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Abstract

In this paper, we consider the problem of localizing the multiple distributed wideband chirp sources using the fractional
Fourier transform. The model in the time domain and that in the fractional Fourier domain derived by the Taylor series
expansion are presented respectively. The representation of location vector in the Dechirping domain is illustrated which
is only related to the central angle. A novel direction of arrival (DOA) estimation algorithm in the Dechirping domain is
proposed, which is extended from the conventional multiple signal classification (MUSIC) algorithm in the time domain.
Using this algorithm, except for estimating the DOA, the incidence source number can be determined as well which is
allowed to exceed the sensor number in the array. To demonstrate the performance of proposed algorithm, numerical
results are conducted. Compared to the previous FrFT-MUSIC algorithm based on the assumption of point source
model, the proposed algorithm performs a better estimation performance, especially for large angular spread and low
signal-to-noise ratio.
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1 Introduction
The direction of arrival (DOA) estimation for wideband
chirp signal has been greatly achieved under the point
source assumption [1–3]. However, the signal is always af-
fected by multipath and scattering propagation in the
practical application, which will cause the angular spread,
such as the local scattering source in the mobile multipath
environment, the distributed target reflection wave in the
low-elevation radar target tracing system, the surface and
the bottom reflection signal in the sonar detection of the
shallow sea, tropospheric or ionospheric propagation of
radio waves, the part of detection target in the passive
radar and sonar system [4–6]. In this situation, the re-
ceived signal in an array can be considered as a superpos-
ition of scattered signals originating from the different
direction and the estimation performance of DOA will be
degraded significantly if using the traditional estimators
based on the point source model [7, 8].
For obtaining the exact nominal DOA and angular

spread of a spatially distributed source, the problem of
distributed source model has been widely studied since

the early 1990s, and a large number of methods are pro-
posed for the parameter estimation of distributed source
[9–17]. However, most of the models and the estimation
algorithms can be only exploited in the case of narrowband
source, because the location vector in the time domain is
time varying when the incident source is wideband. To
date, the estimation method for wideband source with local
scattering is still in scarcity. M. Ghogho et al. proposed the
distributed wideband source model [18]. Liu et al. [19] pro-
posed a kind of maximum-likelihood (ML) estimates for
finite-bandwidth distributed sources by the perturbation
method. Foroozan and Asif [20] introduced time reversal-
based range and DOA estimators to exploit spatial/multi-
path diversity existing in strong multipath environments,
which has a high complexity in the multi-source scenarios.
Mecklenbrauker et al. [21] extended the Bayesian approach
to a distributed wideband source for the application to
seismic recordings, the kind that should be sparse.
The wideband chirp signal, whose frequency is linearly

increasing with time, is widely used in many applications,
such as communication, radar, sonar, and biomedicine, and
also be used as signal model for a good deal of natural phe-
nomena. However, for the distributed wideband chirps, we* Correspondence: vfleon@163.com
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have not found much work referring to the problem of
DOA estimation.
In our previous work [22], the properties of the frac-

tional Fourier transform (FrFT), which is a generalized
form of the ordinary Fourier transform (FT), is exploited
to address the problem mentioned above because it pro-
vides a compact representation for chirp signals as it is
based on the decomposition of the signal on the ortho-
normal basis set of the chirp functions [23, 24]. The
models of wideband chirp sources in both time domain
and energy-concentrated domain are studied. And an es-
timation of the spatial parameters of multiple wideband
chirps with local scattering is provided.
In order to obtain better estimation precision, we will

further study the problem in another fractional Fourier
domain, the Dechirping domain, in this paper. The rep-
resentation of location vector in the Dechirping domain
is derived based on a number of good properties of chirp
signal in two special fractional Fourier domains, which is
only related to the angular parameter. Then, the stand-
ard MUSIC algorithm combined with the source separ-
ation technique is extended to estimate the incident
angles of multiple sources in the Dechirping domain.
Numerical results illustrate that the proposed algorithm
could separate multiple chirp signals successfully, which
is far more than the number of sensors, and estimate the
DOA of each chirp accurately.

