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Abstract

Link adaptation (LA) process is a core feature for the downlink of 3GPP long-term evolution (LTE) and LTE-advanced
(LTE-A). Through a channel quality indicator (CQI), the receiver suggests to the base station (BS) an appropriate
modulation and coding scheme (MCS) according to the current channel conditions. In order to overcome any
non-ideality in this process, the outer loop link adaptation (OLLA) algorithm is used to adaptively modify the mapping
from signal-to-noise ratio (SNR) to CQI. OLLA basically modifies the measured SNR by an offset, according to whether
data packets are received correctly or not, in order to adjust the average block error rate (aBLER) to a target. Although
the OLLA technique has been extensively used, there exists a lack of analysis in the literature about its dynamics and
convergence conditions. In this paper, a deep analysis of this algorithm has been carried out in order to cover this gap.
From this analysis, we propose a new approach to the OLLA, the enhanced OLLA (eOLLA), which is able to adaptively
modify its step size as well as to update its offset according to the reception conditions even if no data packets have
been received. Thus, for LTE- and LTE-A-realistic scenarios, simulation results show that the proposed eOLLA
outperforms the traditional OLLA, achieving a performance gain of up to a 15 % in terms of throughput.
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1 Introduction
The adaptive modulation and coding (AMC) process car-
ried out in the link adaptation (LA) is a crucial part of
current wireless communication systems. This technique
allows to increase the data rate that can be reliably trans-
mitted [1] and has been adopted as a core feature in
cellular standards such as long-term evolution (LTE) and
LTE-advanced (LTE-A) [2].
In the LTE and LTE-A downlink AMC procedure [2],

the user equipment (UE) has to suggest to the base sta-
tion (BS) an appropriate modulation and coding scheme
(MCS) to be used in the next transmission in order to
keep the block error rate (BLER) below a target. The pro-
posedMCS is signaled from the UE by means of a channel
quality indicator (CQI). Typically, each CQI is associ-
ated with a particular signal-to-noise ratio (SNR) inter-
val; hence, MCSs are selected by mapping the estimated
instantaneous SNR into its corresponding SNR interval,
defined by an upper and a lower threshold.
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A static selection of the values for the AMC thresholds
does not performwell in practical implementations as link
conditions are inherently variant. It is usual to adjust these
thresholds by means of the well-known outer loop link
adaptation (OLLA) technique, which was first proposed
in [3]. Basically, OLLA modifies the SNR thresholds by an
offset [4, 5] which can be positive (making the MCS selec-
tion more robust) or negative (when the CQI selection
was too strict). This offset is continuously updated based
on the reliability of the received data blocks so that the
average BLER is kept as close as possible to a predefined
target.
Although there are works devoted to OLLA in the lite-

rature [6, 7], they typically address its performance from
simulations, and the lack of a comprehensive analysis of
its behavior in the literature is noticeable. Furthermore, to
the best of our knowledge, previous works do not analyze
the conditions under which the OLLA technique works
properly. The first aim of this work is to cover this gap by
carrying out a deep study of the OLLA technique.
From this study, improvements in the implementation

of the traditional OLLA can be inferred. Thus, in this
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paper, a different approach to the OLLA technique is pro-
posed, the enhanced OLLA (eOLLA), which can signifi-
cantly improve the performance of the traditional OLLA.
This paper is organized as follows. In Section 2, the

AMC model for LTE used in this work is described, and
then a detailed description of the OLLA is carried out,
including a study of its convergence conditions and its per-
formance. In Section 3, the proposed eOLLA is presented.
Finally, Section 4 shows a comparison between both the
traditional OLLA and the proposed eOLLA in realistic
scenarios based on the downlink of LTE and LTE-A, and
some concluding remarks are given in Section 5.

2 Outer loop link adaptation (OLLA)
To perform the AMC [1], the instantaneous SNR γ is esti-
mated at the UE to determine the current fading region�i
and, consequently, the transmission rate Ri (bits/symbol).
At the UE, this instantaneous SNR is mapped into a
certain CQI value, which is fed back to the BS.
The set of SNR thresholds {�i}i=0,1,..,n defines the inter-

vals to map the estimated instantaneous SNR into its
corresponding CQI, with �0 representing the minimum
required SNR for transmission (outage condition) and
�n = ∞. These thresholds have been designed in order
to accomplish certain constraints, such as limiting the
maximum instantaneous BLER (iBLER) or defining an
average BLER (aBLER) target. The latter approach (based
on aBLER) is the one adopted by most wireless tech-
nologies like LTE [1]. Therefore, our description will be
focused on the aBLER scenario.
For a certain average SNR �, the average BLER under

AMC can be evaluated as

aBLER(�, {�i}) =
n−1∑
i=0

∫ �i+1

�i
iBLERAWGN

i (γ )po(�, γ )dγ ,

(1)

being iBLERAWGN
i (γ ), the instantaneous BLER for a

given MCS i over an additive white Gaussian noise
(AWGN) channel and po(�, γ ) the probability density
function (PDF) of the instantaneous SNR conditioned to
transmission.
In this, work we have assumed an uncorrelated Rayleigh

channel for the analysis. Thus, the PDF of the instanta-
neous SNR for a certain average SNR � is given by an
exponential function [1]

p(�, γ ) = 1
�
e−γ/� . (2)

Then, the instantaneous SNR conditioned to transmis-
sion is given by:

po(�, γ ) =
{ 1

A(�,�0)�
e−γ/� , γ > �0

0, else
(3)

where A (�,�0) is the probability of not being in outage,
that is,

A (�0) =
∫ ∞

γ=�0

1
�
e−γ/�dγ = e−�0/� . (4)

