutions (paths or vectors) at finite
locations in the ROI, e.g., equally spaced grid points in
the ROI. These numerical solutions at grid points provide
the directions to the next forwarding nodes, which can be
used as guidance to route information. Thus, the resulting
routing algorithms, which we call grid-based directional
routing algorithms, are actually the natural outcomes of
the numerical approaches of these problems and mainly
consist of the following two stages:

1. The ROI is divided into equally spaced grids, and
then, each grid point computes its routing direction
by numerically solving the continuous geodesic
problems or routing vector field problems.

2. A node may use the routing direction of its closest
grid point as guidance to determine its next
forwarding node.

In this paper, we mainly focus on two numerical
approaches for finding the routing direction of each grid
point (i.e., the first stage), namely the fast marching (FM)
method [8] for position-only-dependent costs and the
finite element method (FEM) [9], including its derived
distributed algorithm (namely distributed Gauss-Seidel
iteration with FEM, DGSI-FEM), for traffic-proportional
costs. We then investigate the quality of the derived rout-
ing directions via numerical simulations. Note that though
the second stage is needed to completely determine a
routing path, the study of the second stage is beyond the
scope of this paper and we simply use the mechanism
adopted in [10] for the second stage to conduct numerical
simulations.
The remainder of this paper is organized as follows.

After introducing related work in Section 2, we briefly
describe the minimum cost routing problem from a
macroscopic perspective and the equivalence between
geodesic problems and optimum routing vector field
problems in Section 3. The minimum routing cost prob-
lems with position-only-dependent costs and traffic-
proportional costs, including algorithms and numerical
results, are then discussed in Sections 4 and 5, respec-
tively. Finally, conclusions are drawn in Section 6. For the
sake of convenience, relevant notations introduced in this
paper are listed in Table 1.

2 Related work
Mauve et al. [11] argued that, for ad hoc networks, geo-
graphical routing scales better than topological routing
even given frequently changing network topology. Sev-
eral approaches are known to be suitable for WSNs,
including greedy forwarding (GF) [12], in which each
node uses the line segment to the destination to select
the optimum forwarding node, and its various remedies
[13–15] for the hole problem, in which packets may be
trapped in local optima due to the existence of holes. In
addition, a global pre-defined trajectory, instead of the
local line segment used in GF, may be used to determine
the next forwarding node [16].
For massively dense WSNs, several studies have applied

analysis techniques developed in the disciplines other
than networking to geographical models to analyze the
macroscopic behavior of WSNs. For instance, Jacquet [2]
analyzed how information traffic may impact the curva-
ture of routing paths from the perspective of geometrical
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Table 1 List of notations introduced in this paper

Notation Description

C(x, y) Tansmission cost for nodes at (x, y)

P∗ Minimum cost (geodesic) path between two
positions

ρ(x, y) Amount of information generated at (x, y)

D(x, y) Routing vector field, the direction points to the next
forwarding node and |D(x, y)| represents the amount
of information transmitted at (x, y)

A, ∂A ROI, boundary of ROI

|v| Length of a vector v

uf Unit vector pointing to the next forwarding node

ψ Node density distribution

r Distance between wireless sender and receiver

αrf Radio frequency (RF) attenuation exponent

�i, j� Grid point at the ith row and the jth column

G Set of grid points in A

T(x, y) Minimum routing cost from nodes at (x, y) to sinks

f̃i,j Value of function or vector f (e.g., T or D) at �i, j�

Ni,j Set of �i, j�s adjacent grid points in A

E(x, y) Initial energy at (x, y)

e(x, y) Transmission energy consumption per unit of
information at (x, y)

λ(x, y) e/E , normalized transmission energy cost per unit of
information at (x, y)

J 1/λ2

� Potential of D

n̂ Unit inward pointing normal vector to ∂A

optics. Similarly, Catanuto et al. [5] formulated routing
paths as equations of the calculus of variations which state
that light follows the path that can be traversed in the
least time, i.e., Fermat’s principle. Additionally, Kalantari
and Shayman [4] formulated the routing problems of
WSNs as equations analogous to Maxwell’s equations in
electrostatic theory.
Jung et al. [17] considered spreading network traffic uni-

formly throughout the ROI using a potential field-based
routing scheme in which the potential field is governed
by Poisson’s equation via an analogy between physics and
network routing problems. Chiasserini et al. [18] used a
fluid model to analyze a massively dense WSN in which
the media access control and the switch between different
operating modes, active and sleep, are considered. Altman
et al. [19] analyzed the global optimized routing paths
of massively dense networks using the techniques devel-
oped in road traffic engineering. Various approaches that
work around the scalability problem by creating analo-
gies between various WSN problems and problems in

branches of mathematics and physics may be found in
[20, 21].
Note that for the approaches mentioned above to be

applicable, the massive denseness assumption is required
for the validity of some mathematical properties such as
continuity or differentiability. In addition to [22] which
investigated the relation between the feasibility of such an
assumption and node density, Ko [23] provided an oper-
ational definition of massively dense networks and then
used the definition to derive the upper bound of analy-
sis errors obtained from applying macroscopically derived
results to nonmassively dense networks.

3 Minimum cost routing paths
Typically, a routing algorithm is designed with various
optimization goals such as minimum total energy con-
sumption or load-balancing. By introducing the transmis-
sion cost function C(xv, yv) (i.e., the cost paid by the node v
at (xv, yv) to transmit one unit amount of information), a
routing problem may be formulated as a geodesic problem
which minimizes the route cost

∑
v′∈�P�

C(xv′ , yv′). That is, a

routing problem is to find a path P∗ to a sink such that:∑
v′∈�P∗�

C(xv′ , yv′) ≤
∑
v′∈�P�

C(xv′ , yv′)| (1)

in which P can be any possible path between a given
source node v and any possible sink and �P� denotes the
set of nodes on P.
To catch the operations, sensing and networking, we use

ρ to represent the amount of information generated by
a node located in the ROI (denoted as A) and define the
routing vector field, D : A → R

2, in which the direction of
D(x, y), called the routing direction and denoted as uf(x, y),
points to the next forwarding node of the node at (x, y) and
the length

∣∣D(x, y)
∣∣ represents the amount of information

transmitted by all nodes at (x, y).
Suppose that the information is conservative; that is, ρ

does not consider the information generated and then dis-
appears without being transmitted out, and each node in
the ROI relays all the information it received. Thus, for
v in A, the net amount of information flowing out of v
should be equal to ρ(xv, yv). Therefore, we have the fol-
lowing theorem which states that the routing problem
may be formulated as a geodesic problem (1) or an opti-
mization problem for the routing vector field incurring
the minimum total cost. For the proof please refer to [23].

Theorem 1. Suppose that the information is conserva-
tive for a consideredWSN. Hence, ∀v in A,

∑
v′∈�P∗�

C(xv′ , yv′)

is minimum over all possible paths from v to sinks if
and only if

∑
v inA

C(xv, yv)
∣∣D(xv, yv)

∣∣ is minimum over all

possible vector fields for a given ρ.
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In the limit of massively dense networks, routing
paths can be considered as continuous lines rather than
sequences of discrete nodes [2]. Thus, the geodesic prob-
lem (1) may be formulated as the one to find the path P∗
from (x0, y0) to a sink such that:∫

P∗
C(s)ds ≤

∫
P
C(s)ds (2)

in which P can be any possible path from (x0, y0) to any
possible sink and s is the curvilinear coordinate associ-
ated with the path P∗ or P. Similar to Theorem 1, the
continuous geodesic problem (2) may be expected to be
equivalent to the optimum routing vector field problem
for massively dense networks; that is,

Theorem 2. Suppose that the information is conser-
vative for a considered WSN. Hence, ∀(x0, y0) in A,∫
P∗ C(x(s), y(s))ds is minimum over all possible paths from

(x0, y0) to sinks if and only if
∫
A C(x, y)

∣∣D(x, y)
∣∣ dxdy is

minimum over all possible vector fields for a given ρ.

Some routing problems can be tackled via geodesic
problems; for example, the cost function C(x, y) is
isotropic (e.g., sensor nodes with omni-directional anten-
nas) and only depends on position. However, Theorem 2
provides an alternative that allows routing problems to
be approached via D. One example is that C(x, y) is pro-
portional to

∣∣D(x, y)
∣∣. We will discuss these two types of

C(x, y), respectively, in Sections 4 and 5.

4 Position-only-dependent routing cost
4.1 Cost function and node density
This section considers the cost functions which are
isotropic and only depends on position. Reference [24]
discussed the relationship between the transmission
energy as the cost and the node density ψ . Note
that referring to [25], the energy consumption per
unit of information is proportional to rαrf in which r
is the distance between the sender and receiver and
the RF attenuation exponent αrf is typically in the
range of 2 to 5. Additionally, the average inter-distance
between nodes is proportional to 1/

√
ψ , which leads to

C ∝ 1/ψαrf /2.
As pointed out in [26], while considering the capacity of

wireless communications, the throughput of each node at
(x, y) cannot be fully utilized and is only proportional to
1/
√

ψ(x, y) [3]. Therefore, the optimum total throughput
at (x, y) can only be proportional to

√
ψ(x, y); that is, C ∝

1/
√

ψ corresponds to a network in which the objective is
to maximize the throughput.
Several other possible forms of C are also listed in [5].