2 Fractional Fourier transform
2.1 Notation and definition
The fractional Fourier transform as a linear integral
transform with kernel Kα(u, t) [25, 26]:

Xα uð Þ ¼ Fα x tð Þ½ � ¼
Z ∞

−∞
Kα u; tð Þx tð Þdt ð1Þ

where Fα[⋅] denotes the FrFT operator and kernel
Kα(u, t) is

Kα u; tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−j cotα

p
ejπ t2 cotα−2tucscαþu2 cotαð Þ; α≠nπ

δ t−uð Þ; α ¼ 2nπ
δ t þ uð Þ; α ¼ 2n� 1ð Þπ

8<
:

ð2Þ

where the domain u is generally known as the fractional
Fourier domain which makes the rotation angle α with
the time domain.
Rather than defining the fraction of the transform as

the rotation angle, α, in the interval [−π, π] radians, a
new variable, p, is defined as the order of the transform
and is valid in the interval [−2, 2]. The zeroth order
transform is simply the function itself, whereas the first
order transform is its Fourier transform.

2.2 Time-frequency rotating properties
According to the time-frequency rotating properties of
the FrFT, the Wigner-Ville distribution (WVD) of the
FrFT of a signal can be interpreted as the coordinate ro-
tating form of the WVD of this signal [27]. The energy
spectrum of a finite chirp signal shows a fin-shape line
in the fractional Fourier domain, as shown in Fig. 1 and
two special fractional Fourier domains are particularly
noteworthy: the Dechirping domain, whose axis u
coincides with the line, and its perpendicular domain,
energy-concentrated domain, in which the energy distri-
bution of chirp signal shows an obvious peak.
We assume that a chirp signal is modeled as

y tð Þ ¼ βejπ 2f 0tþμ0t
2ð Þ

ð3Þ

where β ¼ a0ejφ0 is a constant, a0 symbolizes the ampli-
tude of the chirp signal, φ0 is the initial phase, f0 is the
initial frequency, and μ0 is the chirp rate.
Then, the rotation angles of the chirp signal in the

Dechirping domain and the energy-concentrated domain
can be written as

αd ¼ tan‐1μ0 ð4Þ

αe ¼ − cot‐1μ0 ð5Þ

The relationship between these two rotation angles
can be represented by

αd ¼ αe þ π=2 ð6Þ

Y αd uð Þ ¼ F Y αe uð Þ½ � ð7Þ

where Fα[⋅] denotes the FT operator.

Fig. 1 The energy spectrum of a chirp signal with a finite length
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It can be seen that the FrFT of a chirp signal in the
Dechirping domain equals to the FT of the FrFT of
this signal in the energy-concentrated domain. As a re-
sult, when the chirp rate μ0 is unknown which is satis-
fied in most instances, the rotation angle ad can be
acquired using (6) after the determination of the rota-
tion angle ae in the energy-concentrated domain by
searching the coordination of spectral peak in two-
dimensional plane (α,u).

2.3 Time delay representation in Dechirping domain
According to (3), we can obtain the y(t − τ) as follows [25]:

y t−τð Þ ¼ βejπ 2f 0 t−τð Þþμ0 t−τð Þ2½ �
¼ βejπ −2f 0τþμ0τ

2ð Þej2π f 0−μ0τð Þtejπμ0t
2 ð8Þ

where τ is the time delay.
Compared with (3), it can be seen that the chirp rate

of the signal is invariable after the time delay performs
on this signal. Therefore, the rotation angle of the time-
delayed signal is the same as that of the original signal
in the Dechirping domain.
In Dechirping domain, the FrFT of a chirp signal given

by (3) can be written as:

Y αd uð Þ ¼ Fαd y tð Þ½ � ¼ Cej2πf 0 cosαdu ð9Þ
where

C ¼ β cosαd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j tanαd

p
e −jπf 0

2 sinαd cosαdð Þ ð10Þ
According to the time shifting property of the FrFT,

the FrFT of y(t − τ) in the same Dechirping domain is:

Fαd y t−τð Þ½ � ¼ e j2πτ2 sinαd cosαdð Þe −j2πuτsinαdð ÞY αd u−τ cosαdð Þ
¼ Cej2π f 0 cosαd−τ sinαdð Þuejπ τ2 sinαd cosαd−2f 0 cos