According to Eq. (1), in order to evaluate the aBLER,
it is necessary to have at our disposal an expression for
iBLERAWGN

i , but to the best of our knowledge, this is
not available in the literature when turbo coding is used.
Moreover, the exact value of the iBLER strongly depends
on the specific decoder implementation [8]. Nevertheless,
since the iBLER metric represents the probability of being
in one of two states {error, no − error}, we propose the use
of binary logistic regression [9]. This regression is a binary
classifier based on one or more input variables. Thus, it
is a useful tool to model iBLER curves for each MCS i
over AWGN channels, for a given instantaneous SNR γ ,
by means of binary logistic functions as:

iBLERAWGN
i (γ ) ≈ fi(γ ) = 1

1 + e−αi0γ−αi1
, (5)

where the αi0 and αi1 values (see Table 1) are to be
found from the logistic regression over results of the
actual decoder implementation (see Section 3.2 for fur-
ther details). The accuracy of logistic functions after the
curve-fitting process is shown in Fig. 1 for the whole set
of CQI values of LTE [2], where solid lines represent the
analytic BLER curves whereas simulation results of a soft
output Viterbi algorithm (SOVA)-based turbo decoder
[10] are marked with circles.
A static selection of the values for the AMC thresh-

olds �i does not perfectly adjust the aBLER to a target
since link conditions are inherently variant. Thus, in order

Table 1 Values of αi0 and αi1 of modeled iBLER curves

CQI index αi0 αi1

1 −28.08 9.71

2 −20.59 11.05

3 −15.31 12.89

4 −11.09 14.45

5 −8.05 17.12

6 −6.56 20.56

7 −2.48 16.07

8 −2.39 22.83

9 −1.26 18.74

10 −0.67 20.02

11 −0.40 18.36

12 −0.26 16.62

13 −0.17 16.18

14 −0.04 7.02

15 −0.03 8.84
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Fig. 1 Curve fitting of logistic functions to model iBLER curves (CQIs 1–15)

to meet the aBLERT , different sets of SNR thresholds
{�i}i=0,1,..,n should be used for different link conditions.
This can be modeled by rewriting each SNR threshold
�i = γi · θ , being γi an initial value, and θ an offset that
must be designed to meet the aBLERT . Then, Eq. (1) is
modified as

aBLER(�, {γi}, θ) =
n−1∑
i=0

∫ γi+1θ

γiθ
iBLERAWGN

i (γ )p(γ )dγ .

(6)

The previous process is typically performed in prac-
tical implementations by the outer loop link adaptation
(OLLA) technique [3–5]. The traditional OLLA opera-
tion consists in dynamically modifying the value of the
offset according to whether the previously transmitted
data packet has been correctly received or not. In LTE
and LTE-A, this information is extracted from the cyclic
redundancy code (CRC) [11]. Thus, OLLA can be seen
as a discrete time system in which, each time k a CRC is
received, the value of the offset θ [k] is updated according
to the following equation [5]

θdB [k] = θdB [k − 1]+�up · e [k]−�down · (1 − e [k]) ,
(7)

being

• θdB [k] = 10 · log10 (θ [k]).
• e [k] an error indicator, whose value is 0 if the CRC is

correct, or 1 if not. It corresponds to a dichotomous
random variable whose average is the aBLER.

• �up and �down constant increment and reduction
values, respectively, of the offset, in decibels. These
two values are positive and should satisfy Eq. (8) in
order to meet the aBLERT [5]. This condition will be
justified in Subsection 2.1.

aBLERT = 1
1 + �up

�down

. (8)

In addition to that, the value of �down cannot exceed an
upper limit �downmax in order to ensure the proper work-
ing of the OLLA. This limit is given by the next equation,
which is justified in Subsection 2.1.

�downmax <
2e · aBLERT

−α1
. (9)

SNR threshold values are now modified at each instant
k by a discrete offset, so they can be expressed as

�i [k] = γi · θ [k] . (10)

To sum up, the OLLA operation consists in increas-
ing the offset value (and so increasing the value of the
SNR thresholds) when error happens, and decreasing
them when transmissions are correct. Therefore, θ [k] val-
ues higher than 1 increase transmission robustness, while
values lower than 1 decrease it.

2.1 OLLA convergence in average
It should be noticed that OLLA dynamics imply that
the offset value θdB [k] is continuously being updated by
adding�up (if error) or subtracting�down (if not). Thus, it
will never converge to a single value. However, the offset θ

presented in (6) is a single value that ensures the aBLERT
for stationary link conditions. The reason of this differ-
ence is that θ is used in an averaging process, while in case
of the OLLA, θdB [k] is an instantaneous value. Therefore,
to study the convergence of the OLLA process, averaged
values must be considered.
In this subsection, the convergence in average of the

OLLA algorithm for stationary link conditions, as well as
the conditions that should be satisfied in order to achieve
this convergence is studied. For this purpose, mathemati-
cal expectation can be applied to (7) to find the averaged
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E [θdB [k]] = θdBk value at k, obtaining the following
equation after reordering

θdBk = θdBk−1 + (
�up + �down

) · E [e [k]]− �down. (11)

Note that since the average value of θdB [k] depends
on k, it is not an ergodic process. Only when k → ∞
the process can be considered ergodic. Expression (11)
corresponds to a difference equation, i.e., there is a recur-
rence relation between the terms in the form of θdBk =
T

(
θdBk−1

)
, being T (θdB) the recurrence function. Hence,

according to the Banach fixed-point theorem [12], when
k → ∞ the equation will converge to the only value
such that θodB = T

(
θodB

)
if certain conditions are fulfilled.