For example, if the objective is to minimize the number
of hops, C may be taken to be proportional to 1/r, in

which communication is constrained between the near-
est neighbors. Thus, C ∝ √

ψ . In addition, the case that
C is a constant corresponds to a setting where routing is
equally costly at all parts of the network. Thus, the objec-
tive is to minimize the length of routes. The relationships
between C and ψ for the above objectives are summarized
in Table 2.

4.2 Grid approximation Dijkstra’s method (GADM)
It is infeasible to directly find the minimum cost rout-
ing path under massively dense networks. One possible
approach to reduce the problem scale is to divide the
ROI into equally spaced grids which compose a grid point
network, referring to Fig. 1. We then find the minimum
cost path between each grid point and sink (e.g., using
Dijkstra’s method) under the grid point network. The
routing direction of a grid point will be the direction
pointing to the next grid point on the minimum cost path
under the grid point network. For the example of Fig. 1,
the direction from �i, j� to �i, j + 1� is the routing direction
of �i, j�. Here, we denote �i, j� as the grid point located at
the ith column and the jth row, and say a node belongs to
�i, j� if its closest grid point in the ROI is �i, j�; for example,
all nodes in the dark gray region belong to �i, j�. Therefore,
a node belonging to �i, j� may use the direction from �i, j�
to �i, j + 1� as guidance to determine the next forwarding
node [10].
Note that the routing direction of �i, j� derived by grid

approximation Dijkstra’s method (GADM) always points
to one of �i, j�s four adjacent grid points. Such a restriction
is the main reason that GADM cannot approximate con-
tinuous paths well (i.e., the minimum cost routing paths
under massively dense networks), which thus yields less
optimum routing paths.

4.3 Fast marching (FM) method
4.3.1 Cost map and eikonal equation
Define the cost map T(x, y) as the minimum total routing
cost needed from a node at (x, y) to sinks. Assume that T
is differentiable. We then have the following theorem for
which proof is given in Appendix 1:

Theorem 3.

|∇T | = C (3)

Table 2 Relationship between C and ψ

Optimization objective C and ψ

Route length C = constant

Number of hops C ∝ √
ψ

Throughput C ∝ 1/
√

ψ

Transmission energy C ∝ 1/ψαrf /2
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Fig. 1 Grid point network of ROI. The ROI is divided into equally
spaced grids which compose a grid point network (grid points are
connected by dashed lines). �i, j� is the grid point located at the ith
column and the jth row. A node is defined as belonging to �i, j� if its
closest grid point in the ROI is �i, j�; for example, all nodes in the dark
gray region belong to �i, j�. The path indicated by the blue solid line is
the minimum cost routing path from �i, j� to the grid point which the
sink belongs to (indicated by the red circle). The black region
represents the hole (the region without enough working sensors)

In addition,

dP∗(s)
ds

‖ −∇T (4)

in which s is the curvilinear coordinate associated with the
minimum cost path P∗ and ‖ is the symbol for two parallel
vectors.

Note that the a priori differentiability requirement of T
may not be possible, e.g., existence of multiple sinks, in
which case a weak solution may be considered instead.
Refer to [27] for details.
Equation (3) is known as the eikonal equation, illustrat-

ing how a high-frequency wave front advances; T(x, y)
corresponds to the time which the front takes to arrive
at (x, y), and 1/C(x, y) is the speed of the front at (x, y).
Theorem 3 indicates that if T may be solved from (3),
the minimum cost path may be derived by following the
gradient of T .

4.3.2 Geodesic path via eikonal equation
To solve (3), we adopt the FM method proposed by
Sethian [8].We first divide the definition domain of T into
equally spaced grids with a gap size h and then approx-
imate the differential terms by differences. Referring to
Fig. 2, the definition domain of T should be large enough
to cover the ROI. We distinguish the ROI and the def-
inition domain of T to provide a consistent formula of
difference approximation at the boundary of the ROI (via
δi,j introduced in (6)).

Fig. 2 f̃i,j and G. The definition domain of f (e.g., T or D) is divided into
equally spaced grids with a grid size h. �i, j� is the grid point located at
the ith column and the jth row. f̃i,j is the value of f at �i, j�. The set of
grid points, marked by black circles, in A is denoted as G. The grid
points marked by white circles are not in G

Various difference approximations to the length of gra-
dient may be used. In this paper, the following less diffu-
sive difference approximation to |∇T | [28] is chosen; that
is, for �i, j� in ROI, (3) is approximated as:

∣∣∇T̃i,j
∣∣ = C̃i,j

≈
√
max

(
	−x

i,j T ,−	+x
i,j T , 0

)2 + max
(
	

−y
i,j T ,−	

+y
i,j T , 0

)2
(5)

in which:

	−x
i,j T = δi−1,j

(
T̃i,j − T̃i−1,j

h

)
,

	+x
i,j T = δi+1,j

(
T̃i+1,j − T̃i,j

h

)
,

	
−y
i,j T = δi,j−1

(
T̃i,j − T̃i,j−1

h

)
,

	
+y
i,j T = δi,j+1

(
T̃i,j+1 − T̃i,j

h

)
.

Here, T̃i,j is the value of T at �i, j�, and:

δi,j =
{ 1 if �i, j� ∈ G (i.e., the set of grid points in A),

0 otherwise.
(6)

δi,j is introduced to ensure a consistent difference for-
mula with the grid points not in the ROI. Note that T
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is undefined for the grid point not in the ROI; thus, if
�i − 1, j� is not in the ROI, δi−1,j = 0 will force 	−x

i,j T = 0
which corresponds to no information flow from �i − 1, j�
to �i, j�.
FM iteratively computes T̃i,j starting from sinks via (5).

Conceptually, the iteration of FM works as the wave front
advances in the ROI. As the front advances in the ROI, Ts
and states of the grid points are determined and updated
iteratively as illustrated in Figs. 3 and 4:

Upwind side: the zone which has been visited by the wave
front. The states of grid points in the upwind zone are
marked as accepted, and the values of T̃s at these grid
points have been determined. Since C(x, y) > 0, the front
moves outward. Thus, the states of the accepted grid point
will not be changed.
Narrow band: the zone where the wave front is located.

The states of grid points in this zone are marked as trial,
and FM is determining the values of T̃s at these grid
points. Once finished, the grid point with the smallest T̃
in this zone will be included in the upwind side and the
wave front expands further.
Downwind side: the zone which has not been visited by

the wave front. The states of grid points in this zone are
marked as far away, and the values of T̃s at these grid
points have not been determined.

The algorithm of FM is listed in Algorithm 1. Here,
Ga, Gt , and Gf are the sets of the grid points in the
upwind side, narrow band, and downwind side, respec-
tively, and the neighbor set of �i, j�, denoted as Ni,j,
is the set of �i, j�s adjacent grid points in A, i.e.,{
�i, j − 1�, �i − 1, j�, �i + 1, j�, �i, j + 1�

} ∩ G.

Fig. 3 States of grid points in the process of FM. FM determines the
minimum cost routing paths of all grid points to the sink (indicated
by a red circle) in the order of wave expansion

Algorithm 1 Fast marching
Input: C̃i,j, sinks
Output: T̃i,j

// Initialization
1: ∀ � i, j� ∈ G, T̃i,j ← ∞
2: for all sinks �is, js�, T̃is,js ← 0, Ga ← Ga ∪ {�is, js�}
3: add all neighbors of sinks into Gt
4: ∀ � i, j� ∈ Gt , compute T̃i,j by solving (5)

// Marching Forward
5: while Gt �= ∅ and Gf �= ∅ do
6: let �i, j� be node in Gt with the smallest T̃
7: Ga ← Ga ∪ {�i, j�}, Gt ← Gt \ {�i, j�}
8: for ∀(i′, j′) ∈ Ni,j do
9: if (i′, j′) ∈ Gf then

10: Gf ← Gf \ {(i′, j′)}, Gt ← Gt ∪ {(i′, j′)}
11: end if
12: update T̃i′,j′ by solving (5)
13: end for
14: end while

Initially, the entire ROI is the downwind side except the
sinks which are marked as accepted with T̃ = 0 (Line 2);
then, the wave front begins to expand (Line 3). FM uses (5)
to compute the T̃s of the grid points in the narrow band
(Line 4). Once finished, the grid point with the smallest T̃
in the narrow band is marked as accepted (Lines 6–7). The
wave front will then keep expanding (Lines 8–13) while
updating the T̃s of the grid points in the narrow band
(Line 12) for the next iteration until the entire ROI is the
upwind side (Lines 5–14). The state changes of grid points
are illustrated in Fig. 4.
After determining T̃s at all grid points by Algorithm 1,

we may use T̃s and (4) to derive the routing direction,
ũfi,j, which is the unit tangent vector along the geodesic
path from �i, j� to the sink. By (4), the vector V = −∇T
is tangent to the geodesic path. We may apply the finite
difference method to approximate V: for �i, j� in the ROI:

Ṽi,jx = −δi−1,j
(
T̃i,j − T̃i−1,j

)+ δi+1,j
(
T̃i+1,j − T̃i,j

)(
1 + δi−1,jδi+1,j

)
h

Ṽi,jy = −δi,j−1
(
T̃i,j−1 − T̃i,j

)+ δi,j+1
(
T̃i,j − T̃i,j+1

)(
1 + δi,j−1δi,j+1

)
h

(7)

in which Ṽi,jx and Ṽi,jy are the x and y components of
Ṽi,j, respectively. Note that it is easy to verify that the for-
mula for Ṽi,j in (7) is consistent with the finite difference
approximation of ∇T at �i, j�. In addition, Ṽi,jx = 0 if both
�i − 1, j� and �i + 1, j� are not in the ROI, which corre-
sponds to zero traffic along the x-direction (the similar
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a b

c d

Fig. 4 Evolution of upwind side, narrow band, and downwind side during the iteration of Algorithm 1. The grid points in the upwind side and
narrow band are marked by black circles and cyan circles, respectively

reasoning may apply to Ṽi,jy ). Once Ṽi,j is computed, ũfi,j
can be determined by ũfi,j = Ṽi,j/

∣∣Ṽi,j
∣∣.

4.4 Numerical results
We first present numerical results, illustrated in Figs. 5
and 6, to compare the effectiveness of GADM and FM.
The settings of both scenarios, as summarized in Table 3,
are similar except the number of sinks. Furthermore, the
cost function C considered is a constant; thus, the mini-
mum cost path is the one with the shortest length.
If the information is currently routed to a node, denoted

as v, belonging to �i, j�, we use ũfi,j and the following
mechanism adopted in [10] to determine the next for-
warding node (i.e., the second stage of the grid-based
directional routing algorithms).

1. Choose the neighbor nodes within the
communication range Rc of v which can make
positive progress to sink. The progress of the
neighbor node v′ is defined as the inner product of
ũfi,j and the vector from v to v′. If there are multiple
candidates, choose the one which makes the greatest
progress.

2. If no nodes are making positive progress, increase Rc
by 	Rc.

Note that due to the characteristics of wireless com-
munication [3], it is preferred to use multiple short-range
transmissions for optimal power consumption and com-
munication capacity. Therefore, we gradually increase the
communication range Rc of v in searching for the next for-
warding nodes to avoid long distance transmissions. The
values of Rc and 	Rc are also listed in Table 3.
Figure 5a depicts the routing directions derived by FM.

Figure 5b, c illustrate the routing paths via the routing
directions derived by GADM and FM. The route lengths
listed in Table 4 show that FM may derive shorter routing
paths than GADM. Note that GADM and FM may result
in different routes to bypass the hole for the same source
node, as illustrated in Fig. 5c. Similar results may be found
for the second scenario, referring to Fig. 6 and Table 4. In
addition, GADMand FMmay result in routing to different
sinks for the same source node, as illustrated in Fig. 6c.
The reason that FM outperforms GADM is that the

minimum cost path derived under the grid point net-
work may not approximate the actual minimum cost
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a b

c

Fig. 5 Routing direction and routing paths. Here, the sink indicated by a circle is located at �35, 25�, and the black regions represent the holes.
a Routing direction ũf . b Routing paths: the source is close to the grid point �11, 10�. c Routing paths: the source is close to the grid point �11, 33�

path well. In addition, the routing direction of a grid
point �i, j� always points to the neighbors of �i, j� (that
is, the four adjacent grid points of �i, j� in our simula-
tions). Though this problem may be alleviated by extend-
ing the neighbor set (for example, adding the diagonal
grid points to the neighbor set), the direction restriction
(the routing direction always points to one of the neigh-
bors) cannot be removed. On the other hand, (5) used
in Algorithm 1 approximates |∇T | well, and the routing
direction (via using T̃s and (7)) has no such direction
restriction.
Figure 7 illustrates how node density may affect routing

paths for the optimization objectives listed in Table 2 with
αrf = 4. Twenty thousand nodes are randomly deployed
according to ψ(x, y) ∝ (3.5 × 10−5y2 + 0.02). Note that
routing directions are solved (i.e., the first stage of the
grid-based directional routing algorithms) using only the
macroscopic parameter, ψ , but not the detailed position
of each node. Thus, FM derives the same routing direc-
tions under the same density distribution regardless of
the node positions. The node positions are merely used

to determine the next forwarding node (i.e., the second
stage) from the routing directions using the approach
described earlier in this section.
The results show that routing should utilize the nodes

in the sparse area to minimize the number of hops and
use the nodes in the dense area to increase the throughput
and to avoid long distance transmissions for less energy
consumption. Of course, routing should use the straight
line to the sink for minimizing the route length.
We also conducted simulations to compare the routing

cost of ũfi,j obtained from FM and GADM with the opti-
mum routing cost determined by applying a shortest path
algorithm to the connectivity graph of the WSN shown in
Fig. 7, which basically is a microscopic routing approach.
The results illustrated in Fig. 8 reveal that ũfi,j obtained
from FM may lead to a reasonable routing cost; the aver-
age cost is 5% more than the average optimum cost. On
the other hand, ũfi,j obtained from GADM may have a
routing cost up to 28% more than the optimum cost. In
Fig. 8, the mean of the routing cost is the average cost of all
nodes to the sink. The relative mean of FM (or GADM) is
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a b

c

Fig. 6 Routing direction and routing paths. Here, the sinks indicated by circles are located at �10, 30� and �35, 5�, and the black regions represent the
holes. a Routing direction ũf . b Routing paths: the source is close to the grid point �17, 12�. c Routing paths: the source is close to the grid point
�13, 5�

defined as the mean of the routing cost of FM (or GADM)
divided by the mean of the optimum routing cost.

5 Traffic-proportional routing cost
5.1 Load-balancing routing
This section considers the case in which C(x, y) =
λ(x, y)2

∣∣D(x, y)
∣∣; here, λ is the energy cost e, normalized to

the initial energy E , for transmitting one unit of informa-
tion, i.e., λ = e/E . As pointed out in [2], in the context of

a massively dense network, routing paths can be consid-
ered as continuous lines, instead of sequences of discrete
nodes, and D may be considered differentiable. Thus, the
fact that information is conservative (i.e., at each loca-
tion, the net amount of traffic is equal to the amount of
information generated) can be formulated as [29]:

∇ · D(x, y) − ρ(x, y) = 0. (8)

Table 3 Simulation settings for the scenarios illustrated in Figs. 5, 6, and 7

Scenario ROI Number of nodes Sink Source ψ(x, y) Rc 	Rc

Figure 5 40 × 40 5000 �35, 25� �11, 10�, �11, 33� 1.0 2.0 1.0

Figure 6 40 × 40 5000 �10, 30�, �35, 5� �17, 12�, �13, 5� 1.0 2.0 1.0

Figure 7 200 × 160 20,000 �2, 60� �195, 60� 3.5 × 10−5y2 + 0.02 2.0 1.0
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Table 4 Length of routing path

Figure 5b Figure 5c Figure 6b Figure 6c

FM 29.63 29.52 20.11 23.75

GADM 43.09 32.21 25.92 34.21

Thus, from Theorem 2, if (8) holds, the geodesic prob-
lem (2) with C(x, y) = λ(x, y)2

∣∣D(x, y)
∣∣ is equivalent to the

optimization problem which finds the vector field D(x, y)
to minimize:∫

A
λ(x, y)2

∣∣D(x, y)
∣∣2 dxdy. (9)

Note that the variance of λ |D|, ∫A (λ(x, y)
∣∣D(x, y)

∣∣
−λ |D|)2 dxdy, is positive; here, λ |D| is the average of
λ(x, y)

∣∣D(x, y)
∣∣. Since:

∫
A

(
λ(x, y)

∣∣D(x, y)
∣∣− λ |D|)2 dxdy

=
∫
A

λ(x, y)2
∣∣D(x, y)

∣∣2 dxdy − λ |D|2 · area(A)

in which area(A) is the area of A; minimizing (9) not only
minimizes the difference of each location’s λ |D| but also
inherently reduces λ |D|.
Since λ is the normalized communication energy cost

per unit of information, λ(x, y)
∣∣D(x, y)

∣∣ is the normalized
total communication energy consumption. Thus, it is not
difficult to reason that keeping λ |D| the same everywhere
in A is equivalent to exhausting the energy of each loca-
tion in A simultaneously. In other words, the objective of
the geodesic problem (2) with C(x, y) = λ(x, y)2

∣∣D(x, y)
∣∣

is to achieve global load-balancing (by minimizing the
difference of each location’s λ |D|, i.e., the variance) and

Fig. 7Minimum cost paths for the optimization objectives listed in
Table 2 with αrf = 4. The scenario settings are listed in Table 3