2αdτ½ �

ð11Þ
where τ is the time delay.
In the digital calculation process in FrFT [28], the

chirp rate will be significantly reduced because of the di-
mensional normalization. As a result, the numerical
value of the rotation angle αd is far from π/2. If τ < < f0,
which is satisfied in most practical applications, we can
obtain that

τ sinαdj j << f 0 cosαdj j ð12Þ
Thus, (11) can be approximated to

Fα y t−τð Þ½ �≈Cej2πf 0 cosαuejπ τ2 sinα cosα−2f 0 cos
2ατ½ � ð13Þ

Comparing (8) and (12), we can obtain:

Fα y t−τð Þ½ � ¼ A τð ÞFα y tð Þ½ � ð14Þ
where

A τð Þ ¼ ejπ τ2 sinαd cosαd−2f 0 cos
2αdτ½ � ð15Þ

In (15), A(τ)is only related with the time delay τ , and
the influence of the independent variable u has been
eliminated. This useful conclusion will play an important
role in deducing data model in Dechirping domain in
the next section.

3 Data model
3.1 Data model in time domain
A scenario with Q uncorrelated sources transmitted
wideband chirp signals is considered. Due to multipath
propagation, each source can be seen as a superposition
of Nq scattered point-source components. The uniform
linear array (ULA) with P sensors is taken as an example
for derivation, and the similar conclusions are easy to be
generalized to the arrays with other types. The complex
envelope of the output vector in the array can be mod-
eled as

x tð Þ ¼
XQ
q¼1

XNq

i¼1

βqia θq þ ~θqi; t
� �

sq t−νqi
� �þ n tð Þ

ð16Þ
where
βqi: the complex amplitude of the ith scattered source

from the qth source;

a θi þ ~θqi; t
� �

: the time-varying location vector of the

array, θq is the nominal DOA of the qth source and θi
þ~θqi is the DOA of the ith scattered components from
the qth source;
sq(t): the qth transmitted signal;
vqi: the time delay associated with the ith scattered

source from the qth source;
n(t): the additive zero-mean noise vector, which is as-

sumed to be spatially white and independent of the
transmitted signals.
When the received signals are wideband and with local

scattering, there is no one-to-one relationship between

the DOA parameter and the location vector a θi þ ~θqi; t
� �

which is also dependent on the time and deviation angle
variables. Therefore, traditional parameter estimation
methods cannot work well in the case of distributed wide-
band chirp. The time-frequency properties of chirp signal
in the two fractional Fourier domain mentioned above
can help us eliminate the influence of time and deviation
angle variable on the location vector. The detailed deriv-
ation will be given in the next section.

3.2 Approximating the spatial signature
Because the majority of scattered signals distribute in the
vicinity of the transmitted source, the time delay vqi is
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relatively small so that (12) is satisfied and the quadratic
term of vqi can be ignored. Hence, the ith scattered com-
ponent of the qth source received on the conference sen-
sor in the Dechirping domain is given by

Fαd sq t−vqi
� �� �

≈ejπ vqið Þ2 sinαd cosαd−2f q cos2αdvqi
� �

Fαd sq tð Þ� �
≈ejπ −2f q cos

2αdvqið ÞFαd sq tð Þ� �
ð17Þ

Then, the FrFT with a rotation angle αd performs on
the output vector in (16), and the result can be given by

X uð Þ ¼
XQ
q¼1

XNq

i¼1

βqie
−j2πf q cos

2αdvqiAq θq þ ~θqi

� �
Sαdq uð Þ þN uð Þ

ð18Þ

where Aq θq þ ~θqi

� �
is the location vector of the qth

source, Sαdq uð Þ is the FrFT of sq (t) and N(u) is the FrFT

of n(t) in the Dechirping domain.
Because FrFT of multiple sources or that of one single

source’s multi-scattering components does not result in
cross-term interference, the conclusion in [31] could be
exploited here directly as follows:

Aq θq þ ~θqi

� �
¼ 1;A2 θq þ ~θqi

� �
;⋯;AP θq þ ~θqi

� �h iT
ð19Þ

where T is the transpose and

Ap θq þ ~θqi

� �
¼ ejπ τpð Þ2 sinαd cosαd−2f 0 cos2αdτp

� �
ð20Þ

where τp ¼ p−1ð Þd sin θq þ ~θqi

� �
=c represents the time

delay on the pth sensor, d is the inter-sensor distance of
ULA, and c is the transmission speed.
In order to estimate θq, [29] proposed an approximate

model called the generalized array manifold (GAM) and a
corresponding algorithm using a Vandermonde structure.

