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Abstract

BCH codes are one of the most important classes of cyclic codes for error correction. In this study, we generalize BCH
codes using monoid rings instead of a polynomial ring over the binary field F2. We show the existence of a non-primitive
binary BCH code Cbn of length bn, corresponding to a given length n binary BCH code Cn. The value of b is investigated
for which the existence of the non-primitive BCH code Cbn is assured. It is noticed that the code Cn is embedded in
the code Cbn. Therefore, encoding and decoding of the codes Cn and Cbn can be done simultaneously. The data
transmitted by Cn can also be transmitted by Cbn. The BCH code Cbn has better error correction capability whereas the
BCH code Cn has better code rate, hence both gains can be achieved at the same time.
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1 Introduction
The BCH codes form a large class of error-correcting
cyclic codes that are constructed using finite fields. One of
the key features of BCH codes is that during code design,
there is a precise control over the number of symbol
errors correctable by the code. In particular, it is possi-
ble to design binary BCH codes that can correct multiple
bit errors. Another advantage of BCH codes is the ease
with which they can be decoded, namely, via an algebraic
method known as syndrome decoding. This simplifies
the design of the decoder for these codes using small
low-power electronic hardware.
Cyclic codes were initially considered by Prange

(see [1, 2]). After him progress in the theory of cyclic codes
for random as well as burst-error correction has been
motivated by many coding theorists. The correspondence
of cyclic codes with ideals was observed independently by
Peterson [3], and Kasami [4]. Though most of the con-
ventional error-correcting codes are principal ideals in the
factor ring of a polynomial ring in one indeterminate. In
[5], instead of one indeterminate, the authors have given
the necessary and sufficient conditions for an ideal to have
a single generator while, in [6], they have described all
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finite commutative principal ideal rings Zm[x1,··· ,xn]
J , where

J is an ideal generated by univariate polynomials.
The extension of a BCH code embedded in a semigroup

ring is considered in [7]. A great amount of information
regarding rings construction and its corresponding poly-
nomial codes is given in [8]. In [8], Sections 9.1 and 9.2
are devoted to error correcting codes in ring construction
closely related to semigroup rings. Particularly, Section 9.1
deals with error-correcting cyclic codes of length l which
are in fact the ideals in the group ring F[G], where F is a
field and G is a finite torsion group of order l. However,
in [9] and [10], the authors have mentioned about exten-
sions of BCH codes in many ring constructions, where
the outcomes can be considered as the special case of
semigroup rings.
Through monoid rings, in a sequence of papers

[11–17], several classes of cyclic codes over a finite uni-
tary commutative ring are constructed. The purpose of
these constructions is to address the error correction and
the code rate trade off in a smart way. However, for a par-
ticular interest in [18], it is established that, there does
not exist a binary BCH code of length (n + 1)n in the

factor ring F2
[
x; 12Z≥0

]
/

((
x

1
2
)(n+1)n − 1

)
generated by

generalized polynomial g
(
x

1
2
)

∈ F2
[
x; 12Z≥0

]
of degree

2r corresponding to the length n binary BCH code in
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F2[x] /(xn − 1) having generator polynomial g(x) ∈ F2[x]
of degree r. But, there does exist a binary cyclic code of
length (n + 1)n such that the length n binary BCH code
is embedded in it. Besides this, the existence of a binary
cyclic

(
(n + 1)3k − 1, (n + 1)3k − 1 − 3kr

)
code, where k

is a positive integer, corresponding to a binary cyclic
(n, n − r) code is established in [15] by the use of monoid
ring F2

[
x; 1

3kZ≥0
]
.

In both papers [18] and [15], the authors cannot show
the existence of binary BCH codes corresponding to the
length n binary BCH code in F2[x] / (xn − 1) . In this
study, we address this issue and construct a binary BCH
code using monoid ring F2

[
x; abZ≥0

]
, where a, b are inte-

gers such that a, b > 1. We show the existence of non-
primitive binary BCH code Cbn of length bn using an
irreducible polynomial p

(
x

a
b
)

∈ F2
[
x; abZ≥0

]
of degree

br, corresponding to a given length n binary BCH code
Cn generated by r degree primitive polynomial p (xa) in
F2

[
x; aZ≥0

]
. It is noticed that the binary BCH code Cn is

embedded in non-primitive BCH code Cbn. In this way
a link between a primitive and non-primitive BCH code
is attained. The length of the binary BCH Cbn is well
controlled and has better error correction capability as
compared to the length (n+1)n binary cyclic codeC(n+1)n
initiated in [18].
This paper is organized in the following way: Section 2

contains a brief introduction to the monoid rings and
a description of binary BCH codes as ideals in the
factor ring F2

[
x; aZ≥0

]
n = F2

[
x; aZ≥0

]
/ ((xa)n − 1),

a case parallel to Ham(r, 2). Section 3 gives the con-
struction technique of a non-primitive BCH code Cbn
of length bn in the factor ring F2

[
x; abZ≥0

]
bn =

F2
[
x; abZ≥0

]
/

((
x

a
b
)bn − 1

)
, corresponding to a given

length n primitive BCH code Cn obtained in Section 2.
Moreover, a link has been established between the binary
BCH codes Cn and Cbn. In Section 4, decoding of the
binary BCH code Cn through the decoding of binary
BCH code Cbn is explained. Section 5 concludes the
study.

2 BCH code Cn as ideal in F2[x; aZ≥0] /((xa)n − 1)

Let (S, ∗) be a commutative monoid and F2 be the binary
field. The set of all finitely non-zero functions f from
S into F2 is denoted by F2[S]. The set F2[S] is a ring
with respect to binary operations addition and multipli-
cation defined as: ( f + g)(s) = f (s) + g(s) and ( fg)(s) =∑
t∗u=s

f (t)g(u), where the symbol
∑

t∗u=s
indicates that the

sum is taken over all pairs (t,u) of elements of S such that
t ∗ u = s, and it is understood that in the situation where
s is not expressible in the form t ∗ u for any t,u ∈ S, then
( fg)(s) = 0. F2[S] is known as themonoid ring of S over F2.