Fig. 8 The relative mean of routing cost of the scenario in Fig. 7: the
mean of the routing cost of FM (or GADM) is the average cost of all
nodes to the sink using the routing directions derived by FM (or
GADM). The relative mean of FM (or GADM) is defined as the mean of
the routing cost of FM (or GADM) divided by the mean of the
optimum routing cost (OPT)

reduce the total communication energy consumption (by
reducing λ |D|).
As mentioned in [30], the necessary condition for deriv-

ing the minimum value of (9) is the existence of a scalar
function � called potential that satisfies:

D = J∇� (10)

in which J = 1/λ2. In addition, there is no information
flow from the outside of A; that is, there is no traffic along
the inward pointing normal direction at the boundary of
A, denoted as ∂A, which leads to the following boundary
condition:

D(x, y) · n̂(x, y) = 0,∀(x, y) ∈ ∂A (11)

in which n̂ is the unit inward pointing normal vector to
∂A.
Therefore, the minimum cost routing problem with

the cost C(x, y) = λ(x, y)2
∣∣D(x, y)

∣∣ can be transformed
into a set of partial differential equations that we call
load-balancing routing equations, (8), (10), and (11). We
may combine these equations into the following sin-
gle equation called the weak formulation of the load-
balancing routing equations:∫

A
J∇� · ∇νdydx = −

∫
A

ρνdydx (12)

in which ν is an arbitrary smooth scalar valued function.
Note that there is no differential term of D in (12), and

the a priori differentiability requirement ofD is weakened.
Thus, the weak formulation allows us to consider irregular
problems in which true solutions cannot be continuously
differentiable [9], e.g., the problems in which ψ or ρ are
jump functions in A. For the sake of brevity, the derivation
of (12) is given in Appendix 2.
The relationship between J and the node density distri-

bution ψ may be further established if the transmission
energy consumption model is given. For example, we may
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adopt the energy consumption model in [25], in which the
energy consumption per unit of information (denoted as
e) is proportional to rαrf . Here, r is the sender-to-receiver
distance and the RF attenuation exponent αrf is typically
in the range of 2 to 5. Since the average inter-distance
between nodes is proportional to 1/

√
ψ , r ∝ 1/

√
ψ and

hence e ∝ ψ−αrf /2. In addition, suppose that the nodes
have an equal amount of initial energy; thus, the initial
energy E is proportional to ψ , which leads to:

J = 1/λ2 = E2/e2 ∝ ψ2+αrf . (13)

5.2 Finite element method (FEM) and DGSI-FEM
algorithm

Equation (12) can be solved numerically by FEM in which
(12) is locally approximated (posed over small partitions
called elements of the entire ROI) and a global solution is
built by combining the local solutions over these elements
[9]. Similarly, referring to Fig. 2, we may divide the ROI
into equally spaced grids and then use these grid points to
form the elements (i.e., the gray hexagon on the x–y plane
illustrated in Fig. 9).
Consider the set of basis functions, μi,j with �i, j� ∈ G,

defined on the A such that μi,j has the following proper-
ties:

μi,j(xi′ , yj′) =
{
1, if i′ = i and j′ = j
0, otherwise

and

∀(x, y) ∈ A,
∑

�i,j�∈G
μi,j(x, y) = 1. (14)

Fig. 9 A piecewise-linear finite element basis function. The linear
basis function μi,j is a pyramid with the peak at �i, j� and is nonzero
only within the element centered at �i, j� (i.e., the gray hexagon). In
addition, (xi , yj) is the position of �i, j�

Here, (xi′ , yj′) is the position of �i′, j′�. We then approxi-
mate �, J , and ρ, respectively, by:

�(x, y) =
∑

�i,j�∈G
�̃i,jμi,j(x, y) (15)

J (x, y) =
∑

�i,j�∈G
J̃i,jμi,j(x, y) (16)

ρ(x, y) =
∑

�i,j�∈G
ρ̃i,jμi,j(x, y) (17)

in which �̃i,j = �(xi, yj), J̃i,j = J (xi, yj), and ρ̃i,j = ρ(xi, yj)
(i.e., the values of�, J , and ρ at the grid point �i, j�, respec-
tively). By substituting (15), (16), and (17) into (12), we
obtain the following set of linear equations:

∀ � i, j� ∈ G,
∑

�i′,j′�∈G
Ki′,j′
i,j �̃i′,j′ = gi,j. (18)

One possible set of candidate functions satisfying (14)
are pyramids with peaks at grid points as illustrated in
Fig. 9. That is:

μi,j(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− (x−xi)
h + 1 if (x, y) is in i,j�i+1,j

i+1,j−1
(y−yj)

h + 1 if (x, y) is in i,j�i+1,j−1
i,j−1

(x−xi)+(y−yj)
h + 1 if (x, y) is in i,j�i,j−1

i−1,j
(x−xi)

h + 1 if (x, y) is in i,j�i−1,j
i−1,j+1

− (y−yj)
h + 1 if (x, y) is in i,j�i−1,j+1

i,j+1

− (x−xi)+(y−yj)
h + 1 if (x, y)is in i,j�i,j+1

i+1,j

0 otherwise.
(19)

Here, i1,j1�i2,j2
i3,j3 is the triangle formed by �i1, j1�, �i2, j2�,

and �i3, j3� if all �i1, j1�, �i2, j2�, and �i3, j3� are in the ROI.
If any of these three grid points is not in the ROI, i1,j1�i2,j2

i3,j3
is an empty region. That is:

i1,j1�i2,j2
i3,j3

=
⎧⎨⎩
the triangle formed by � i1, j1�, �i1, j1�, �i2, j2�,
�i2, j2�, and � i3, j3� �i3, j3� ∈ G

empty region otherwise.
(20)
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With the linear basis functions (19), the coefficients,
Ki′,j′
i,j and gi,j, in (18) can be derived:

Ki,j
i,j = 1/6

(
B0[J ]i,j�i+1,j

i+1,j−1
+B0[J ]i,j�i+1,j−1

i,j−1

+ 2B0[J ]i,j�i,j−1
i−1,j

+B0[J ]i,j�i−1,j
i−1,j+1

+ B0[J ]i,j�i−1,j+1
i,j+1

+ 2B0[J ]i,j�i,j+1
i+1,j

)
,

Ki+1,j
i,j = −1/6

(
B0[J ]i,j�i,j+1

i+1,j
+B0[J ]i,j�i+1,j

i+1,j−1

)
,

Ki,j−1
i,j = −1/6

(
B0[J ]i,j�i+1,j−1

i,j−1
+B0[J ]i,j�i,j−1

i−1,j

)
,

Ki−1,j
i,j = −1/6

(
B0[J ]i,j�i,j−1

i−1,j
+B0[J ]i,j�i−1,j

i−1,j+1

)
,

Ki,j+1
i,j = −1/6

(
B0[J ]i,j�i−1,j+1

i,j+1
+B0[J ]i,j�i,j+1

i+1,j

)
,

Ki′,j′
i,j = 0, if � i′, j′� �= �i, j � and � i′, j′� /∈ Ni,j,

and:

gi,j = −h2/24
(
B1[ρ]i,j�i+1,j

i+1,j−1
+B1[ρ]i,j�i+1,j−1

i,j−1

+ B1[ρ]i,j�i,j−1
i−1,j

+B1[ρ]i,j�i−1,j
i−1,j+1

+ B1[ρ]i,j�i−1,j+1
i,j+1

+B1[ρ]i,j�i,j+1
i+1,j

)
,

in which δi,j is defined in (6) and:

B0 [f ]i,j�i1,j1
i2,j2

= δi1,j1δi2,j2

(
f̃i,j + f̃i1,j1 + f̃i2,j2

)
,

B1 [f ]i,j�i1,j1
i2,j2

= δi1,j1δi2,j2

(
2̃fi,j + f̃i1,j1 + f̃i2,j2

)
.

Note that it is not difficult to verify that Ki′,j′
i,j = Ki,j

i′,j′ . For

the sake of brevity, the detailed computation of Ki′,j′
i,j and

gi,j is given in Appendix 3.
The Gauss-Seidel iteration (GSI) may solve (18) for �̃i,j

via iteratively updating each �̃i,j in lexicographical order
from the most updated �̃ value at other grid points until
the update change

∣∣∣�̃(k)
i,j − �̃

(k−1)
i,j

∣∣∣ ≤ ε for all �i, j�. That

is, �̃(k)
i,j are computed sequentially by:

�̃
(k)
i,j ←

1
Ki,j
i,j

⎛⎜⎜⎜⎝gi,j − ∑
OL(i′,j′)
<OL(i,j)

Ki′,j′
i,j �̃

(k)
i′,j′ −

∑
OL(i′,j′)
>OL(i,j)

Ki′,j′
i,j �̃

(k−1)
i′,j′

⎞⎟⎟⎟⎠ ,

(21)

in whichOL(i, j) defines the lexicographical order; that is:

OL(i1, j1) < OL(i2, j2) if
{ i1 < i2, or

i1 = i2 and j1 < j2.