The following equation is obtained when convergence in
average is reached(

�up + �down
) · E [e [k]] − �down = 0. (12)

Note that E [e [k]] is the average number of errors, i.e.,
the aBLER. Thus, in order to ensure that the converged
offset value θodB = 10 · log10 (θo) meets the aBLERT , the
aBLER should be forced to this value, obtaining the the
following relation

aBLERT = E [e [k]] = 1
1 + �up

�down

. (13)

which was already presented in (8), and now it has been
justified. Therefore, under certain link conditions, the
OLLA algorithm converges in average to a value θo which
is the value of θ to be introduced in (6) in order to meet
the aBLERT .
Equation (13) manifests that there are infinite suit-

able combinations of �up and �down that ensures the
aBLERT . However, the specific values of �up and �down
must accomplish the convergence criteria required by the
Banach fixed-point theorem applied to (11), whose two
sufficient conditions are described next.

2.1.1 First Banach fixed-point theorem condition
The function T (θdB) should be a contraction mapping,
that is, it should satisfy that

T (θdB) ∈ [θmin, θmax] ,∀θdB ∈ [θmin, θmax] . (14)

It can be easily shown that this condition is always ful-
filled by the OLLA. Firstly, since E [e [k]] is the average
number of errors, i.e., the aBLER, its range of values are
comprised between 0 and 1. Thus, there will be a value
θdB = θmin low enough to ensure that E [e [k]] = 1, which
means that T (θmin) = θmin + �up. Then, as θdB increases,
the value of E [e [k]] will decrease until θdB raises a value
θmax high enough to ensure that E [e [k]] = 0, which
means that T (θmax) = θmax − �down. As a result of that,
the values of T (θdB) will be comprised between

T (θdB) ∈ [
θmin + �up, θmax − �down

]
∈ [θmin, θmax] ,∀θdB ∈ [θmin, θmax] .

(15)

2.1.2 Second Banach fixed-point theorem condition
The second condition that the function T (θdB) should
fulfill is that∣∣T ′ (θdB)

∣∣ < 1, ∀θdB ∈ [θmin, θmax] (16)

being T ′ (θdB) the first order derivative of T (θdB). To
check this condition, it is necessary as an expression for
E [e [k]], this is, for the aBLER. This expression is pro-
vided by (6), and it depends on the specific parameters
of the binary logistic regression carried out to model the
iBLERAWGN

i curves. In order to have a more tractable
expression, aBLER(�, {γi}, θ) values have been obtained
numerically for an average SNR value of � = 15dB
and certain iBLERAWGN

i curves (see Section 5 for fur-
ther details) for different θdB values according to (3), (5),
and (6). These values have been obtained based on the
parameters of Table 2 and are presented in Fig. 2 (solid
line).
The shape of the aBLER curve is similar to the iBLER.

Thus, it could also bemodeled bymeans of logistic regres-
sion, which was introduced in Section 2. In this case, we
propose tomodel this curve bymeans of amodified binary
logistic function, which introduces a parameter s which
controls the slope, as

E [e [k]] = aBLER(�, θdB) ≈ fm(θdB) = 1(
1 + e−α0θdB−α1

)s .
(17)

After finding the values of α0, α1, and s by logistic
regression, the resulting fitted curve is shown in Fig. 2 as
a dashed line. It can be seen how the proposed expression
perfectly fits with the simulated results.
By using the proposed modified logistic function, it can

be evaluated by the expression of T (θdB), according to
(11), as

T (θdB) = θdB+(
�up + �down

) · fm (θdB)−�down (18)

Next, the condition to ensure that
∣∣T ′ (θdB)

∣∣ < 1 is
derived from (13), (17), and (18). First, we find the value of
T ′ (θdB) as

Table 2 Parameters for OLLA convergence

Parameter Value

� 15 dB

α0 1.15

α1 −1.03

s 17

�downmax 0.52

aBLERT 0.1
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Fig. 2 Curve fitting of modified logistic function to model aBLER for
� = 15 dB

T ′ (θdB) = 1 + (
�up + �down

) · f ′
m (θdB) . (19)

Since fm (θdB) is a decreasing function, that is f ′
m (θdB) ≤

0, and both �up and �down are positive, the following
condition must be guaranteed in order to ensure the
convergence condition
(
�up + �down

) · ∣∣ f ′
m (θdB)

∣∣ < 2 ⇒ ∣∣ f ′
m (θdB)

∣∣ <
2(

�up + �down
) .
(20)

Thus, we find the maximum of
∣∣ f ′

m (θdB)
∣∣, i.e., the values

for which f ′′
m (θdB) = 0, to ensure that the condition

imposed by (20) is fulfilled. After reordering, we find

that the offset value θdBmax for which the maximum of∣∣ f ′
m (θdB)

∣∣ is achieved as

θdBmax = 1
α1

·
(
ln

(
1
s

+ α0

))
(21)

and therefore, the maximum value of
∣∣ f ′
m (θdB)

∣∣ is
∣∣ f ′
m

(
θdBmax

)∣∣ = |α1| · 1(
1 + 1/s

)s+1 . (22)

As it was said before, the fact that fm (θdB) is a decreas-
ing function implies that s ≥ 0. It can be easily seen that
higher values of fm (θdB) are achieved as s is increased.
Then, we get an upper bound of f ′

m (θdB) when s → ∞ as∣∣ f ′
mmax

∣∣ = |α1|
e

. (23)

Finally, from (13), (20), and (23), we find that the second
condition to ensure the OLLA convergence, which was
already presented in (9), is given by

�downmax <
2e · aBLERT

−α1
.

