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Abstract

Massive multiple-input multiple-output (MIMO) techniques have the potential to bring tremendous improvements in
spectral efficiency to future communication systems. Counterintuitively, the practical issues of having uncertain
channel knowledge, high propagation losses, and implementing optimal non-linear precoding are solved more or
less automatically by enlarging system dimensions. However, the computational precoding complexity grows with
the system dimensions. For example, the close-to-optimal and relatively “antenna-efficient” regularized zero-forcing
(RZF) precoding is very complicated to implement in practice, since it requires fast inversions of large matrices in every
coherence period. Motivated by the high performance of RZF, we propose to replace the matrix inversion and
multiplication by a truncated polynomial expansion (TPE), thereby obtaining the new TPE precoding scheme which is
more suitable for real-time hardware implementation and significantly reduces the delay to the first transmitted
symbol. The degree of the matrix polynomial can be adapted to the available hardware resources and enables
smooth transition between simple maximum ratio transmission and more advanced RZF.
By deriving new randommatrix results, we obtain a deterministic expression for the asymptotic
signal-to-interference-and-noise ratio (SINR) achieved by TPE precoding in massive MIMO systems. Furthermore, we
provide a closed-form expression for the polynomial coefficients that maximizes this SINR. To maintain a fixed per-user
rate loss as compared to RZF, the polynomial degree does not need to scale with the system, but it should be
increased with the quality of the channel knowledge and the signal-to-noise ratio.

Keywords: Massive MIMO, Linear precoding, Multiuser systems, Polynomial expansion, Randommatrix theory

1 Introduction
The current wireless networksmust be greatly densified to
meet the exponential growth in data traffic and number of
user terminals (UTs) [1]. The conventional densification
approach is to decrease the inter-site distance by adding
new base stations (BSs) [2]. However, the cells are subject
to more interference from neighboring cells as distances
shrink, which requires substantial coordination between
neighboring BSs or fractional frequency reuse patterns.
Furthermore, serving high-mobility UTs by small cells is
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very cumbersome due to the large overhead caused by
rapidly recurring handover.
Massive multiple-input multiple-output (MIMO) tech-

niques, also known as large-scale multiuser MIMO tech-
niques, have been shown to be viable alternatives and
complements to small cells [3–7]. By deploying large-scale
arrays with very many antennas at current macro BSs,
an exceptional array gain and spatial precoding resolution
can be obtained. This is exploited to achieve higher UT
rates and serve more UTs simultaneously. In this paper,
we consider the single-cell downlink case where one BS
with M antennas serves K single-antenna UTs. As a rule
of thumb, hundreds of BS antennas may be deployed in
the near future to serve several tens of UTs in paral-
lel. If the UTs are selected spatially to have a very small
number of common scatterers, the user channels natu-
rally decorrelate asM grows large [8, 9] and space-division
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multiple access (SDMA) techniques become robust to
channel uncertainty [3].
One might imagine that by taking M and K large, it

becomes terribly difficult to optimize the system through-
put. The beauty of massive MIMO is that this is not the
case: simple linear precoding is asymptotically optimal in
the regime M � K � 0 [3] and random matrix the-
ory can provide simple deterministic approximations of
the stochastic achievable rates [5, 10–14]. These so-called
deterministic equivalents are tight as M grows large due
to channel hardening but are usually also very accurate at
small values ofM and K.
Although linear precoding is computationally more effi-

cient than its non-linear alternatives, the complexity of
most linear precoding schemes is still intractable in the
large (M,K) regime since the number of arithmetic oper-
ations is proportional to K2M. For example, both the
optimal precoding parametrization in [15] and the near-
optimal regularized zero-forcing (RZF) precoding [16]
require an inversion of the Gram matrix of the joint chan-
nel of all users—this matrix operation has a complexity
proportional to K2M. A notable exception is the matched
filter, also known as maximum ratio transmission (MRT)
[17], whose complexity only scales as MK. Unfortunately,
this precoding scheme requires roughly an order of mag-
nitude more BS antennas to perform as well as RZF [5].
Since it makes little sense to deploy an advanced massive
MIMO system and then cripple the system throughput
by using interference-ignoring MRT, treating the pre-
coding complexity problem is the main focus of this
paper.
Similar complexity issues appear in multiuser detec-

tion, where the minimum mean square error (MMSE)
detector involvesmatrix inversions [18]. This uplink prob-
lem has received considerable attention in the last two
decades; see [18–21] and references therein. In particu-
lar, different reduced-rank filtering approaches have been
proposed, often based on the concept of truncated poly-
nomial expansion (TPE). Simply speaking, the idea is
to approximate the matrix inverse by a matrix polyno-
mial with J terms, where J needs not to scale with the
system dimensions to maintain a certain approximation
accuracy [19]. TPE-based detectors admit simple and effi-
cient multistage/pipelined hardware implementation [18],
which stands in contrast to the complicated implemen-
tation of matrix inversion. A key requirement to achieve
good detection performance at small J is to find good coef-
ficients for the polynomial. This has been amajor research
challenge because the optimal coefficients are expensive
to compute [18]. Alternatives based on appropriate scal-
ing [20] and asymptotic analysis [21] have been proposed.
A similar TPE-based approach was used in [22] for the
purpose of low-complexity channel estimation in massive
MIMO systems.