The representation of F2[S] will be F2[x; S] whenever S is
an additive monoid. As there is an isomorphism between
additive semigroup S and multiplicative semigroup
{xs : s ∈ S}, so a non-zero element f of F2[x; S] is

uniquely represented in the canonical form
n∑

i=1
f (si)xsi =

n∑
i=1

fixsi , where fi �= 0 and si �= sj for i �= j. Of

course, the monoid ring F2[x; S] is a polynomial ring in
one indeterminate if S = Z≥0 (the set of non-negative
integers).
The concept of degree and order are not generally

defined in monoid rings. However, if we consider S to
be a totally ordered monoid, we can define degree and
order of an element of monoid ring F2[x; S] in the fol-

lowing manner: if f =
n∑

i=1
fixsi is the canonical form

of the non-zero element f ∈ F2[x; S] , where s1 <

s2 < . . . < sn, then sn is called the degree of f writ-
ten as deg( f ) = sn and s1 is the order of f written as
ord( f ) = s1.
A polynomial ring F2[ x] is initially a monoid ring

F2[x; S], where S is an additive monoid Z≥0. It can be
observed that F2[x]⊂ F2

[
x; abZ≥0

]
only when a = 1. This

forces us to first define cyclic codes using monoid ring
F2

[
x; aZ≥0

]
and then define cyclic codes using monoid

ring F2
[
x; abZ≥0

]
. As F2

[
x; aZ≥0

] ⊂ F2
[
x; abZ≥0

]
, also

F2
[
x; aZ≥0

] ⊂ F2[x] for all a ≥ 1. Where both the
monoids aZ≥0 and a

bZ≥0 are totally ordered, so degree
and order of elements in F2

[
x; aZ≥0

]
and F2

[
x; abZ≥0

]
are defined. The indeterminate of polynomials in monoid
rings F2

[
x; aZ≥0

]
and F2

[
x; abZ≥0

]
are respectively given

by xa and x
a
b , and they behave like an indeterminate

x in F2[x]. The arbitrary elements in F2
[
x; aZ≥0

]
and

F2
[
x; abZ≥0

]
are f (xa) = 1 + (xa) + (xa)2 + . . . (xa)n and

f
(
x

a
b
)

= 1+
(
x

a
b
)

+
(
x

a
b
)2 + . . .

(
x

a
b
)n

and we call them
generalized polynomials.
The construction of a BCH code in the factor ring

F2
[
x; aZ≥0

]
n is similar to that of a BCH code in F2[x]n ,

as F2
[
x; aZ≥0

] ⊂ F2[x] . For this, let Cn be a binary BCH
code based on the positive integers c, d, q = 2 and n
such that 2 ≤ d ≤ n with gcd(n, 2) = 1 and n =
2s − 1, where s is the degree of a primitive polynomial
in F2

[
x; aZ≥0

]
. Consequently, the length n binary BCH

code Cn has generator polynomial of degree r given by
g (xa) = lcm {mi(xa) : i = c, c + 1, . . . , c + d − 2}, where
mi (xa) are minimal polynomials of ξ i for i = c, c +
1, . . . , c+d−2.Where ξ is the primitive nth root of unity in
F2s , an s degree Galois field extension of F2. Since mi (xa)
divides (xa)n − 1 for each i, it follows that g (xa) divides
(xa)n − 1. This implies Cn = (

g(xa)
)
is a principal ideal in

the factor ring F2
[
x; aZ≥0

]
n.
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In the following example, primitive BCH code of length
15 is discussed using monoid ring F2

[
x; 2Z≥0

]
.

Example 1. Let p
(
x2

) = (
x2

)4 + (
x2

) + 1 be a prim-
itive polynomial in F2 [x; 2Z0] , then we have a primitive
BCH code of length n = 24 − 1 = 15. Let ξ be a primi-
tive root in GF

(
24

)
, satisfying the relation ξ4 + ξ + 1 = 0.

Using this relation we have ξ15 = 1, that is ξ is the prim-
itive 15th root of unity. Since g

(
x2

) = lcm{mi
(
x2

)
, i =

c, c+1, . . . , c+d−2}; therefore, first we calculate mi
(
x2

)
.

By ([19], Theorem 4.4.2), ξ , ξ2, ξ4, ξ8 have same minimal
polynomial m1

(
x2

) = p
(
x2

)
. Similarly we get m3

(
x2

) =(
x2

)4+(
x2

)3+(
x2

)2+(
x2

)+1,m5
(
x2

) = (
x2

)2+(
x2

)+1
and m7

(
x2

) = (
x2

)4 + (
x2

)3 + 1.
The BCH code with designed distance d = 3 has genera-

tor polynomial g
(
x2

) = m1
(
x2

) = (
x2

)4 + (
x2

) + 1. It has
a minimum distance of at least 3 and corrects up to 1 error.
Since the generator polynomial is of degree 4, it is therefore
a (15, 11) code having code rate R = 0.733. BCH codes of
length 15 with different design distances are discussed in
Table 1.