Thus, convergence is ensured if the decrement step does
not raise a maximum value, which is determined by α1,
that is, by the curve of aBLER for a certain � value of mean
SNR.
According to previous results, there is a range of �down

values, and so of �up values, that ensures convergence.
In Fig. 3, the convergence process when different values
of �down are used is presented, for given link conditions
whose parameters are listed in Table 2. These parameters
have been obtained for the same conditions in Fig. 2.
Figure 3, shows how the converged value θdBk raises its

final value θodB ≈ −0.8 (dashed line) faster as the size of
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�down is higher. Note that this convergence value is the
same that obtained in Fig. 2 by using (17). Once �down
exceeds �downmax , whose value is 0.52 for the proposed
scenario, the OLLA begins to diverge, this divergence
being more remarkable as �down increases. Therefore, it
would be advisable to choose the highest possible value of
�down in order to achieve convergence as fast as possible.

2.2 OLLA performance
In this subsection, the OLLA performance is analyzed
under stationary link conditions. As it will be shown,
when convergence, the instantaneous offset value θdB [k]
fluctuates around the converged value θodB following the
instantaneous channel variations. The amplitude of these
fluctuations will be related to the values of�up and�down.
Thus, high values of these two parameters, even if they
guarantee the OLLA convergence, may lead to a high vari-
ance in the instantaneous offset value that could degrade
the OLLA performance. On the other hand, too small val-
ues of �up and �down may imply that the OLLA could not
follow the channel variations if they are too fast.
In Fig. 4, the instantaneous values of θ [ k] are shown

for the same simulation conditions of Table 2, for a set
of values of �down that guarantee convergence (�down <

�downmax = 0.52). These results show that for the lowest
�down value, it takes several steps to the OLLA to reach
a state for which the offset is stabilized around a certain
value, which is the converged value θodB ≈ −0.8 of Fig. 3.
As the value of �down increases, it takes less steps to the
OLLA to stabilize; however, the variance of the offset also
increases, which may cause a degradation in the OLLA
performance.
As it was previously stated, a high variance of the OLLA

offset can degrade its performance. This fact is shown
in Table 3, which presents the achieved throughput and

Fig. 4 Instantaneous offset for an uncorrelated flat Rayleigh channel

Table 3 System performance for OLLA with different �down sizes

�down size (dB) Spectral efficiency (bps/Hz) aBLER

0.001 2.98 0.1

0.01 3 0.1

0.1 2.96 0.1

0.5 2.76 0.1

the aBLER for the different �down values, under the same
condition as in Fig. 4. Results reveal that as the size of
the step increases, there is a reduction of the spectral effi-
ciency, although all configurations meet the aBLERT . The
reduction of spectral efficiency for the maximum �down
value that guarantees convergence (0.5 dB) is about 8 %
with respect to the step value with better throughput
performance (�down = 0.01 dB).
The reason for this throughput degradation for high

step values is that they may cause that when an error
happens, the OLLA selects a more robust MCS than the
required to ensure the aBLERT .
To sum up, while high values of the OLLA steps are

desirable to achieve a fast convergence, low step values
lead to higher throughput once convergence is achieved,
since it provides a better adjustment of the MCS. Thus,
the selection of the values of �up and �down should
be carried out carefully in order to optimize the OLLA
performance.

3 Enhanced outer loop link adaptation
In the previous section, the traditional OLLA algorithm
has been deeply studied, showing that a key factor to opti-
mize the performance is the appropriate selection of its
step size. However, the way this selection should be car-
ried out is not clear. Moreover, the performance of the
OLLA also depends on the specific implementation of
features at the receiver such as the turbo decoder or the
channel estimation method.
In addition to that, another problem is that the OLLA

only updates its offset every time k an ACK/NACK is
received, i.e., when a transmission is done. In real sce-
narios, it is usual not to have full-buffer traffic but a
discontinuous transmission with variable traffic. In these
cases, the UE may be most of the time in idle mode [13].
Therefore, a combination of variant channel conditions
together with these kind of traffic patterns could cause
a performance degradation since the OLLA may not be
able to update its offset fast enough to follow the channel
variations.

3.1 Proposed eOLLA
In this section, we propose a modification of the tra-
ditional OLLA algorithm, the enhanced outer loop link
adaptation (eOLLA), which is able to adapt the size of
the steps according to the convergence status of the
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system. Furthermore, the proposed eOLLA updates its
offset independently of whether a transmission is carried
out or not.
Since the error indicator e[k] used in the traditional

OLLA can be seen as a one bit instantaneous BLER esti-
mator (1 if error, 0 if not), this value could be replaced
by a more accurate instantaneous BLER estimation. Thus,
to carry out the implementation of the proposed eOLLA,
a model for the instantaneous BLER of each MCS i over
AWGN channels for instantaneous SNR, iBLERAWGN

i (γ),
is needed.
The proposed eOLLA implemented from (7) is as fol-

lows
1. If an ACK/NACK is received, update the

corresponding iBLERAWGN
i model according to the

MCS i used in this transmission (optional).
2. Estimate the instantaneous SNR value γ [t].
3. At each Transmission Time Interval (TTI) t,

calculate the instantaneous BLER value
B[ t]= iBLERAWGN

i (γ [t]).
4. Get the offset value as

θdB [t] = θdB [t − 1] + �up · B[ t]−�down · (1 − B [t]) .