In this paper, which follows our work in [23], we propose
a new family of low-complexity linear precoding schemes
for the single-cell multiuser downlink. We exploit TPE to
enable a balancing of precoding complexity and system
throughput. A main analytic contribution is the deriva-
tion of deterministic equivalents for the achievable user
rates for any order J of TPE precoding. These expressions
are tight when M and K grow large with a fixed ratio but
also provide close approximations at small parameter val-
ues. The deterministic equivalents allow for optimization
of the polynomial coefficients; we derive the coefficients
that maximize the throughput.We note that this approach
for precoding design is very new. The only other work is
[24] by Zarei et al., of which we just became aware at the
time this paper was first submitted. Unlike our work, the
precoding in [24] is conceived to minimize the sum MSE
of all users. Although our approach builds upon the same
TPE concept as [24], the design method proposed herein
is more efficient since it considers the optimization of the
throughput. This metric is usually more pertinent than
the sumMSE. Additionally, our work is more comprehen-
sive in that we consider a channel model which takes into
account the transmit correlation at the base station.
Our novel TPE precoding scheme enables a smooth

transition in performance between MRT (J = 1) and RZF
(J = min(M,K)), where the majority of the gap is bridged
for small values of J. We show that J is independent of
the system dimensions M and K but must increase with
the signal-to-noise ratio (SNR) and channel state infor-
mation (CSI) quality to maintain a fixed per-user rate
gap to RZF. We stress that the polynomial structure pro-
vides a green radio approach to precoding, since it enables
energy-efficient multistage hardware implementation as
compared to the complicated/inefficient signal process-
ing required to compute conventional RZF. Also, the delay
to the first transmitted symbol is significantly reduced,
which is of great interest in systems with very short coher-
ence periods. Furthermore, the hardware complexity can
be easily tailored to the deployment scenario or even
changed dynamically by increasing and reducing J in high-
and low-SNR situations, respectively.

1.1 Notation
Boldface (lowercase) is used for column vectors, x, and
(uppercase) for matrices, X. Let XT, XH, and X∗ denote
the transpose, conjugate transpose, and conjugate of X,
respectively, while tr(X) is the matrix trace function. The
Frobenius norm is denoted as ‖ · ‖, and the spectral norm
is denoted as ‖ ·‖2. A circularly symmetric complex Gaus-
sian random vector x is denoted as x ∼ CN (x̄,Q), where
x̄ is the mean and Q is the covariance matrix. The set
of all complex numbers is denoted by C, with C

N×1 and
C
N×M being the generalizations to vectors and matrices,

respectively. The M × M identity matrix is written as IM,
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and the zero vector of length M is denoted as 0M×1. For
an infinitely differentiable monovariate function f (t), the
�th derivative at t = t0 (i.e., d�

/dt� f (t)|t=t0 ) is denoted by
f (�)(t0) and more concisely f (�), when t = 0. An analog
definition is considered in the bivariate case; in partic-
ular, f (l,m)(t0,u0) refers to the �th and mth derivatives
with respect to t and u at t0 and u0, respectively, (i.e.,
∂�
/∂t�

∂m/∂umf (t,u)|t=t0,u=u0 ). If t0 = u0 = 0, we abbrevi-
ate again as f (l,m) = f (l,m)(0, 0). Furthermore, we use the
big O and small o notations in their usual sense; that is,
αM = O(βM) serves as a flexible abbreviation for |αM| ≤
CβM, where C is a generic constant and αM = o(βM) is
shorthand for αM = εMβM with εM → 0, as M goes to
infinity.

2 Systemmodel
This section defines the single-cell system with flat-fading
channels, linear precoding, and channel estimation errors.

2.1 Transmission model
We consider a single-cell downlink system in which a BS,
equipped with M antennas, serves K single-antenna UTs.
The received complex baseband signal yk ∈ C at the kth
UT is given by

yk = hH
kx + nk , k = 1, . . . ,K , (1)

where x ∈ C
M×1 is the transmit signal and hk ∈ C

M×1

represents the random channel vector between the BS
and the kth UT. The additive circularly symmetric com-
plex Gaussian noise at the kth UT is denoted by nk ∼
CN (0, σ 2) for k = 1, . . . ,K , where σ 2 is the receiver noise
variance.
The small-scale channel fading is modeled as follows.

Assumption 1. The channel vector hk is modeled as

hk = �
1
2 zk , (2)

where the channel covariance matrix � ∈ C
M×M has

bounded spectral norm ‖�‖2, as M → ∞, and zk ∼
CN (0M×1, IM). The channel vector has a fixed realization
for a coherence period and then takes a new independent
realization. This model is known as Rayleigh block-fading.