Due to the deviation angle ~θqi of each scattered signal is

relatively small, Aq θq þ ~θqi

� �
in (20) can be approxi-

mated through the first-order Taylor series expansion:

Aq θq þ ~θqi

� �
≈Aq θq

� �þ ~θqid θq
� � ð21Þ

where

d θð Þ ¼ ∂Aq θð Þ
∂θ

ð22Þ

Then, we define a variable vq, that is

vq ¼
XNq

i¼1

cqiAq θq þ ~θqi

� �
¼
XNq

i¼1

cqi Aq θq
� �þ ~θqid θq

� �� �

¼
XNq

i¼1

cqi

 !
Aq θq
� �þ XNq

i¼1

cqi~θqi

 !
d θq
� � ¼ Aq θq

� �þ ϕqd θq
� �
ð23Þ

where cqi ¼ βqie
−j2πf q cos

2αdvqi , ϕq ¼
XNq

i¼1

ci~θqi and we as-

sume that
XNq

i¼1

cqi ¼ 1:

Hence, the compact matrix notation V can be given by

V¼A θ� ;ϕ�

� �
¼ A θ�

� �þD θ�

� �
Φ ϕð Þ ð24Þ

where

A θ�
� � ¼ A1 θ1ð Þ;…;AQ θQ

� �� �
D θ�
� � ¼ d θ1ð Þ;…;d θQ

� �� �
Φ ϕ

�

� �
¼ diag ϕ1;…;ϕQ

	 
 ð25Þ

θ� ¼ θ1;…; θQ
� �T

ϕ
�
¼ ϕ1;…;ϕQ

� �T ð26Þ

Finally, the model (18) can be approximated as

X uð Þ ¼ VS uð Þ þN uð Þ ð27Þ

where S uð Þ ¼ Sαd1 uð Þ ⋯ SαdQ uð Þ
h iT

and N uð Þ ¼ Nαd
1 uð Þ½

⋯ Nαd
Q uð Þ�T .

According to (24), we know that the spatial parame-
ters θ� and ϕ

�
are needed to estimate in the approxi-

mated model.

4 Parameter estimation algorithm
4.1 Single source estimation algorithm
Firstly, we consider one chirp source (Q = 1 in (16)).
Many DOA estimation algorithms for the narrowband
point source model can also be applied here because
the location matrix in the Dechirping domain has a
one-to-one relationship with the spatial parameters. In
this paper, the classical MUSIC algorithm in the time
domain is extended to estimate spatial parameter of
wideband chirp source with local scattering. The
spatial estimation spectrum of standard MUSIC algo-
rithm is

VMUSIC θð Þ ¼ a� θð ÞÊnÊ�
na θð Þ

a� θð Þa θð Þ ð28Þ

In the Dechirping domain, the calibrated location
vector is exploited to replace the location vector in
(28), that is
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A θð Þ þ ϕd θð Þ ¼ �A θð Þ�ϕ ð29Þ

where Ā(θ) = [A(θ) ϕd(θ)] and �ϕ θð Þ ¼ 1 ϕ½ �T .
Hence, the estimation spectrum for the proposed model
should be revised to

�VMUSIC θ;ϕð Þ ¼ ϕ� �A�
θð ÞÊnÊ�

n
�A θð Þ�ϕ

A� θð ÞA θð Þ ð30Þ

The parameters θ and ϕ can be determined by the
spectral peak position.

4.2 Separation of different chirp sources and the source
number determination
As (5) shows, chirp signals with different chirp rates
have different rotation angles in their energy-
concentrated domain in which chirp signal shows an
obvious spectrum peak. The energy-concentrated do-
main of each signal can be determined by the two di-
mension search in the time-frequency plane (α,u). In
each energy-concentrated domain, only one chirp signal
can acquire the best energy-concentrated property
while the energy distributions of the other signals and
noise are dispersing, therefore, this chirp signal can be
separated from others through a band-pass filter. Then,
the parameter estimation algorithm proposed above
can be applied to filtered single source after that is
transformed into the corresponding Dechirping do-
main. The detailed separation process could be found
in [31]. It is noted that the separation process cannot
only resist the interference of noise and other signals,

but also solve the problem of source number restriction
in many traditional DOA estimators. For example, the
MUSIC algorithm cannot be applied when the source
number exceeds the number of the sensors in the array.
However, the proposed algorithm avoids this problem
through the separation processing. The parameters of
each source can be estimated respectively.