3 BCH codes as ideals in F2
[
x; abZ≥0

]
bn

In this section, we investigate the values of b for which
there exists a BCH code of length bn in F2

[
x; abZ≥0

]
bn ,

corresponding to a length n binary BCH code Cn in
F2

[
x; aZ≥0

]
n . For this, let Cn be a binary BCH code

in F2
[
x; aZ≥0

]
n constructed in previous section. Now

using the following map p (xa) = p0 + p1xa + . . . +
pn−1 (xa)n−1 �→ p0 + p1

(
x

a
b
)b + . . . + pn−1

(
x

a
b
)b(n−1) =

p
(
x

a
b
)
, we convert the s degree primitive polynomial

p(xa) in F2
[
x; aZ≥0

]
to a bs degree polynomial p

(
x

a
b
)
in

F2
[
x; abZ≥0

]
. This converted polynomial is never primi-

tive; therefore, the corresponding BCH code will also be
non-primitive. However, the non-primitive BCH code can
be constructed only when p

(
x

a
b
)
is irreducible. Hence,

for the construction of a non-primitive BCH code in
F2

[
x; abZ≥0

]
bn, we choose only such a primitive irre-

ducible polynomial p (xa) in F2
[
x; aZ≥0

]
for which there

is an irreducible polynomial p
(
x

a
b
)
in F2

[
x; abZ≥0

]
.

Table 1 BCH codes of length 15

d (n, k) t R

3 (15, 11) 1 0.733

5 (15, 7) 2 0.466

7 (15, 5) 3 0.333

15 (15, 1) 7 0.066

Table 2 Irreducible polynomials p
(
x
a
b

)
against primitive

polynomials p(xa)

deg p
(
xa

)
p

(
x
a
b

)
2 (xa)2 + (xa) + 1

(
x
a
3

)6 +
(
x
a
3

)3 + 1

3 (xa)3 + (xa) + 1
(
x
a
7

)21 +
(
x
a
7

)7 + 1

4 (xa)4 + (xa) + 1
(
x
a
3

)12 +
(
x
a
3

)3 + 1,
(
x
a
5

)20 +
(
x
a
5

)5 + 1

6 (xa)6 + (xa) + 1
(
x
a
3

)18 +
(
x
a
3

)3 + 1,
(
x
a
7

)42 +
(
x
a
7

)7 + 1

8 (xa)8 + (xa)4 + (xa)3
(
x
a
3

)24 +
(
x
a
3

)12 +
(
x
a
3

)9 +
(
x
a
3

)6 + 1,

+(xa)2 + 1 (
x
a
5

)40 +
(
x
a
5

)20 +
(
x
a
5

)15 +
(
x
a
5

)10 + 1

9 (xa)9 + (xa)4 + 1
(
x
a
7

)63 +
(
x
a
7

)28 + 1

10 (xa)10 + (xa)3 + 1
(
x
a
3

)30 +
(
x
a
3

)9 + 1

...
...

...

Particularly for b = 2 or 2l, there neither exists a prim-
itive BCH code nor a non-primitive BCH code, since we
know that p

(
x2

) = (p(x))2 in F2[ x] , the same result holds
in F2

[
x; a2Z≥0

]
. Similarly, for s = 5, 7, 11, 13, 17, . . . and

there multiples we do not find any b for which we have an
irreducible polynomial in F2

[
x; abZ≥0

]
.

For instance, see Table 2 for the list of irreducible
polynomials of degree bs in F2

[
x; abZ≥0

]
correspond-

ing to primitive irreducible polynomial of degree s in
F2

[
x; aZ≥0

]
.

Table 2 explains that for s = 2 and 3 we have b = 3 and
7 and for s = 4 and 6 we have b = (3, 5) and (3, 7), respec-
tively, and similarly we have for their multiples. From this,
we have the list of BCH codes of length n and bn, where
bn divides 2bs − 1, mentioned in Table 3.
The above discussion can be summed up with the fol-

lowing result.

Proposition 2. Let p (xa) ∈ F2
[
x; aZ≥0

]
be a primitive

irreducible polynomial of degree s ∈ {2l, 3l, 4l, 6l}, where
l ∈ Z

+. Then the corresponding bs degree generalized

Table 3 BCH codes of length n and bn w.r.t s

s n bn

2 3 9

3 7 49

4 15 4575

6 63 189,441

8 255 765,1275

9 511 3577

10 1023 1023
...

...
...
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polynomial p
(
x

a
b
)
in F2

[
x; abZ≥0

]
is non-primitive irre-

ducible polynomial for b ∈ {3, 7, {3, 5}, {3, 7}}, respectively.

Proof. Let p(xa) = 1 + xa + . . . + (xa)s be a prim-
itive irreducible polynomial in F2

[
x; aZ≥0

]
, where s ∈

{2l, 3l, 4l, 6l}, where l ∈ Z
+ such that α is its root and

α2s−1 = 1. Then the corresponding generalized polyno-

mial p
(
x

a
b
)

= 1 +
(
x

a
b
)b + . . . +

(
x

a
b
)bs

in F2
[
x; abZ≥0

]
has root β = (psi)M ∈ Fbs

2 , where psi is a primitive
element in Fbs

2 and M is a positive integer such that
M (b(2s − 1)) = 2bs − 1. This implies βb(2s−1) = 1. Hence
p

(
x

a
b
)
is not primitive. But, p

(
x

a
b
)
is irreducible over F2

for b ∈ {3, 7, {3, 5}, {3, 7}}, respectively by ([20], Theorem
5.1 and Example 5.4) where the indeterminate x

a
b behaves

as indeterminate x.

Theorem 3. Let n = 2s − 1 be the length of primitive
BCH code Cn, where p (xa) ∈ F2

[
x; aZ≥0

]
is a primi-

tive irreducible polynomial of degree s such that p
(
x

a
b
)

∈
F2

[
x; abZ≥0

]
is irreducible polynomial of degree bs.

1) Then, for positive integers c′, d′, bn such that
2 ≤ d′ ≤ bn and bn is relatively prime to 2, there
exists a non-primitive binary BCH code Cbn of length
bn, where bn is order of an element α ∈ F2bs .