In GSI, only one �̃ is updated in one iteration (21). We
say GSI has gone through one sweepwhen each �̃ has been
updated once. �̃(k)

i,j is the value of �̃i,j after the kth sweep.

Note that if �i′, j′� �= �i, j� and �i′, j′� /∈ Ni,j, K
i′,j′
i,j = 0.

Thus, only �̃
(k)
i,j−1, �̃

(k)
i−1,j, �̃

(k−1)
i+1,j , and �̃

(k−1)
i,j+1 are needed

to compute �̃
(k)
i,j via (21). In other words, as long as �̃

(k)
i,j−1

and �̃
(k)
i−1,j are computed, �̃(k)

i,j can be computed.
Accordingly, the distributed routing algorithm, DGSI-

FEM, is proposed to coordinate sensors to solve �̃s from
(18) in parallel using (21). In DGSI-FEM, a nearby node
is selected as the grid head for each grid point to com-
pute the value of �̃. The grid head of �i, j� may update �̃i,j
as long as the most updated �̃i,j−1 and �̃i−1,j are known;
it does not need to wait for the grid heads of all the grid
points with lexicographical order less than OL(i, j). Note
that only these grid heads are involved in the computa-
tion of �̃s, resulting in low overhead for a massively dense
network. For the sake of brevity, we simply describe the
operations of grid points without explicitly mentioning
that the operations are actually executed by grid heads.
Since the termination condition is that all the changes

made by a sweep fall below a size threshold ε, each grid
point needs to know all these changes. To achieve this,
DGSI-FEM uses two state packets, PRECISE and DONE,
for each grid point, which represent the convergence sta-
tus and the termination decision, i.e., whether the update
changes are small enough and whether the iteration
should terminate, respectively. In addition, DGSI-FEM
uses two phases (namely, a forward sweep followed by a
backward sweep) to propagate the termination decision
(via the state packet DONE) and collect the convergence
status (via the state packet PRECISE) of all �̃s. Detailed
DGSI-FEM is illustrated in Algorithm 2. Note that Ki′,j′

i,j
and δi′,j′ for all �i′, j′� ∈ Ni,j and �i′, j′� = �i, j� are known in
advance. This may be done by letting each grid point dis-
cover its adjacent grid points and, once found, exchange
J̃i,j with them. Additionally, the algorithms for sending and
waiting for messages are depicted in Algorithms 3 and 4,
respectively. Both algorithms will check whether the com-
munication counterpart is in the ROI and wait will return
〈0, true〉 if not.
After initialization (Lines 1–2), the iteration for �i, j�will

proceed as follows, referring to Fig. 10 for the sequence
diagram of DGSI-FEM iteration:
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Algorithm 2 DGSI-FEM for �i, j�
1: ∀ � i′, j′� ∈ Ni,j, DONEi′,j′ ← false, PRECISEi′,j′ ←

false, DONEi,j ← false, PRECISEi,j ← false
2: counter ← 0
3: repeat
4: counter ← counter + 1; �old ← �i,j
5: for �i′, j′� = �i, j − 1 � or � i − 1, j� do
6: if DONEi′,j′ = false then
7: 〈�i′,j′ , DONEi′,j′ 〉 ← wait(i′, j′)
8: end if
9: end for

10: update �i,j by (21)
11: if δi,j−1 = 0 and δi−1,j = 0 then
12: if PRECISEi,j = true then
13: DONEi,j ← true
14: end if
15: else
16: if DONEi,j−1 = true and DONEi−1,j = true

then
17: DONEi,j ← true
18: end if
19: end if
20: for �i′, j′� = �i + 1, j � or � i, j + 1� do
21: send(i′, j′, 〈�i,j, DONEi,j〉)
22: end for
23: if DONEi,j = true then
24: return �i,j // done within tolerance
25: end if
26: counter ← counter + 1; �old ← �i,j
27: for �i′, j′� = �i, j + 1 � or � i + 1, j� do
28: 〈�i′,j′ , PRECISEi′,j′ 〉 ← wait(i′, j′)
29: end for
30: update �i,j by (21)
31: if |�old − �i,j| ≤ ε, PRECISEi+1,j = true, and

PRECISEi,j+1 = true then
32: PRECISEi,j ← true
33: end if
34: for �i′, j′� = �i − 1, j � or � i, j − 1� do
35: send(i′, j′, 〈�i,j, PRECISEi,j〉)
36: end for
37: until counter < MAX_SWEEP
38: return �i,j // done when exceeds maximum number

of sweeps

Algorithm 3 send(i, j, 〈M1,M2〉): send a message
〈M1,M2〉 to �i, j�
1: if δi,j = 1 then
2: send 〈M1,M2〉 to �i, j�
3: end if
4: return

Algorithm 4 wait � i, j�: wait for 〈M1,M2〉 from �i, j�
Output: 〈M1,M2〉 if �i, j� is in the ROI; 〈0, true〉

otherwise.
1: if δi,j = 1 then
2: wait for 〈M1,M2〉 from �i, j� // synchronous waiting

for �i,j
3: return 〈M1,M2〉
4: else
5: return 〈0, true〉
6: end if

1. Forward sweep: iteration direction begins from
bottom-left (the grid point with the smallestOL) to
top-right (the grid point with the largestOL).

(a) �i, j� waits for �̃s and DONEs, respectively,
from the down and left adjacent grid points,
�i, j − 1� and �i − 1, j�, which have smaller
OL values. (Lines 5–9)

(b) �i, j� updates �̃i,j by (21). (Line 10)
(c) �i, j� updates DONEi,j. (Lines 11–19)
(d) �i, j� sends �̃i,j and DONEi,j to the right and

top adjacent grid points, �i + 1, j� and
�i, j + 1�, respectively, which have largerOL
values. (Lines 20–22)

2. Backward sweep: iteration direction moves from
top-right to bottom-left.

(a) �i, j� waits for �̃s and PRECISEs from the top
and right adjacent grid points, respectively.
(Lines 27–29)

(b) �i, j� updates �̃i,j by (21). (Line 30)
(c) �i, j� updates PRECISEi,j. (Lines 31–33)
(d) �i, j� sends �̃i,j and PRECISEi,j to the down

and left adjacent grid points, respectively.
(Lines 34–36)

Note that �i, j� will set PRECISEi,j as true if the update
made by itself is small enough and the PRECISEs of its
top and right grid points are true (Lines 31–33). The
PRECISEs collected by theOL-initiator, which has no bot-
tom and left adjacent grid points (e.g., the grid point with
the smallest lexicographical order), indicate whether the
update changes of all �̃s are small enough and are used to
determine the termination by theOL-initiator.
In addition, �i, j� will set DONEi,j as true based on the

following rules:

1. �i, j� is anOL-initiator, and the update changes in the
last backward sweep are small enough, i.e.,
PRECISEi,j is true (Lines 11–14), or

2. �i, j� is not anOL-initiator, but DONEi,j−1 = true
and DONEi−1,j = true (Lines 15–19).
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Fig. 10 Sequence diagram for �i, j� in the iteration of DGSI-FEM. For example, in the forward sweep, �i, j − 1� and �i − 1, j� update and then send
their �̃s and DONEs to �i, j�. After updating �̃i,j and DONEi,j , �i, j� sends �̃i,j and DONEi,j to �i + 1, j� and �i, j + 1�. The dark rectangles drawn on top
of the lifelines indicate that grid points are updating �̃s and DONEs (or PRECISEs in the backward sweep)

Note that DONEs are propagated from bottom-left to
top-right in the forward sweep, so the termination pro-
ceeds from bottom-left to top-right. Thus, the if state-
ment that checks whether the down or left adjacent grid
points have terminated is added (Line 6) to avoid infinite
waiting when waiting for messages from the down or left
adjacent grid points (Line 7).
After �̃i,js are solved from (18), D̃i,j may be approxi-

mated by the following formulae, which are derived by
using (15) to approximate (10):

D̃i,jx =δi+1,jδi−1,j̃Ji,j
2h

(
�̃i+1,j − �̃i−1,j

)
D̃i,jy =δi,j+1δi,j−1J̃i,j

2h
(
�̃i,j+1 − �̃i,j−1

)
in which D̃i,jx and D̃i,jy are, respectively, the x and y com-
ponents of D̃i,j. For the sake of brevity, the derivation
is given in Appendix 4. Once D̃i,j is computed, ũfi,j can
be determined by ũfi,j = D̃i,j/

∣∣D̃i,j
∣∣ and then used as

guidance to find the next forwarding nodes for routing
information.