5 Simulation study and results
To demonstrate the performance of the proposed algo-
rithm, an ULA with eight sensors is employed to
estimate the spatial parameters of the proposed model.
In the simulation, two uncorrelated wideband chirp
sources are considered as signal emitters. The initial
parameters of the first wideband chirp source are f1 =
100 Hz and μ1 = 10 Hz/s. And that of the second one
are f2 = 200 Hz and μ2 = −10 Hz/s. Besides, the central
angle of the first source is taken as θ1 = 30∘ with the ex-
tension width Δ1 = 2∘ from a uniform angular distribu-
tion, and the central angle of the second source is
taken as θ2 = − 45∘ with the extension width Δ2 = 2∘

from a Gaussian angular distribution of width, respect-
ively. The signal-to-noise ratio (SNR) is set at 10 dB,
and the number of snapshots is 500.
The two-dimensional searching results of two sources

on the reference sensor are shown in Fig. 2. According
to the coordinates of two distinct spectrum peaks, the
rotation angles of their energy-concentrated domain can
be determined, and the source number can be easily ob-
tained by the peak number.

Fig. 2 Two-dimensional spectrum of two wideband chirp sources in the plane (α, u)
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In Fig. 3a, b, the energy spectrums of two sources on the
first sensor in the corresponding energy-concentrated do-
main show an obvious energy concentration respectively.
In this energy-concentrated domain, the chirp signal forms
a sinc function and the majority of the energy spectrum fo-
cuses on its support, and the single peak will appear on the
other sensors as well. Therefore, the desired chirp signal
on each sensor can be separated conveniently using the

band-pass filtering, and the filtered results are illustrated in
Fig. 3c, d.
The FrFT-MUSIC algorithm proposed in [30], which is

applied to estimate the DOA of the wideband chirp source
based on the point source model, and the method in [22] is
chosen as the comparing algorithm to demonstrate the per-
formance of the proposed algorithm for the wideband chirp
source with local scattering. For each figure, 100 Monte

a b
Fig. 4 The estimation RMSE for the central angle versus the SNR. a Source 1. b Source 2

a b

c d
Fig. 3 The energy spectrums of the chirp signal and noise on the first sensor in the energy-concentrated domain. a Source 1. b Source 2. c Filtered
source 1. d Filtered source 2
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Carlo simulations were run to estimate the root mean-
square error (RMSE) of the estimates. We focus on the
estimation of the DOA, while the other parameters are
considered mainly as nuisance parameters.
Figure 4 shows the RMSE for the DOA estimates ver-

sus the different SNRs using three algorithms. For both
sources, the RMSE of the proposed algorithm is less
than that for the other two algorithms. Figure 5 clearly
demonstrates that the proposed estimator has excellent
performance versus the different extension widths. With
the increasing extension width, the proposed algorithm
has better location accuracy than the others.
Finally, the resolution performance of the proposed al-

gorithm versus the different source number is demon-
strated. In this experiment, the chirp rate interval Δμ of
each source is chosen as 1 Hz/s. The numerical results
can be seen in Fig. 6. The proposed algorithm can remain

the good resolution performance even though the source
number is far more than the sensor number.

6 Conclusions
In this paper, parametric localization of multiple wideband
chirp sources with local scattering have been considered.
The models in both the time and fractional Fourier domain
were proposed. In the Dechirping domain, a novel DOA
estimator combined the properties of the chirp signal and
the Taylor series expansion was addressed. The DOA of
each source and the source number can be determined
using the proposed method. Besides, the source number is
allowed to exceed the sensor number in the array. The
simulation study demonstrated that the proposed algo-
rithm provided a superior spatial resolution performance
for wideband chirp sources with local scattering than the
previous FrFT-MUSIC algorithm.
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