2) The non-primitive BCH code Cbn of length bn is
defined as

Cbn = {v
(
x

a
b
)

∈ F2
[
x;

a
b
Z≥0

]
bn

: v(αi) = 0 for all

i = c′, c′ + 1, . . . c′ + d′ − 2.

Equivalently, Cbn is the null space of the matrix

H =

⎡
⎢⎢⎢⎢⎣
1 αc′ α2c′ . . . α(bn−1)c′

1 αc′+1 α2(c′+1) . . . α(bn−1)(c′+1)

...
...

...
. . .

...
1 αc′+d′−2 α2(c′+d′−2) . . . α(bn−1)(c′+d′−2)

⎤
⎥⎥⎥⎥⎦ .

Proof. 1) Since it is given that the bs degree
polynomial p

(
x

a
b
)

∈ F2
[
x; abZ≥0

]
is not primitive, so

the BCH code constructed through it is also not
primitive. Hence the length of the code n �= 2bs − 1.
However, there is an element α ∈ F2bs of order bn
vanishing p

(
x

a
b
)
. Letmi

(
x

a
b
)

∈ F2
[
x; abZ0

]
denotes

the minimal polynomial of αi and g
(
x

a
b
)
be the lcm

of distinct polynomials amongmi
(
x

a
b
)
,

i = c′, c′ + 1, . . . , c′ + d′ − 2; that is,

g
(
x

a
b
)

= lcm{mi
(
x

a
b
)
: i = c′, c′+1, . . . , c′+d′−2}.

Asmi
(
x

a
b
)
divides

(
x

a
b
)bn − 1 for each i, therefore

g
(
x

a
b
)
also divides

(
x

a
b
)bn − 1. This implies that Cbn

is a principal ideal generated by g
(
x

a
b
)
in the factor

ring F2
[
x; abZ≥0

]
bn . Hence, Cbn is a non-primitive

BCH code of length bn over F2with designed
distance d′.

2) Let v
(
x

a
b
)

∈ Cbn, then v
(
x

a
b
)

= g
(
x

a
b
)
q

(
x

a
b
)
for

some q
(
x

a
b
)

∈ F2
[
x; abZ≥0

]
, where g

(
x

a
b
)
is the

generator polynomial of Cbn. Hence, v(αi) = 0 for all
i = c′, c′ + 1, . . . c′ + d′ − 2. Conversely, let
v
(
x

a
b
)

∈ F2
[
x; abZ≥0

]
bn such that v(αi) = 0 for all

i = c′, c′ + 1, . . . c′ + d′ − 2. Thenmi
(
x

a
b
)
divides

v
(
x

a
b
)
for all i = c′, c′ + 1, . . . c′ + d′ − 2. Hence

g
(
x

a
b
)
divides v

(
x

a
b
)
, so v

(
x

a
b
)

∈ Cbn.

For the second part, let v
(
x

a
b
)

= v0 + v1
(
x

a
b
)

+ . . .

vbn−1
(
x

a
b
)bn−1 ∈ F2

[
x; abZ≥0

]
bn . Then, v(α

i) = 0 for all
i = c′, c′ + 1, . . . c′ + d′ − 2 if and only if HvT = 0, where
v = (v0, v1, . . . vbn−1) ∈ Fbn

2 . This proves that Cbn is the
null space of H .

Remark 4. Corresponding to the (n, k) BCH code Cn
with generator polynomial g(xa) = p(xa) in F2

[
x; aZ≥0

]
,

we have a (bn, bk) BCH code Cbn with generating poly-
nomial g

(
x

a
b
)

= p
(
x

a
b
)
in F2

[
x; abZ≥0

]
. This (bn, bk)

BCH code Cbn is an interleaved code of degree b, capable
of correcting a single error burst of length b or less (see [21],
Theorem 11.1).

The following example illustrates the construction
of a non-primitive BCH code of length bn through
F2

[
x; abZ≥0

]
.

Example 5. For a primitive polynomial p(x2) = 1 +
(x2) + (x2)4 in F2[x; 2Z≥0] , there is a non-primitive irre-
ducible polynomial p

(
x

2
3
)

= 1 +
(
x

2
3
)3 +

(
x

2
3
)12

in
F2

[
x; 23Z≥0

]
. Let α ∈ F212 , satisfies the relation α12 +α3 +

1 = 0. Using this relation, we can compute all the distinct
powers of α in GF(212), see Table 4 (it is clear that α has
order 45). Here, we have bn = n′ = 3 × 15 = 45. To
calculate the generating polynomial g

(
x

2
3
)
, we first cal-

culate the minimal polynomials which are : m′
1

(
x

2
3
)

=(
x

2
3
)12 +

(
x

2
3
)3 + 1, m′

3

(
x

2
3
)

=
(
x

2
3
)4 +

(
x

2
3
)

+ 1, m′
5

(
x

2
3
)

=(
x

2
3
)6 +

(
x

2
3
)3 + 1,m′

7

(
x

2
3
)

=
(
x

2
3
)12 +

(
x

2
3
)9 + 1,m′

9

(
x

2
3
)

=(
x

2
3
)4+(

x
2
3
)3+(

x
2
3
)2+(

x
2
3
)
+1,m′

15

(
x

2
3
)

=
(
x

2
3
)2+(

x
2
3
)
+1,

m′
21

(
x

2
3
)

=
(
x

2
3
)4 +

(
x

2
3
)3 + 1.
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Table 4 Distinct powers of α GF
(
212