5.3 Numerical results
We present several numerical results to demonstrate the
effectiveness of DGSI-FEM for different scenarios, namely
the ROI with holes, the ROI with a nonuniform infor-
mation generation rate, and the ROI with a nonuniform
density. The simulation settings for these scenarios are
listed in Table 5. Twenty thousand sensors are randomly
deployed based on the density distribution ψ and gener-
ate information based on ρ except for the sink which will

consume all the information generated. Similarly, routing
directions are solved using only the macroscopic parame-
ters, ψ and ρ, but not the detailed position of each node.
The node positions are merely used to determine the next
forwarding node from the routing directions. In addition,
the energy consumption per unit of information is propor-
tional to rαrf with αrf = 2 and thus J = ψ4 as indicated in
(13).
The routing directions obtained by DGSI-FEM are

depicted as arrows in Fig. 11. The arrows provide the
routing guidance for load-balancing. For example, Fig. 11a
reveals that information may be forwarded in a direction
which deviates from a straight line to the sink to bypass
the holes in advance. Thus, unlike many hole-bypassing
algorithms [15, 31–33], using routing directions may alle-
viate the excess energy consumption of the boundary
sensors.
The routing directions shown in Fig. 11b indicate that,

to achieve load-balancing, information may be forwarded
to the sensors outside the high-ρ region and then to the
sink, instead of being delivered straight to the sink by
the sensors in the high-ρ region. Particularly, some nodes
around the bottom-right corner of the high-ρ region may
forward packets in the opposite direction to the sink in

Table 5 Simulation settings for the scenarios illustrated in Fig. 11

Scenario ROI Sink ρ ψ

Figure 11a 37 × 37 �8, 26� 1.0 1.0

Figure 11b 37 × 37 �9, 27� 10.0, 1.0 1.0

Figure 11c 37 × 37 �26, 26� 1.0 1.5, 1.0

Figure 11d 37 × 37 �26, 26� 1.0 1.0, 0.7
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a b

c d

Fig. 11 Routing direction. All ROIs are square regions divided into 37 × 37 grids. Sinks which will consume all the information generated are marked
as circles, and the arrows represent the routing directions, ũfs. a Uniformψ and ρ : the black regions represent the holes. b Uniformψ and nonuniform
ρ : the sensors in the gray region generate ten times more information than other sensors. c Nonuniform ψ and uniform ρ : the gray region has 50%
higher sensor density than the white region. d Nonuniform density and uniform ρ : the gray region has 30% lower sensor density than the white
region

order to avoid using nodes in the high-ρ region. Note that
the sensors in the high-ρ region generate more events and
potentially have more loading.
The routing directions shown in Fig. 11c, d indicate that

the information traffic tends to flow into the high-density
regions and bypass the low-density regions to achieve
load-balancing. Similar to Fig. 11b, Fig. 11d depicts that
some nodes along the bottom-left boundary of the low-
density region may forward packets in the opposite direc-
tion to the sink in order to avoid using nodes in the
low-density region. In the last two scenarios, the ρs
are uniform; thus, the sensors in the high-density (or
low-density) region generate fewer (or more) events and
potentially have less (or more) loading.

We then conducted simulations to compare the energy
consumption of the routing directions obtained from
DGSI-FEM with that of a microscopic routing algorithm,
namely greedy perimeter stateless routing (GPSR) [31].
We used the approach described in Section 4.4 to route
the information via the routing directions. Note that
GPSR normally works as GF [12]; that is, the next for-
warding node will be the one closest to the destination
among the current sender’s neighbors. However, if GF fails
to find the node making any progress in delivering infor-
mation, the node to the left in a planar subgraph of the
connectivity graph of theWSNwill be selected as the next
forwarding node until GF recovers. The planarization
used here is RNG [34].
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We also conducted comparative simulations for another
microscopic routing algorithm, namely geographical and
energy aware routing (GEAR) [35], which attempts to
achieve load-balancing by considering both the distance
to the sink and the energy consumption. If a node has
neighbors closer to the sink, GEAR will choose among
these neighbors the one with the smallest weighted sum
of the distance to the sink and the energy consumed as the
next forwarding node; otherwise, the neighbor with the
smallest weighted sum is the next forwarding node.
Figure 12 depicts the means and standard deviations of

the energy consumption of DGSI-FEM and GEAR, nor-
malized to the energy consumption of GPSR. Referring to
Fig. 11a, DGSI-FEM may forward information in a direc-
tion which deviates from a straight line to the sink to
bypass the holes in advance, while our GPSR implementa-
tion uses the left-hand rule to forward information, thus
resulting in excess energy consumption along the holes.
Hence, DGSI-FEM may achieve better load-balancing
with less energy consumption than GPSR for the ROI with
holes.

Furthermore, GPSR is degenerated to GF for the ROIs
without holes and thus exhibits a lower average energy
consumption for the scenarios shown in Fig. 11b–d. On
the other hand, DGSI-FEM will avoid the nodes in the
high-ρ and low-density region and utilize the nodes in the
high-density region for load-balancing. Thus, the routing
paths will bypass the high-ρ and low-density regions or
bend into the high-density region.
In addition, though GEAR strives to achieve load-

balancing by considering the distance and energy fac-
tors, the best next forwarding node is still a local opti-
mum; thus, GEAR provides less effective load-balancing
than does DGSI-FEM. The standard deviation results in
Fig. 12b indicate that the routing directions solved by
DGSI-FEM can effectively achieve load-balancing, partic-
ularly for the ROIs having holes.

6 Conclusions
This paper studies the minimum routing cost prob-
lems for massively dense WSNs via the geographical
model, which leads to the grid-based directional routing

a

b

Fig. 12 The relative statistics of energy consumption of the scenarios in Fig. 11: the relative mean (or standard deviation) of DGSI-FEM (or GEAR) is
defined as the mean (or standard deviation) of the routing energy consumption of DGSI-FEM (or GEAR) divided by the mean (or standard deviation)
of the routing energy consumption of GPSR. a The relative mean of the energy consumption. b The relative standard deviation of the energy
consumption
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algorithms. The minimum routing cost problems are for-
mulated as continuous geodesic problems under mas-
sively denseWSNs, and the grid-based directional routing
algorithms are the natural outcomes of numerically solv-
ing these problems; numerical solutions of the geodesic
problems provide the directions to the next forward-
ing nodes at equally spaced grid points in the ROI,
and these directions can be used as guidance to route
information.
We first consider the position-only-dependent costs

(e.g., hops, throughput, or energy) and investigate two
numerical approaches, GADM and FM. GADM uses
Dijkstra’s method to determine the minimum cost path
(under the grid point network). However, GADM may
yield less optimum routing paths due to the direction
restriction. On the other hand, by introducing the cost
map T , the geodesic problem can be transformed into the
eikonal equation and then solved by FM. Note that the
geodesic problem considered here is to find a continuous
curve which has the minimum cost from a given source
to a sink. Our numerical results show that FM is more
suitable than GADM for approximating the continuous
curves and thus yields a path with less routing cost. The
routing cost comparison results shows that FM has a rout-
ing cost 5%more than the optimum cost, and GADMmay
have a routing cost 28% more than the optimum cost.
We then consider the traffic-proportional costs which

correspond to energy-load-balancing. By the equivalence
between geodesic problems and optimum routing vec-
tor field problems, we transform the geodesic problem
into a set of equations with regard to the routing vector
field, which can be more easily tackled. We propose a dis-
tributed algorithm, i.e., DGSI-FEM, for solving the routing
vector field via FEM and present the numerical results to
demonstrate the quality of the derived routing directions.
The routing energy consumption results show that rout-
ing directions may effectively achieve load-balancing than
the microscopic routing algorithms, GPSR, and GEAR,
particularly for the ROIs with holes.
Many aspects of this paper, the problems studied and

the approaches taken, are the application of the exist-
ing work, e.g., minimum cost routing paths [23], cost
function and node density [5, 24, 26], geodesic path via
eikonal equation [27], fast marching method [8, 28], load-
balancing routing equations [2, 24, 29, 30], and finite
element method [9]. However, these works either do not
specifically focus on the network routing problems or only
theoretically analyze the routing problems without pro-
viding routing algorithms. The main contribution of this
paper is to propose a systematic framework to develop low
overhead routing algorithms for massively dense WSNs,
i.e., coordinate sensor nodes themselves to solve the rout-
ing directions using these existing techniques and then
route the information with the routing directions. In

addition, there have existed numerous strategies for solv-
ing geodesic paths and PDEs. We believe this paper will
open up a potential research direction toward the devel-
opment of routing algorithms via investigation of the
appropriateness of these strategies for implementation on
WSNs.

Appendix 1: proof of theorem 3
For the sake of convenience, we use the position vector x
to represent the position (x, y). Consider T(x) and for any
dx, i.e., a small change of x:

T(x + dx) = T(x) + ∇T · dx + O
(|dx|2) (22)

by the Taylor expansion [29]. Let the cost of the straight
line from x to x + dx be 	T ′; then:

	T ′ = C |dx| + O
(|dx|2) .

Since T is the minimum cost:

T(x + dx) ≤ T(x) + 	T ′.