(24)

In the eOLLA algorithm description, it should be
noticed that the index k of Eq. (7) of the traditional
OLLA description has been replaced by the index t in
Eq. (24). This means that the offset of the eOLLA will
be updated every TTI t (every time a transmission can
be potentially carried out) instead of every time k a CRC
is received (every time a transmission is carried out).
Then, in case of discontinuous transmissions, the pro-
posed eOLLA updates its offset more frequently than
in case of the traditional OLLA, which implies that the
eOLLA is able to follow easily the temporal variations of
the channel, thus improving the AMC performance.
This continuous updating of the eOLLA offset can be

easily performed in LTE since there is an estimation of the
SNR available every TTI t. In the downlink of LTE and
LTE-A, the BS transmits reference signals (RS) [2] at each
subframe, in both connected and idle modes. Thus, every
UE is able to perform SNR estimation from this RS at each
TTI, and so to update its eOLLA offset.
The fitting process referred in step (1) of the proposed

algorithm is used to adjust the instantaneous BLER model
to the specific system implementation used. This process
is required just in case a fitted model is not available.
For the purpose of a better understanding of the eOLLA

behavior, step (4) can be rewritten according to (13) as

θdB [t] = θdB [t − 1] + �down ·
(

B [t]
aBLERT

− 1
)
. (25)

From the previous equation, it can be deduced that the
proposed eOLLA adapts the increment to be applied to

the offset according to the difference between the esti-
mated instantaneous BLER B [t] and the target aBLER.
Then, if B [t]= 0, the offset will be decreased by �down,
thus decreasing the robustness of the next transmission
in the same way than in the traditional OLLA. As B [t]
increases, the size of the decreasing step reduces, and so
increases the robustness of the next transmission until
B [t]= aBLERT , which is the equilibrium point. At this
point, no step will be applied to the offset, since if the
eOLLA remains in this state the average BLER will meet
the target aBLER. In case that B [t] exceeds the aBLERT ,
the offset will be increased, and thus the robustness of the
next transmission, until B [t]= 1. In this case, the offset
will be increased by �up, as in the traditional OLLA.
Hence, for the eOLLA, if the offset value leads to either

a very high or a very low instantaneous BLER, high-step
values are used in order to correct this situation as fast as
possible. Then, as the iBLER is closer to the average target
BLER, lower step sizes are used to reduce the variance of
the MCS and maximize the throughput.
Since E [B [t]] is the same than E [e[t]], the convergence

analysis of the traditional OLLA carried out in Subsection
2.1 can be applied to the eOLLA. Thus, to ensure the
convergence of the eOLLA, condition (9) must be also sat-
isfied. Note that under stationary conditions, the offset
value for which E [B [t]] = aBLERT corresponds to the
convergence value θodB previously described.

3.2 Logistic regression implementation
In previous section, we stated that an expression of the
instantaneous BLER iBLERAWGN

i (γ [t]) was required to
model the eOLLA algorithm. As described in Section 2,
instantaneous BLER for MCS i over AWGN channels can
be modeled by means of binary logistic functions.
Therefore, logistic regression can be used in the eOLLA

algorithm (step 1) to find out the values of αi0 and αi1
in Eq. (5) that better fit with the iBLERAWGN

i curve. In
practice, this logistic regression can be easily implemented
by the well-known gradient descend algorithm [14]. This
algorithm is typically used to minimize a cost function
J(α) as follows

α := α − λ
∂

∂α
J (α) (26)

where λ is a parameter that controls the convergence
speed. Thus, first of all, it is necessary to provide the
logistic regression cost function, given by [15]

J (α) = y · log (
fα (x)

) − (1 − y) · log (
1 − fα (x)

)
(27)

being x, the input to the system, y, the class the input x
falls into (with only two possible values, 0 or 1), and fα a
binary logistic function to model the mapping of x into a
class y. Thus, to translate the generic logistic regression
function to our problem, we associate the input x to the
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instantaneous SNR value γ , the classification result y as an
error indicator e, and fα as the binary logistic function of
(5). Then, applying partial derivation of the cost function,
the resulting logistic regression process for the proposed
eOLLA is given by:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
αk
i0 = αk−1

i0 − λ ·
(

1

1+e
−α

k−1
i0

−α
k−1
i1 ·γ [k−1]

− e [k]

)

αk
i1 = αk−1

i1 − λ ·
(

1

1+e
−α

k−1
i0

−α
k−1
i1 ·γ [k−1]

− e [k]

)
·γ [t − 1] ,

(28)

where e [k] is, as in (7), an error indicator of the received
packet at the instant k, which is obtained from the
ACK/NACK report, and γ [t − 1] is the estimated instan-
taneous SNR during the previous TTI t. Note that the
values of αk

i0 and αk
i1 have to be updated simultaneously.

Regarding λ, low values will lead to a slower but a more
accurate convergence, while high values will accelerate
the convergence, although it may also cause oscillations.
However, it should be noticed that the logistic regression
cost function is convex, so convergence is guaranteed.

3.3 eOLLA performance
Figure 5 shows the instantaneous offset value θ [t] of the
eOLLA for the same conditions as that in Fig. 4. Note that
in this case, t = k since a transmission is carried out every
TTI. In this figure, it can be seen that the convergence
values are the same with that achieved for the traditional
OLLA. In addition, instantaneous offset values have lower
variance than the ones obtained in Fig. 4 for the same
�down.

Fig. 5 Instantaneous offset for an uncorrelated flat Rayleigh channel

Throughput and aBLER results are shown in Table 4.
For the eOLLA, an increment of �down does not lead to
an important throughput degradation as in the case of the
traditional OLLA (see Table 3). The throughput degra-
dation when using the highest �down considered in these
simulations is about 4 % for the eOLLA, while for the tra-
ditional OLLA, this degradation is doubled. In both cases,
the aBLERT is met.
Results presented for the traditional OLLA and the

eOLLA do not correspond to a realistic scenario, since
an uncorrelated channel is assumed. However, they are
useful in order to understand the dynamics of both the
OLLA and the proposed eOLLA. In practice, AMC can-
not be used in uncorrelated channels due to the outdating
of CQI reports. Next, both OLLA and eOLLA have been
evaluated in a correlated channel scenario. Furthermore, a
bursty traffic pattern has been taken into account in order
to give a complete picture.
Figure 6 shows the instantaneous offset values for both