)
α12 = α3 + 1 α21 = 1 + α3 + α9 α30 = 1 + α3 + α6 α39 = 1 + α6 + α9

α13 = α + α4 α22 = α + α4 + α10 α31 = α + α4 + α7 α40 = α + α7 + α10

α14 = α2 + α5 α23 = α2 + α5 + α11 α32 = α2 + α5 + α8 α41 = α2 + α8 + α11

α15 = α3 + α6 α24 = 1 + α6 α33 = α3 + α6 + α9 α42 = 1 + α9

α16 = α4 + α7 α25 = α + α7 α34 = α4 + α7 + α10 α43 = α + α10

α17 = α5 + α8 α26 = α8 + α2 α35 = α5 + α8 + α11 α44 = α2 + α11

α18 = α6 + α9 α27 = α3 + α9 α36 = 1 + α3 + α6 + α9 α45 = 1

α19 = α7 + α10 α28 = α4 + α10 α37 = α + α4 + α7 + α10

α20 = α8 + α11 α29 = α5 + α11 α38 = α2 + α5 + α8 + α11

Which gives the following generating polynomials of BCH
codes of length 45 with design distance d′ = 3, 5, 7, 9, 15, 21
and 45.

g
(
x

2
3
)

= 1 +
(
x

2
3
)3 +

(
x

2
3
)12

, g
(
x

2
3
)

=
(
x

2
3
)16 +

(
x

2
3
)13

+
(
x

2
3
)12 +

(
x

2
3
)7 +

(
x

2
3
)3 +

(
x

2
3
)

+ 1

g
(
x

2
3
)

=
(
x

2
3
)22 +

(
x

2
3
)18 +

(
x

2
3
)15 +

(
x

2
3
)12 +

(
x

2
3
)10

+
(
x

2
3
)9 +

(
x

2
3
)4 +

(
x

2
3
)

+ 1

g
(
x

2
3
)

=
(
x

2
3
)34 +

(
x

2
3
)31 +

(
x

2
3
)30 +

(
x

2
3
)19 +

(
x

2
3
)16

+
(
x

2
3
)15 +

(
x

2
3
)4 +

(
x

2
3
)

+ 1

g
(
x

2
3
)

=
(
x

2
3
)38 +

(
x

2
3
)37 +

(
x

2
3
)36 +

(
x

2
3
)34 +

(
x

2
3
)30

+
(
x

2
3
)23 +

(
x

2
3
)22 +

(
x

2
3
)21 +

(
x

2
3
)19 +

(
x

2
3
)15

+
(
x

2
3
)8 +

(
x

2
3
)7 +

(
x

2
3
)6 +

(
x

2
3
)4 + 1

g
(
x

2
3
)

=
(
x

2
3
)40 +

(
x

2
3
)38 +

(
x

2
3
)35 +

(
x

2
3
)34 +

(
x

2
3
)32

+
(
x

2
3
)31 +

(
x

2
3
)30 +

(
x

2
3
)25 +

(
x

2
3
)23 +

(
x

2
3
)20

+
(
x

2
3
)19 +

(
x

2
3
)17 +

(
x

2
3
)16 +

(
x

2
3
)15 +

(
x

2
3
)10

+
(
x

2
3
)8 +

(
x

2
3
)5 +

(
x

2
3
)4 +

(
x

2
3
)2 +

(
x

2
3
)

+ 1

g
(
x

2
3
)

=
(
x

2
3
)44 +

(
x

2
3
)43 +

(
x

2
3
)42 + . . . +

(
x

2
3
)2 +

(
x

2
3
)

+ 1

Which generates (45, 33), (45, 29), (45, 23), (45, 11),
(45, 7), (45, 5) and (45, 1) codes and corrects up to
1, 2, 3, 4, 7, 10, and 22 errors having code rate
0.733, 0.644, 0.511, 0.244, 0.155, 0.11, 0.022, respectively.
Where the code (45, 33) is also capable of correcting any
single error burst of length 3 or less by Remark 4.

Table 5 gives comparison between minimum distance,
code rate and error correction capability of codes C15, C45
in F2

[
x; 2Z≥0

]
, F2

[
x; 23Z≥0

]
, respectively.

Now, we are in position to develop a link between a
primitive (n, n − r) binary BCH code Cn and a non-
primitive (bn, bn − r′) binary BCH code Cbn, where r

and r′ are, respectively, the degrees of their generating
polynomials g (xa) and g

(
x

a
b
)
.

From Theorem 3(1), it follows that the generalized

polynomial g
(
x

a
b
)

∈ F2
[
x; abZ≥0

]
divides

(
x

a
b
)bn − 1

in F2
[
x; abZ≥0

]
. So, there is a non-primitive BCH code

Cbn generated by g
(
x

a
b
)
in F2

[
x; abZ≥0

]
bn. By the same

argument, as bn divides n′ = 2bs − 1, so
(
x

a
b
)bn −

1 divides
(
x

a
b
)n′

− 1 in F2
[
x; abZ≥0

]
. It follows that((

x
a
b
)n′

− 1
)

⊂
((

x
a
b
)bn − 1

)
. Consequently, third

isomorphism theorem for rings gives

F2
[
x; abZ≥0

]
/

((
x

a
b
)n′

− 1
)

((
x

a
b
)bn − 1

)
/

((
x

a
b
)n′

− 1
) � F2

[
x; abZ≥0

]
((

x
a
b
)bn − 1

) � F2
[
x; aZ≥0

]
((xa)n − 1)

.

Thus, there is embedding Cn ↪→ Cbn ↪→ Cn′ of codes,
whereas Cn,Cbn, and Cn′ are, respectively, primitive BCH,
non-primitive BCH and primitive BCH codes. Whereas
the embedding Cn ↪→ Cbn is defined as:

a
(
xa

) = a0 + a1
(
xa

) + . . . + an−1
(
xa

)n−1 �→ a0 + a1
(
x

a
b
)b

+ . . . + an−1
(
x

a
b
)b(n−1) = a

(
x

a
b
)
.

Where a (xa) ∈ Cn and a
(
x

a
b
)

∈ Cbn.