Thus, choosing dx = small multiple of ∇T :

|∇T | ≤ C.
On the other hand, consider x and x + dx along a

minimum cost path. We have:

T(x + dx) − T(x) = C |dx| + O
(|dx|2) ,

and then by (22):

C |dx| + O
(|dx|2) = ∇T · dx = |∇T | |dx| cos θ (23)

in which θ is the angle between ∇T and dx. Therefore,
|∇T | ≥ C, and (3) is proved.
Furthermore, consider x and x + dx along a minimum

cost path. It is also clear from (3) and (23) that θ = 0. Since
both x and x + dx are on a minimum cost path, dx and
thus ∇T are tangent to the minimum cost path.

Appendix 2: weak formulation of the
load-balancing routing equations, (8), (10), and (11)
Multiply (8) by an arbitrary smooth scalar valued function
ν and integrate it over the ROI; then:∫

A
(∇ · D − ρ) νdydx = 0.

By the product rule of a scalar valued function and a
vector field:

∇ · νD = ν∇ · D + D · ∇ν,

we have:∫
A

(∇ · νD − D · ∇ν) dydx −
∫
A

ρνdydx = 0,

and hence:∫
A
D · ∇νdydx = −

∫
A

ρνdydx +
∫
A

∇ · νDdydx.
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By divergence theorem, we obtain:∫
A
D · ∇νdydx = −

∫
A

ρνdydx +
∫

∂A
νD · n̂dydx.

By substituting (10) and the boundary condition (11)
into the above equation, we have the weak formulation
(12).

Appendix 3: values of Ki′,j′
i,j and gi,j

Referring to Fig. 9, for the element centered at �i, j� (i.e.,
the gray hexagon), denoted Hi,j as the set of vertices, that
is:

Hi,j ={�i − 1, j�, �i − 1, j + 1�, �i, j + 1�, �i + 1, j�,
� i + 1, j − 1�, �i, j − 1�},

and Ti,j as the set of the triangles forming the element, that
is:

Ti,j =
{
i,j�i+1,j

i+1,j−1, i,j�i+1,j−1
i,j−1 , i,j�i,j−1

i−1,j, i,j�i−1,j
i−1,j+1,

i,j�i−1,j+1
i,j+1 , i,j�i,j+1

i+1,j

}
.

Similar to (15), we approximate ν by:

ν(x, y) =
∑

�i,j�∈G
ν̃i,jμi,j(x, y).

By substituting (15) and the above equation into (12),
(12) becomes:∫

A
J
∑

�i′,j′�∈G
�̃i′,j′∇μi′,j′ ·

∑
�i,j�∈G

ν̃i,j∇μi,jdydx

= −
∫
A

ρ
∑

�i,j�∈G
ν̃i,jμi,jdydx.

By reordering the summation and integral of the above
equation, we then have:∑

�i,j�∈G
ν̃i,j

∫
A
J
∑

�i′,j′�∈G
�̃i′,j′∇μi′,j′ · ∇μi,jdydx

= −
∑

�i,j�∈G
ν̃i,j

∫
A

ρμi,jdydx.

Since ν is arbitrary, ν̃i,j are arbitrary. Therefore, the
above equation leads to:∫

A
J
∑

�i′,j′�∈G
�̃i′,j′∇μi′,j′ · ∇μi,jdydx = −

∫
A

ρμi,jdydx.

By reordering the summation and integral of the above
equation, we obtain:∑

�i′,j′�∈G

(∫
A
J∇μi′,j′ · ∇μi,jdydx

)
�̃i′,j′ = −

∫
A

ρμi,jdydx.

(24)

Define:

Ki′,j′
i,j =

∫
A
J∇μi′,j′ · ∇μi,jdydx

=
∫
A
J
(

∂μi′,j′

∂x
∂μi,j

∂x
+ ∂μi′,j′

∂y
∂μi,j

∂y

)
dydx

and:

gi,j = −
∫
A

ρμi,jdydx.

Then (24) can be written as (18).
From (19):

∂μi,j(x, y)
∂x

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−1/h if (x, y) is in i,j�i+1,j
i+1,j−1

0 if (x, y) is in i,j�i+1,j−1
i,j−1

1/h if (x, y) is in i,j�i,j−1
i−1,j

1/h if (x, y) is in i,j�i−1,j
i−1,j+1

0 if (x, y) is in i,j�i−1,j+1
i,j+1

−1/h if (x, y)is in i,j�i,j+1
i+1,j

0 otherwise

(25)

and:

∂μi,j(x, y)
∂y

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if (x, y) is in i,j�i+1,j
i+1,j−1

1/h if (x, y) is in i,j�i+1,j−1
i,j−1

1/h if (x, y) is in i,j�i,j−1
i−1,j

0 if (x, y) is in i,j�i−1,j
i−1,j+1

−1/h if (x, y) is in i,j�i−1,j+1
i,j+1

−1/h if (x, y) is ini,j�i,j+1
i+1,j

0 otherwise

(26)

Note that if �i′, j′� �= �i, j� and �i′, j′� /∈ Hi,j, the element
centered at �i, j� and the element centered at �i′, j′� do not
overlap; therefore, it is not difficult to verify that:

∂μi′,j′

∂x
∂μi,j

∂x
+ ∂μi′,j′

∂y
∂μi,j

∂y
= 0 and hence Ki′,j′

i,j = 0.

In addition, if (x, y) in i1 ,j1 �i2,j2
i3,j3 ∈ Ti1,j1 , (x, y) is located

within the elements centered at �i1, j1�, �i2, j2�, and �i3, j3�
and J (x, y) = ∑3

k=1 J̃ik ,jkμik ,jk (x, y) by (16) and (19). For
example, for (x, y) in i,j�i+1,j

i+1,j−1:

J (x, y) =J̃i,jμi,j(x, y) + J̃i+1,jμi+1,j(x, y)
+ J̃i+1,j−1μi+1,j−1(x, y).
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Thus:∫
i,j�i+1,j

i+1,j−1

Jdydx = J̃i,j

∫
i,j�i+1,j

i+1,j−1

μi,jdydx

+ J̃i+1,j

∫
i,j�i+1,j

i+1,j−1

μi+1,jdydx

+ J̃i+1,j−1

∫
i,j�i+1,j

i+1,j−1

μi+1,j−1dydx.

Note that referring to Fig. 9,
∫

i,j�i+1,j
i+1,j−1

μi,jdydx is the
volume of the triangular pyramid formed by the vertex
(xi, yj,μi,j(xi, yj)) and i,j�i+1,j

i+1,j−1; here, the volume is h2/6,
since μi,j(xi, yj) = 1 and the area of i,j�i+1,j

i+1,j−1 is h2/2.
The same argument can be used to compute the rest of
two integrals in the above equation. Thus, referring to (20)
and (6):∫

i,j�i+1,j
i+1,j−1

Jdydx =

δi+1,jδi+1,j−1h2/6
(̃
Ji,j + J̃i+1,j + J̃i+1,j−1

)
.

Here, δs are added to check whether the vertices of
i,j�i+1,j

i+1,j−1 are in the ROI.
Similarly, this integral computation can apply to other

�s in Ti,j, and we have:∫
i,j�i1,j1

i2,j2

Jdydx = δi1,j1δi2,j2h2/6
(̃
Ji,j + J̃i1,j1 + J̃i2,j2

)
,

for i,j�i1,j1
i2,j2 ∈ Ti,j. By denoting:

B0 [f ]i,j�i1,j1
i2,j2

= δi1,j1δi2,j2

(
f̃i,j + f̃i1,j1 + f̃i2,j2

)
,

we then have:

∫
i,j�i1,j1

i2,j2

Jdydx = h2

6
B0[J ] i,j�i1,j1

i1,j2 .

Thus, by (25) and (26), for �i, j� ∈ G:

Ki,j
i,j =1/h2

(∫
i,j�i+1,j

i+1,j−1

Jdydx +
∫
i,j�i+1,j−1

i,j−1

Jdydx+

2
∫
i,j�i,j−1

i−1,j

Jdydx +
∫
i,j�i−1,j

i−1,j+1

Jdydx+
∫
i,j�i−1,j+1

i,j+1

Jdydx + 2
∫
i,j�i,j+1

i+1,j

Jdydx
)

=1/6
(
B0[J ]i,j�i+1,j

i+1,j−1
+B0[J ]i,j�i+1,j−1

i,j−1
+ 2B0[J ]i,j�i,j−1

i−1,j

+ B0[J ]i,j�i−1,j
i−1,j+1

+B0[J ]i,j�i−1,j+1
i,j+1

+ 2B0[J ]i,j�i,j+1
i+1,j

)
.

Now we compute Ki′,j′
i,j s for �i′, j′� ∈ Hi,j. We first con-

sider �i′, j′� = �i + 1, j�. Referring to (25), the only �s for

both ∂μi,j/∂x �= 0 and ∂μi+1,j/∂x �= 0 are i,j�i,j+1
i+1,j and

i,j�i+1,j
i+1,j−1, and there is no � for both ∂μi,j/∂y �= 0 and

∂μi+1,j/∂y �= 0. Therefore:

Ki+1,j
i,j = − 1/h2

(∫
i,j�i,j+1

i+1,j

Jdydx +
∫
i,j�i+1,j

i+1,j−1

Jdydx
)

= − 1/6
(
B0[J ]i,j�i,j+1

i+1,j
+B0[J ]i,j�i+1,j

i+1,j−1

)
.