the traditional OLLA and the eOLLA for a correlated flat
Rayleigh channel with a Doppler frequency (fD) of 7 Hz
and aBLERT = 0.1, when a small�down step is used (0.001
dB). The transmission periods are expressed in percent-
age of the maximum traffic load case. First of all, notice
that the same results are achieved by the eOLLA inde-
pendently of the traffic load, since the eOLLA only needs
the estimated iBLER (available at each TTI) to update the
offset. In contrast, different performance is achieved by
the traditional OLLA depending on the traffic load, since
it needs an ACK/NACK report to update its state. As a
consequence, when full buffer is assumed, i.e., t = k,
both OLLA implementations have a similar performance;
but as the traffic load decreases, it is harder for the tra-
ditional OLLA to follow the temporal channel variations
since its offset is only updated when a CRC is received,
thus degrading its performance compared to the eOLLA,
which updates its offset every TTI.
On the other hand, if the same simulation is carried out

with a high step size �down = 0.5, which ensures conver-
gence, this convergence is easily achieved independently
of the traffic load. However, low load is still a problem for
the traditional OLLA since it is not able to properly follow
the channel, as shown in Fig. 7.

Table 4 System performance for eOLLA with different �down

sizes

�down size (dB) Spectral efficiency (bps/Hz) aBLER

0.001 2.99 0.1

0.01 3 0.1

0.1 2.99 0.1

0.5 2.89 0.1
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Fig. 6 Instantaneous offset comparison for a correlated flat Rayleigh
channel (fD = 7 Hz) with �down = 0.001 dB

Table 5 summarizes the spectral efficiency results for
different traffic loads and �down sizes for both the
traditional OLLA and the eOLLA, assuming aBLERT =
0.1 and a correlated flat Rayleigh channel with fD =
7 Hz. First of all, note that for high �down sizes the
performance of both OLLA techniques is degraded, inde-
pendently of the traffic load. However, while this degra-
dation does not exceed the 4 % for the eOLLA, in the
case of the traditional OLLA, this degradation varies
between 5 and 10 %. Furthermore, given a �down step
size, the performance of the eOLLA does not vary with
the traffic load. However, when using the traditional
OLLA, low traffic load can degrade its performance with

Fig. 7 Instantaneous offset comparison for a correlated flat Rayleigh
channel (fD = 7 Hz) with �down = 0.5 dB

respect to the eOLLA up to 17 %. To sum up, the
eOLLA outperforms the traditional OLLA while reduc-
ing the influence of the �down step size and the traffic
load.

4 eOLLA: application and simulation scenarios
The proposed eOLLA has been implemented in a com-
plete 3GPP-LTE-A downlink simulator [10] in order
to present realistic scenarios for which the eOLLA
can significantly improve the performance of the tra-
ditional OLLA. These scenarios are based on LTE
and LTE-A features. Both the traditional OLLA and
the eOLLA have been evaluated for different sizes of
�down, all of them ensuring convergence according to
Subsection 2.1.

4.1 Simulation environment
The 3GPP-LTE-A downlink simulator includes most of
the features of physical (PHY) and medium access control
(MAC) layers. Furthermore, it includes the LTE-A eICIC
feature [16], which will be addressed in Subsection 4.5.
The MAC layer includes a hybrid automated repeat

request (HARQ) process and an AMC process, which
exchanges information with a channel aware scheduler.
This scheduler allocates the LTE transport blocks (TBs) by
assigning a set of physical resource blocks (PRBs) with a
certainMCS [2] to each UE in order to meet some criteria.
At the BS, the PHY layer is made up of a coder system,

which includes a CRC and a turbo coder; a quadrature
amplitude modulation (QAM) mapper and an orthogo-
nal frequency domain multiplexing (OFDM) modem. An
AWGN channel and a multipath channel with temporal
fading are included. At the UE, channel estimation and
SINR estimation methods are implemented. With those
methods, the channel state information (CSI) is reported
to the BS [2]. The CSI is composed of the CQI, the pre-
coding matrix indicator (PMI) and the rank indicator
(RI). A QAM demapping and a channel-decoding pro-
cess, which includes a CRC decoder and turbo decoder,
is carried out to obtain the transmitted TBs. Finally, a
HARQ entity manages the report of the ACK/NACK to
the BS.
Table 6 summarizes the main simulation parame-

ters. A typical pedestrian mobile speed (3 km/h) has
been assumed to ensure the evaluation of the OLLA
implementations under appropriate operating condi-
tions of the AMC process. Regarding the channel
aware scheduling, a round robin algorithm has been
selected.

4.2 High traffic load with continuous transmission
scenario

In this subsection, the performance of both the tradi-
tional OLLA and the eOLLA in a scenario with high
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Table 5 Spectral efficiency (bps/Hz) comparison between traditional OLLA and eOLLA in correlated flat Rayleigh channel (fD = 7 Hz)

Load 100 % Load 10 % Load 1 % Load 0.1 %

�Down Traditional OLLA eOLLA Traditional OLLA eOLLA Traditional OLLA eOLLA Traditional OLLA eOLLA