Table 5 Comparison of codes C15 and C45

(n, k) d t R (n, k) d′ t1 R1

(15, 11) 3 1 0.733 (45, 33) 3 1 0.733

(15, 7) 5 2 0.466 (45, 29) 5 2 0.644

(15, 5) 7 3 0.333 (45, 23) 7 3 0.511

(15, 1) 15 7 0.066 (45, 11) 9 4 0.244

(45, 7) 15 7 0.155

(45, 5) 21 10 0.11

(45, 1) 45 22 0.022
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The above discussion shapes the following.

Theorem 6. Let Cn be a primitive binary BCH code of
length n = 2s − 1 generated by r degree polynomial g(xa)
in F2

[
x; aZ≥0

]
, then:

1) There exists a bn length binary non-primitive BCH
code Cbn generated by br degree polynomial g

(
x

a
b
)

in F2
[
x; abZ≥0

]
; and

2) The binary primitive BCH code Cn is embedded in
the binary non-primitive BCH code Cbn.

Also, we can deduce g (xa) from g
(
x

a
b
)
by substituting

xa for yb.

Example 7. Following Examples 1 and 5:
The BCH codes with designed distance d = 3 have gen-

erator polynomials g(x2) = m1(x2) = 1+ (x2)+ (x2)4 and
g
(
x

2
3
)

= 1 +
(
x

2
3
)3 +

(
x

2
3
)12

with the same error correc-
tion capability and code rate. The only difference is that the
degree, data bits, code length, and check sum of the code
C45 is three times that of code C15.

Whereas, on letting
(
x

2
3
)

= y in the generating polyno-
mial of (45, 29) code, that is x2 = y3, we get

g
(
x

2
3
)

=
(
x

2
3
)16 +

(
x

2
3
)13 +

(
x

2
3
)12 +

(
x

2
3
)7 +

(
x

2
3
)3

+
(
x

2
3
)

+ 1

g(y) = (y)16 + (y)13 + (y)12 + (y)7 + (y)3 + (y) + 1

g
(
y3

) = (
y3

)16 + (
y3

)13 + (
y3

)12 + (
y3

)7 + (
y3

)3 + (
y3

) + 1

g
(
x2

) = (
x2

)16 + (
x2

)13 + (
x2

)12 + (
x2

)7 + (
x2

)3 + (
x2

) + 1
= (x2)13 + (x2)12 + (x2)7 + (x2)3 + 1 ∈ F2

[
x; 2Z≥0

]
15 .

Where the generating polynomial (x2)4+(x2)+1 divides
(x2)13 + (x2)12 + (x2)7 + (x2)3 + 1.Hence, the correspond-
ing vector is in (15, 11). So (15, 11) code is embedded in
(45, 29) code.
Similarly, in Table 6, we have shown that which code in

F2
[
x; 2Z≥0

]
15 with designed distance d is embedded in a

code in F2
[
x; 23Z≥0

]
45 with designed distance d′.

Table 6 Embedding of codes C15 in C45

d′ (
bn, k′

)
t′ R′ d (n, k) t R

5 (45, 29) 2 0.644 3 (15, 11) 1 0.733

7 (45, 23) 3 0.511 4 (15, 11) 1 0.733

9 (45, 11) 4 0.244 6 (15, 11) 1 0.733

15 (45, 7) 7 0.155 7 (15, 7) 2 0.466

21 (45, 5) 10 0.11 10 (15, 5) 3 0.333

45 (45, 1) 22 0.022 15 (15, 1) 7 0.066

The corresponding code vectors of the generating
polynomials

g(x2) = (x2)8 + (x2)7 + (x2)6 + (x2)4 + 1 and

g
(
x

2
3
)

=
(
x

2
3
)38 +

(
x

2
3
)37 +

(
x

2
3
)36 +

(
x

2
3
)34 +

(
x

2
3
)30

+
(
x

2
3
)23+ (

x
2
3
)22+ (

x
2
3
)21+ (

x
2
3
)19+ (

x
2
3
)15

+
(
x

2
3
)8 +

(
x

2
3
)7 +

(
x

2
3
)6 +

(
x

2
3
)4 + 1 are

v = (100010111000000)
v′ = (100010111000000

100010111000000
100010111000000).

Clearly v is properly contained in v′; in fact, it is repeated
three times after a particular pattern. Hence, the generat-
ing matrix G′ of g

(
x

2
3
)
will contain the generating matrix

G of g(x2) such that G′ = ⊕3
1G.

The following lemma explains the relation between the
minimal polynomials of the narrow sense BCH codes Cn
and Cbn.

Lemma 8. Let d, d′ be the design distances of the narrow
sense BCH codes Cn and Cbn, respectively. Then the expo-
nents of the minimal polynomials mi (xa) , i = 1, 3, . . . ,
d − 1 of the code Cn are equal to the exponents of the
following minimal polynomials mb

(
x

a
b
)
, m3b

(
x

a
b
)
, . . . ,

mb(d−1)
(
x

a
b
)
of the code Cbn with the same number of

non-zero terms. The remainingminimal polynomials of the
code Cbn have exponents three times the exponents of the
minimal polynomials mi (xa) , i = 1, 3, . . . , d−1 of the code
Cn with same number of non-zero terms.

Proof is straightforward and easily follows from
Examples 1 and 2.

4 General decoding principle
As the binary BCH code Cn is embedded in the binary
non-primitive BCH codeCbn, we only describe the decod-
ing principal for the codeCbn. We use the decoding proce-
dure which follows the same principle as of the primitive
binary BCH code.
Take a′ ∈ Fbn

2 as a received vector. We obtain the syn-
dromematrix of a′, S(a′) = a′HT . In this way, we calculate
a table of syndromes which is useful in determining the
error vector e such that S

(
a′) = S(e). So, the decoding

of received vector a′ has done as the transmitted vector
v′ = a′ − e. We adopt the algebraic method for finding e
from the syndrome vector S

(
a′) .