The same argument can be used to compute Ki′,j′
i,j s for

the rest of �i′, j′� in Hi,j, and we have:

Ki+1,j−1
i,j = 0,

Ki,j−1
i,j = −1/6

(
B0[J ]i,j�i+1,j−1

i,j−1
+B0[J ]i,j�i,j−1

i−1,j

)
,

Ki−1,j
i,j = −1/6

(
B0[J ]i,j�i,j−1

i−1,j
+B0[J ]i,j�i−1,j

i−1,j+1

)
,

Ki−1,j+1
i,j = 0,

Ki,j+1
i,j = −1/6

(
B0[J ]i,j�i−1,j+1

i,j+1
+B0[J ]i,j�i,j+1

i+1,j

)
.

Note that as mentioned earlier,Ki′,j′
i,j = 0 if �i′, j′� �= �i, j�

and �i′, j′� /∈ Hi,j. Thus, together with Ki+1,j−1
i,j = 0 and

Ki−1,j+1
i,j = 0, we have:

Ki′,j′
i,j = 0, if � i′, j′� �= �i, j � and � i′, j′� /∈ Ni,j.

To compute gi,j, we use (17) to expand gi,j as follows:

gi,j = −
∫
A

ρμi,jdydx = −
∑

�i′,j′�∈G
ρ̃i′,j′

∫
A

μi′,j′μi,jdydx.

If �i′, j′� �= �i, j� and �i′, j′� /∈ Hi,j, the element centered
at �i, j� and the element centered at �i′, j′� do not over-
lap; therefore, it is not difficult to verify from (19) that
μi′,j′μi,j = 0. Hence:

gi,j = −
∑

�i′,j′�∈Hi,j∪{�i,j�}
ρ̃i′,j′

∫
A

μi′,j′μi,jdydx.

In addition, it is obvious that if �/∈ Ti,j,
∫
� μi′,j′μi,j

dydx = 0. We only need to compute the integral over the
region �∈ Ti,j.



Li and Ko EURASIP Journal onWireless Communications and Networking  (2016) 2016:17 Page 20 of 22

We first consider the integral over i,j�i+1,j
i+1,j−1:∑

�i′,j′�∈Hi,j∪{�i,j�}
ρ̃i′,j′

∫
i,j�i+1,j

i+1,j−1
μi′,j′μi,jdydx

= ρ̃i,j

∫
i,j�i+1,j

i+1,j−1

μi,jμi,jdydx

+ ρ̃i+1,j

∫
i,j�i+1,j

i+1,j−1

μi+1,jμi,jdydx

+ ρ̃i+1,j−1

∫
i,j�i+1,j

i+1,j−1

μi+1,j−1μi,jdydx.

The computation of each integral of the above equation
is carried out as follows:∫

i,j�i+1,j
i+1,j−1

μi,jμi,jdydx

= δi+1,jδi+1,j−1/h2
∫ xi+h

xi

∫ yj

xi+yj−x
(−(x − xi) + h)2 dydx

= δi+1,jδi+1,j−1/h2
∫ xi+h

xi
(−(x − xi) + h)2 y|yjxi+yj−xdx

= δi+1,jδi+1,j−1/h2
∫ xi+h

xi
(−(x − xi) + h)2 (x − xi)dx

= δi+1,jδi+1,j−1/h2
∫ xi+h

xi
h (−(x − xi) + h)2

− (−(x − xi) + h)3 dx

= δi+1,jδi+1,j−1/h2
(−h/3 (−(x − xi) + h)3

+ 1/4 (−(x − xi) + h)4
) |xi+h

xi

= δi+1,jδi+1,j−1/h2
(
h4/3 − h4/4

)
= δi+1,jδi+1,j−1h2/12,

∫
i,j�i+1,j

i+1,j−1

μi+1,jμi,jdydx

= δi+1,jδi+1,j−1/h2
∫ xi+h

xi

∫ yj

xi+yj−x

(
(x − xi) + (y − yj)

)
(−(x − xi) + h) dydx

= δi+1,jδi+1,j−1/2h2
∫ xi+h

xi
(−(x − xi) + h)(

(x − xi) + (y − yj)
)2 |yjxi+yj−xdx

= δi+1,jδi+1,j−1/2h2
∫ xi+h

xi
(−(x − xi) + h) (x − xi)2dx

= δi+1,jδi+1,j−1/2h2
∫ xi+h

xi
h(x − xi)2 − (x − xi)3dx

= δi+1,jδi+1,j−1/2h2
(
h(x − xi)3/3 − (x − xi)4/4

) |xi+h
xi

= δi+1,jδi+1,j−1/2h2
(
h4/3 − h4/4

)
= δi+1,jδi+1,j−1h2/24,

∫
i,j�i+1,j

i+1,j−1

μi+1,j−1μi,jdydx

= δi+1,jδi+1,j−1/h2
∫ xi+h

xi

∫ yj

xi+yj−x

(−(y − yj)
)

(−(x − xi) + h) dydx

= δi+1,jδi+1,j−1/2h2
∫ xi+h

xi
−(y − yj)2

(−(x − xi) + h) |yjxi+yj−xdx

= δi+1,jδi+1,j−1/2h2
∫ xi+h

xi
(x − xi)2 (−(x − xi) + h) dx

= δi+1,jδi+1,j−1/2h2
(
h(x − xi)3/3 − (x − xi)4/4

) |xi+h
xi

= δi+1,jδi+1,j−1/2h2
(
h4/3 − h4/4

)
= δi+1,jδi+1,j−1h2/24.

Hence:∑
�i′,j′�∈Hi,j∪{�i,j�}

ρ̃i′,j′
∫
i,j�i+1,j

i+1,j−1

μi′,j′μi,jdydx

= δi+1,jδi+1,j−1h2/24
(
2ρ̃i,j + ρ̃i+1,j + ρ̃i+1,j−1

)
.

By denoting:

B1 [f ]i,j�i1,j1
i2,j2

= δi1,j1δi2,j2

(
2̃fi,j + f̃i1,j1 + f̃i2,j2

)
,

we then have:∑
�i′,j′�∈Hi,j∪{�i,j�}

ρ̃i′,j′
∫
i,j�i+1,j

i+1,j−1

μi′,j′μi,jdydx

= h2

24
B1[ρ]i,j�i+1,j

i+1,j−1
.

The same computation can be carried out for the rest of
�s in Ti,j, and we have:

gi,j = −h2/24
(
B1[ρ]i,j�i+1,j

i+1,j−1
+B1[ρ]i,j�i+1,j−1

i,j−1

+ B1[ρ]i,j�i,j−1
i−1,j

+B1[ρ]i,j�i−1,j
i−1,j+1

+ B1[ρ]i,j�i−1,j+1
i,j+1

+B1[ρ]i,j�i,j+1
i+1,j

)
.

Appendix 4: values of ˜Di,j
By (10) and (15) together with the boundary condition
(11):

D̃i,jx = Dx(xi, yj) = δi+1,jδi−1,jJ (xi, yj)
∂�

∂x
(xi, yj)

= δi+1,jδi−1,j̃Ji,j lim
	x→0

�(xi + 	x, yj) − �(xi − 	x, yj)
2	x

.

Here, Dx is the x component of D and (xi, yj) is the
position of �i, j�.
Note that (xi + 	x, yj) is located within the elements

centered at �i, j�, �i + 1, j�, �i, j + 1�, and �i + 1, j − 1�.
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Thus:
�(xi + 	x, yj) =�̃i,jμi,j(xi + 	x, yj)

+ �̃i+1,jμi+1,j(xi + 	x, yj)
+ �̃i,j+1μi,j+1(xi + 	x, yj)
+ �̃i+1,j−1μi+1,j−1(xi + 	x, yj).

From (19), μi,j+1(xi + 	x, yj) = 0 and μi+1,j−1(xi +
	x, yj) = 0. Thus:

�(xi + 	x, yj)
=�̃i,jμi,j(xi + 	x, yj) + �̃i+1,jμi+1,j(xi + 	x, yj).

From (19):

μi,j(xi + 	x, yj) = −	x/h + 1,

and:

μi+1,j(xi + 	x, yj) = 	x/h.

Thus:

�(xi + 	x, yj) = (−	x/h + 1) �̃i,j + (	x/h) �̃i+1,j.

Similarly:

�(xi − 	x, yj) = (−	x/h + 1) �̃i,j + (	x/h) �̃i−1,j.

Hence:

lim
	x→0

�(xi + 	x, yj) − �(xi − 	x, yj)
2	x

= �̃i+1,j − �̃i−1,j

2h
.

Therefore:

D̃i,jx = δi+1,jδi−1,j̃Ji,j
2h

(
�̃i+1,j − �̃i−1,j

)
.

Similarly:

D̃i,jy = δi,j+1δi,j−1J̃i,j
2h

(
�̃i,j+1 − �̃i,j−1

)
.
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