0.001 dB 2.43 2.45 0.24 0.245 0.0215 0.0245 0.0021 0.00245

0.01 dB 2.45 2.5 0.244 0.25 0.022 0.025 0.0021 0.0025

0.1 dB 2.41 2.4 0.23 0.24 0.021 0.024 0.0020 0.0024

0.5 dB 2.22 2.4 0.22 0.24 0.021 0.024 0.0020 0.0024

traffic load is evaluated . In this scenario, both algorithms
update their offsets continuously as there will always
be queued packets to be transmitted. Then, the ben-
efit of eOLLA comes from its ability to dynamically
adapt the size of the step, thus reducing the offset
variance.
Next, main results for BLER, throughput, goodput,

mean packet delay and jitter [17] are shown for differ-
ent sizes of �down. Except for the BLER, these results are
expressed in percentage of the maximum value (which
is also indicated in the figures). As shown in Fig. 8,
there is no performance difference in terms of BLER
since the aBLERT is met for both algorithms. However,
it can be seen in Figs. 9 and 10 that a better perfor-
mance in terms of throughput and goodput is achieved
by the eOLLA for the majority of �down sizes. Only
for the lowest �down sizes, throughput and goodput
results are quite similar since the margin of adaptation

Table 6 Simulation parameters

Parameter Value

Carrier frequency 2 GHz

Sampling frequency 7.68 MHz

System bandwidth 5 MHz

FFT size 512

Number of data subcarriers 300

OFDM symbols per subframe 14

Allocable PRBs 25

Channel model Flat Rayleigh

Mobile terminal speed 3 km/h

Number of antennas 1 x 1

Channel aware scheduler algorithm Round robin

Channel estimation method Low-pass filter [21]

Interference and noise power estimation Error-based

Reference signals overhead
According to 3GPP TS
36.211 [2]

Turbo decoder SOVA-based

Number of CQI bits 4 [19]

Average SNR 15 dB

�down 0.001–0.5 dB

of the step is very low. As the step size increases, the
eOLLA gain is more remarkable, achieving a gain close to
the 15 %.
Finally, the performance in terms of delay is evalu-

ated, which is a very useful metric [18]. Figures 11 and
12 show the results for mean packet delay and jitter,
respectively. In this case, the eOLLA also outperforms the
traditional OLLA. While for the traditional OLLA, the
optimum size of �down is the lowest, the eOLLA toler-
ates higher sizes without a significant degradation of its
performance.

4.3 High load traffic with bursty transmission scenario
In some scenarios, it is possible that some UEs cannot be
served even if they have queued packets and good chan-
nel conditions, because of low-priority assignment or in
case the BS is serving a great number of UEs. In this situ-
ation, the UE may stay in idle mode during long periods;
as a consequence, channel conditions may change consid-
erably during the time interval between packets, so the
offset of the traditional OLLA would be outdated (since
it can only be updated when an ACK/NACK is received).
However, as analyzed in previous section, the eOLLA is
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Fig. 9 Throughput comparison for high traffic load with continuous
transmission scenario

able to follow the channel variations even if no packets are
received, since it uses the instantaneous SNR estimation
to update its offset.
In this section, we evaluate a scenario where a

data transmission is just allowed every 100 TTIs.
Figures 13, 14, 15, 16, and 17 present the performance
results in terms of throughput, goodput, mean packet
delay, and jitter (expressed in percentage of the maximum
value).
In Fig. 13, it can be seen that the traditional OLLA

does not raise the aBLERT for the lowest values of �down,
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Fig. 10 Goodput comparison for high traffic load with continuous
transmission scenario
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Fig. 11Mean packet delay comparison for high traffic load with
continuous transmission scenario

whereas the eOLLA achieves the aBLERT . The reason
is that in the traditional OLLA, the offset cannot be
updated continuously in order to follow the channel. As
a result, Fig. 14 shows that for the lowest step sizes,
the traditional OLLA decreases its throughput dramat-
ically with respect to the eOLLA, as much as 15 %.
Regarding the rest of performance metrics (Figs. 15, 16,
and 17), the eOLLA generally outperforms the tradi-
tional OLLA while it is less influenced by the size of
�down. Only for the lowest values of �down, delay met-
rics are pretty similar. However, since the aBLERT is
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Fig. 12 Jitter comparison for high traffic load with continuous
transmission scenario
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Fig. 13 BLER comparison for high traffic load with bursty transmission
scenario

not met for the traditional OLLA, these results are not
meaningful.

4.4 Low-load traffic scenario
A M2M, online gaming [18] or an automated teller
machine (ATM) scenario are examples of bursty traffic
patterns with low data packet rates. In such scenarios,
small data packets are exchanged over long periods of
time; UE during these periods of time remain in idlemode.
In LTE and LTE-A, there exists a minimum number of
physical resources to allocate the TB to be transmitted
[19]. For the DL, this number depends on the system
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Fig. 14 Throughput comparison for high traffic load with bursty
transmission scenario

10
−3

10
−2

10
−1

75

80

85

90

95

100

Δ
down

 (dB)

G
oo

dp
ut

 (
%

)

 

 

Traditional OLLA

eOLLA

Goodput
max

 = 7.3Mbps

Fig. 15 Goodput comparison for high traffic load with bursty
transmission scenario

bandwidth; for instance, for a system bandwidth of 5
MHz the minimum number of physical resources corre-
sponds to one PRB. Thus, in case that the size of the
packets to be transmitted is smaller than the minimum
number of assignable physical resources, more redun-
dancy will be included to fill them, i.e., the MCS will
be modified making it more robust than the proposed
by the reported CQI. As a consequence, less erroneous
TBs will be received, and therefore, the aBLER will be
lower than the aBLERT , making the traditional OLLA to
increase its offset in order to meet the target aBLER. Note
that in this case, the traditional OLLA is unnecessarily
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Fig. 16Mean packet delay comparison for high traffic load with
bursty transmission scenario
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Fig. 17 Jitter comparison for high traffic load with bursty transmission
scenario

forcing the aBLER to meet the target, since increasing
the robustness of the MCS does not mean saving phys-
ical resources when the minimum number of assignable
PRBs is used. Instead, it will cause erroneously received
TB that could be avoided without increasing the amount
of physical resources. Therefore, if the eOLLA is used
in this scenario, since its offset is not affected by the
number or erroneous TBs received but by the instanta-
neous channel state, it will not try to force the aBLERT to
be met.
Next, the figures show the performance of the tradi-

tional OLLA and the eOLLA for an online gaming sce-
nario [20], whose mean packet size is 70 bytes and mean
period between packets is 50 ms. Figure 18 shows that the
average BLER is not achieved for the eOLLA whereas the
traditional OLLA achieves it for the majority of the �down
sizes. Regarding the normalized throughput, 100 % is
always achieved since the capacity of the system is higher
than the load of the traffic source. This fact also means
that packet delay is always the minimum achievable value,
i.e., 1 ms. Finally, goodput results of Fig. 19 show how the
eOLLA outperforms significantly the traditional OLLA
without any extra cost in terms of physical resources
usage.