Let Cbn be the binary non-primitive BCH code with
length bn and designed distance d′. Let H be the (d′ −
1) × bn matrix over F2bs . We use this matrix to define
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the syndrome of a vector a′ ∈ Fbn
2 as S(a′) = a′HT .

Writing a′ =
(
a′
0, a′

1, . . . , a′
bn−1

)
in the polynomial form

a′(x
a
b ) = a′

0+a′
1

(
x

a
b
)
+a′

2

(
x

a
b
)2+ . . .+a′

bn−1

(
x

a
b
)bn−1

.
So, the syndrome of the vector a′, S(a′) will be

[
a′
0 a′

1 . . . a′
bn−1

]
⎡
⎢⎢⎢⎢⎢⎣

1 1 . . . 1
αc′ αc′+1 . . . αc′+d′−2

α2c′ α2(c′+1) . . . α2(c′+d′−2)

...
...

. . .
...

α(bn−1)c′ α(bn−1)(c′+1) . . . α(bn−1)(c′+d′−2)

⎤
⎥⎥⎥⎥⎥⎦ ,

and hence,

S
(
a′) = [

Sc′ Sc′+1 . . . Sc′+d′−2
]
,

where Sj = a′
0 + a′

1α
j + . . . a′

bn−1α
(bn−1)j = a′(αj) for

j = c′, c′+1, . . . , c′+d′−2. Now, let a codeword v ∈ Cbn be
transmitted and the vector received is a′ = v′ + e, where
e is the error vector. Then S(e) = S(a′). Let e

(
x

a
b
)

=
e0+e1

(
x

a
b
)
+e2

(
x

a
b
)2+. . .+ebn−1

(
x

a
b
)bn−1

be the error
polynomial. Suppose i1, . . . , im be the positions where an
error has occurred. Then, ei �= 0 if and only if i ∈ I =
{i1, . . . , im}. Hence, e

(
x

a
b
)

= ∑
i∈I ei

(
x

a
b
)i
. Since the

code corrects up to t errors, where t =
⌊
d′−1
2

⌋
. So we

assumem ≤ t, that is 2m < d′. Since S(e) = S(a′), we have
e(αj) = Sj for j = c′, c′ + 1, . . . , c′ + d′ − 2. Thus the 2m
unknowns i1, . . . , im and ei1 , . . . , eim satisfy the following
system of d′ − 1 linear equations in ei1 , . . . , eim :∑

i=I
eiαji = Sj, j = c′, c′ + 1, . . . , c′ + d′ − 2 . . . ..(1).

We first obtain a solution for the error positions
i1, . . . , im. We define the error locator polynomial
f
(
x

a
b
)

= f0 + f1
(
x

a
b
)

+ f2
(
x

a
b
)2 + . . . + fm−1

(
x

a
b
)m−1 +(

x
a
b
)m

. Since f
(
αi) = 0 for each i = I, we have

f0 + f1
(
αi) + . . . + fm−1

(
αi)m−1 + (

αi)m = 0,

On multiplying this equation by eiαji, we get

f0eiαji+f1eiα(j+1)i+. . . fm−1eiα(j+m−1)i+eiα(j+m)i = 0,

for each i ∈ I. Summing these m equations for i =
i1, . . . , ir and using the relations (1), we have

f0Sj + f1Sj+1 + . . . fm−1Sj+m−1 + Sj+m = 0,

for each j = c′, c′+1, . . . , c′+m−1. Thus, them unknowns
f0, f1, . . . , fm−1 satisfy the followingm×m system of linear
equations:⎡
⎢⎢⎣

Sc Sc+1 . . . Sc+m−1
Sc+1 Sc+2 . . . Sc+m
...

...
. . .

...
Sc+m−1 Sc+m . . . Sc+2m−2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

f0
f1
...

fm−1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Sc+m
Sc+m+1

...
Sc+2m−1

⎤
⎥⎥⎦ . . . . .(2)

Let S denote the coefficient matrix in the above linear
system. It can be verified by direct computation that S =
VDVT , where

V =

⎡
⎢⎢⎢⎣

1 1 . . . 1
αi1 αi2 . . . αim

...
...

. . .
...

αi1(m−1) αi2(m−1) . . . αim(m−1)

⎤
⎥⎥⎥⎦ ,

D =

⎡
⎢⎢⎢⎣
ei1αi1c 0 . . . 0

0 ei2αi2c . . . 0
...

...
. . .

...
0 0 . . . eimαimc

⎤
⎥⎥⎥⎦ ,

where V is a Vandermonde matrix. Since α is a non-
primitive bnth root of unity in F2bs and i1, . . . im are dis-
tinct integers in {0, . . . , bn − 1}, we have αi1 , . . . ,αim are
all distinct. Hence, detV �= 0. Further, ei1 , . . . , eim are all
non-zero and hence detD �= 0. Therefore, det S �= 0 and
linear system (2) have a unique solution.
We have assumed that the number of positions where

an error has occurred is m ≤ t. If the actual number of
error positions is less than m, then for any choice of dis-
tinct positions i1, . . . im, the coefficients ei1 , . . . , eim cannot
be all zero. So, detD = 0. Hence, m is the greatest posi-
tive integer ≤ t such that system (2) has a unique solution.
Therefore, we find the value of m by taking successively
m = t, t − 1, . . . in system (2) until we have a value for
which system (2) has a unique solution, which gives us
the error locator polynomial f

(
x

a
b
)

= f0 + f1
(
x

a
b
)

+
f2

(
x

a
b
)2 + . . .+ fm−1

(
x

a
b
)m−1 +

(
x

a
b
)m

. Now, to find the

roots of f
(
x

a
b
)
, we put x

a
b = αi, i = 0, 1, . . . . By the def-

inition of f
(
x

a
b
)
, these roots are αi1 , . . . ,αim . Thus, we

find the unique solution for the unknowns i1, . . . im. Hav-
ing thus found the error vector e, we decode the received
vector a as the codeword v′ = a′ − e.
To compute the syndrome of a binary BCH code, we

have S2 = (S1)2, S6 = (S3)2 and so on. We can compute
the syndrome more easily by using the division algorithm.
If m(x

a
b ) is the minimal polynomial of α, then S1 = a′(α)

can be obtained by finding the remainder on dividing
a′

(
x

a
b
)
by m

(
x

a
b
)
and then putting x

a
b = α in it. In gen-

eral, to find Sj, we divide a′
(
x

a
b
)
by m

(
x

a
b
)
and find the

remainder.
The decoding of the code Cn from the decoding of

the code Cbn can be obtained as; take x
a
b = y, which

gives xa = yb. In this way, the code polynomial v(x
a
b ) in

F2[x; abZ≥0]bn becomes v′(y). Again on replacing y by yb,
we get v′(yb) = v′(xa). The remainder after dividing v(xa)
by (xa)n − 1, will be the decoded vector of F2

[
x; aZ≥0

]
n

and the generator polynomial g(xa) divides v(xa).
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The above discussion can be sumed up in the following
steps.

Step I: For binary non-primitive BCH code Cbn with
designed distance d′, let a

(
x

a
b
)
be the received

polynomial with m errors, wherem ≤ t2.
Step II: Compute the syndromes and find the value
ofm, such that the system (2) has a unique solution.
Step III: Step II gives us the error locator polynomial
f
(
x

a
b
)
. Now, find the roots of f

(
x

a
b
)
through which

we obtain the error polynomial e
(
x

a
b
)
.

Step IV:We decode the received polynomial a′
(
x

a
b
)

as v′
(
x

a
b
)

= a′
(
x

a
b
)

− e
(
x

a
b
)
.

Step V: The code vector v in Cn can be dragged out
from the decoded code vector v′ in Cbn by putting
x

a
b = y in corresponding code polynomial v′

(
x

a
b
)
.

This gives v′
(
x

a
b
)

= v′(y). Again by replacing y by
yb, we get v′(y) = v′(yb) = v′(xa).
Step VI: Divide v′(xa) by (xa)n − 1, the remainder
v(xa) will be in F2[x; aZ≥0]n , and the generator
polynomial g(xa) divides v(xa). Then, its
corresponding vector v ∈ Cn.

Illustration
Let C45 be a (45, 29) binary non-primitive BCH code

with design distance d′ = 4. Assume that a′
(
x

2
3
)

=
1+

(
x

2
3
)

+
(
x

2
3
)3+

(
x

2
3
)7+

(
x

2
3
)11+

(
x

2
3
)12+

(
x

2
3
)13+(

x
2
3
)16 +

(
x

2
3
)44

is the received polynomial. The error
position m = 2 and the syndromes are S1 = a′(α) = α2,
S2 = (S1)2 = α4, S3 = a′(α3) = α30 and S4 = (S2)2 = α8.
The error locator polynomial is given by f

(
x

2
3
)

= f0 +
f1

(
x

2
3
)

+
(
x

2
3
)2

. Then, we have the following system of
equations for f0 and f1.[

α2 α4

α4 α30

] [
f0
f1

]
=

[
α30

α8

]
,

[
f0
f1

]
=

[
α30

α14
α4

α14
α4

α14
α2

α14

] [
α30

α8

]
=

[
α10

α2

]
.

Hence, the error locator polynomial is f
(
x

2
3
)

= α10 +
α2

(
x

2
3
)

+
(
x

2
3
)2

. Trying successively x = 1,α,α2, . . . ,
we find that α11 and α44 are the roots. Hence, the error
polynomial is e(x

2
3 ) =

(
x

2
3
)11 + (x

2
3 )44. Thus, we decode

a′
(
x

2
3
)

as v′
(
x

2
3
)

= a′
(
x

2
3
)

+ e
(
x

2
3
)

=
(
x

2
3
)16 +(

x
2
3
)13+(

x
2
3
)12+(

x
2
3
)7+(

x
2
3
)3+(

x
2
3
)
+1. Now, letting

x
2
3 = y, this gives y3 = x2, we get

v′(y3) = (
y3

)16+ (
y3

)13+ (
y3

)12+ (
y3

)7+ (
y3

)3+(
y3

)+ 1

v′ (x2) = (
x2

)16+ (
x2

)13+(
x2

)12+ (
x2

)7+(
x2

)3+ (
x2

)+1.

After dividing v′ (x2) by (
x2

)15−1, we obtain the remain-
der v′(x2) as

v′(x2) = (x2)13+(x2)12+(x2)7+(x2)3+(x2)+1 ∈ C15,

where C15 is primitive binary BCH code (15, 11) and it is
due to the reason that the generator polynomial g(x2) =
(x2)4 + (x2) + 1 divides v′(x2).

5 Conclusions
These are the following pronouncements of the study.

1) The existence of a non-primitive BCH code in
F2

[
x; abZ0

]
bn of length bn based on a primitive BCH

code of length n has been explained.
2) The construction technique of bn length

non-primitive BCH code is given in such a manner
that the binary BCH code Cn is embedded in the
binary BCH code Cbn and thus the the transmitted
data configurated through Cn can be received
through binary BCH code Cbn.

3) The binary BCH code Cbn has higher code rate and
error correction capability than binary BCH code Cn
along with a burst error correction capability.

This work can further be extended over the Galois field
F2m and has applications in cognitive radio. Further, these
results can be generalized to data mining.
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