4.5 eICIC scenario
In LTE-A, the time domain-enhanced inter-cell inter-
ference coordination (eICIC) is defined as a tech-
nique to manage interference in heterogeneous networks
(HetNets). An extensive description of this technique can
be found in [16]. Briefly, in a scenario composed by a
macro- and a pico-cell, a bias is applied to the cover-
age area of the pico-cell to balance the number of users
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Fig. 18 BLER comparison for low load traffic scenario

associated to both types of cells. This process is named
cell range expansion (CRE). Pico-cell users (PUEs) that
are located in this CRE area generally suffer from very
high interference from the macro-cell, since its trans-
mission power is higher than the transmission power
of the pico-cell. Thus, in order to improve the perfor-
mance of these users, the macro-cell periodically does
not schedule any transmission to their associated macro-
cell users (MUEs), even if they have queued packets,
generating the so called almost-blank subframes (ABSs).
During the transmission of these ABSs, the pico-cell pri-
oritizes the transmission to the PUEs of the CRE area
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Fig. 19 Goodput comparison for low load traffic scenario
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Fig. 20 Effects of ABSs in normal PUEs

since their SINR conditions improve significantly. On the
other hand, during the transmission of normal subframes
from the macro-cell, CRE PUEs are not scheduled by the
pico-cell.
Thus, the eICIC technique implies that MUEs and CRE

PUEs are not scheduled over certain periods of time
(see Fig. 20). Therefore, in a similar way as the scenario
described in Subsection 4.3, the offset of the traditional
OLLA may not be able to follow the channel variations
during these periods, while the eOLLA is.
Next, a performance comparison for both the traditional

OLLA and the eOLLA is presented for a MUE and 30
ABSs transmitted every 40 TTIs. Note that this scenario
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Fig. 21 BLER comparison for eICIC scenario

is a mix of the two previously evaluated high-load traffic
scenarios, since there is no continuous transmission, but
the interval between transmissions is much lower than in
the case of the high-load traffic with a bursty transmis-
sion scenario. Firstly, in Fig. 21, BLER results are presented
for both algorithms, showing that the aBLERT is met in
both cases. However, for the lowest size of �down, the
eOLLA is closer to the target than the traditional OLLA
(which is consistent with results of subsection 4.3). Fur-
thermore, in Figs. 22, 23, 24, and 25, it is shown how the
proposed eOLLA also outperforms the traditional OLLA
in terms of throughput, goodput, delay, and jitter, as much
as a 10 %.
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Fig. 23 Goodput comparison for eICIC scenario

A summary of the maximum gain of the pro-
posed eOLLA with respect to the traditional OLLA
for the different presented scenarios is shown in
Table 7.
To sum up, the eOLLA outperforms the traditional

OLLA in the whole set of evaluated scenarios. Then,
for high-load traffic sources with continuous transmis-
sion, the ability of the eOLLA to adapt its step size is
the cause of outperforming the traditional OLLA for the
highest �down. Regarding the bursty traffic sources, the
ability of the eOLLA to follow the channel variations
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Fig. 25 Jitter comparison for eICIC scenario

even if no packet is received is the key factor. Finally,
for the eICIC scenario, a combination of both abili-
ties are exploited. Regarding the size of �down, previ-
ous results show that while for the traditional OLLA
the selection of an appropriate value (which is different
depending on the scenario) is crucial, for the eOLLA,
there is a wide range of values that have a similar
performance.

5 Conclusions
In this paper, the AMC process of LTE and LTE-A has
been modeled in order to carry out a complete analysis
of the well-known traditional OLLA algorithm. In par-
ticular, we present a model of the instantaneous BLER
and the averaged BLER by means of binary logistic func-
tions and modified binary logistic functions, respectively.
Then, an expression to obtain the maximum step size of
the traditional OLLA that ensures convergence has been
presented. Furthermore, it has been studied how different
sizes of this step lead to different performances depending
on the specific scenario evaluated, even if they guarantee
convergence. Next, a new approach to this algorithm, the
enhanced OLLA (eOLLA), has been proposed based on
logistic regression. This new algorithm outperforms the
traditional OLLA since it is able to (1) dynamically adapt
its step size according to the channel state and (2) update
its offset value independently of whether a data packet
has been received or not. Finally, a comparison of the per-
formance of both algorithms has been carried out under
different LTE and LTE-A scenarios, showing that the pro-
posed eOLLA outperforms the traditional OLLA in all the
cases.
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Table 7 Summary of eOLLA maximum gain with respect to the traditional OLLA

Subsection Throughput gain Goodput gain Mean packet delay gain Jitter gain

High traffic load with continuous transmission scenario 15 % 17 % 17 % 52 %

High-load traffic with bursty transmission scenario 15 % 15 % 8 % 7 %

Low-load traffic scenario NA 8 % NA NA

eICIC scenario 17 % 10 % 11 % 14 %
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