Note that we assume that the UTs reside in a rich scat-
tering environment described by the covariance matrix �.
This matrix can either be a scaled identity matrix as in [3]
or describe array-specific properties (e.g., non-isotropic
radiation patterns) and general propagation properties of
the coverage area (e.g., for practical sectorized sites). We
only consider a common covariance matrix � model here,
since the main focus in this publication is the precoding
scheme. This simplification has been done in many recent
publications. Adhikary et al. [25] have proposed to always

only serve groups of UTs that share approximately equal
covariance matrices, hence providing further motivation
behind Assumption 1.
The application of TPE precoding to multicell systems

can be found in our paper [26]. However, the models used
in this paper and in [26] are incompatible and differ most
prominently in the assumption whether the total transmit
power increases with the number of users as in [26] or is
fixed as in this paper; see (8). This seemingly negligible
change has a big impact on the analysis and applicability of
the models, as this assumption means that the noise term
in [26] becomes asymptotically zero, while in the current
work, the noise term is non-negligible. The channel esti-
mation model in [26] and in this paper is also different,
and the calculations follow very different approaches, due
to the inclusion of power control later on. Another big
extension in the current work is the complete complex-
ity analysis of the TPE approach in comparison to the
classical RZF approach. Only this analysis gives TPE pre-
coding its motivation and pertinence. Finally, we want to
point out that the optimization in [26] is with respect to
a max-min SNR problem and the solution is not given as
a closed form, while here we maximize the throughput
and find a closed-form solution. Before utilizing our work,
one needs to decide which model gives the most accu-
rate asymptotic behavior for the specific type of system
considered.

Assumption 2. The BS employs Gaussian codebooks
and linear precoding, where gk ∈ C

M×1 denotes the pre-
coding vector and sk ∼ CN (0, 1) is the data symbol of the
kth UT.

Based on this assumption, the transmit signal in (1) is

x =
K∑

n=1
gnsn = Gs. (3)

The matrix notation is obtained by letting G =
[ g1 . . . gK ]∈ C

M×K be the precoding matrix and s =
[ s1 . . . sK ]T ∼ CN (0K×1, IK ) be the vector containing all
UT data symbols.
Consequently, the received signal (1) can be expressed as

yk = hH
kgksk +

K∑
n=1,n
=k

hH
kgnsn + nk . (4)

Let Gk ∈ C
M×(K−1) be the matrix G with column gk

removed. Then, the SINR at the kth UT becomes

SINRk = hH
kgkg

H
khk

hH
kGkGH

khk + σ 2 . (5)



Mueller et al. EURASIP Journal onWireless Communications and Networking  (2016) 2016:63 Page 4 of 22

By assuming that each UT has perfect instantaneous
CSI, the achievable data rates at the UTs are

rk = log2(1 + SINRk), k = 1, . . . ,K .

2.2 Model of imperfect channel information at
transmitter

Since we typically have M ≥ K in practice, we assume
that we either have a time-division duplex (TDD) proto-
col where the BS acquires channel knowledge from uplink
pilot signaling [5] or a frequency-division duplex (FDD)
protocol where temporal correlation is exploited as in
[27]. In both cases, the transmitter generally has imperfect
knowledge of the instantaneous channel realizations and
we model this by the generic Gauss-Markov formulation;
see [12, 28, 29]:

Assumption 3. The transmitter has an imperfect chan-
nel estimate

ĥk = �
1
2
(√

1 − τ 2zk + τvk
)

=
√
1 − τ 2hk + τnk (6)

for each UT, k = 1, . . . ,K , where hk is the true channel,
vk ∼ CN (0M×1, IM), and nk = �

1
2 vk ∼ CN (0M×1,�)

models the independent error. The scalar parameter τ ∈
[ 0, 1] indicates the quality of the instantaneous CSI, where
τ = 0 corresponds to perfect instantaneous CSI and τ = 1
corresponds to having only statistical channel knowledge.

The parameter τ depends on factors such as time/power
spent on pilot-based channel estimation and user mobil-
ity. Note that we assume for simplicity that the BS has the
same quality of channel knowledge for all UTs.
Based on the model in (6), the matrix

Ĥ =
[̂
h1 . . . ĥK

]
∈ C

M×K (7)

denotes the joint imperfect knowledge of all user
channels.

3 Linear precoding
Many heuristic linear precoding schemes have been pro-
posed in the literature, mainly because finding the opti-
mal precoding (in terms of weighted sum rate or other
criteria) is very computationally demanding and thus
unsuitable for fading systems [30]. Among the heuris-
tic schemes, we distinguish RZF precoding [16], which
is also known as transmit Wiener filter [31], signal-to-
leakage-and-noise ratio maximizing beamforming [32],
generalized eigenvalue-based beamformer [33], and vir-
tual SINR maximizing beamforming [34]. The reason that
RZF precoding has been proposed by different authors
(under different names) is, most likely, that it provides
close-to-optimal performance in many scenarios. It also

outperforms classical MRT and zero-forcing beamform-
ing (ZFBF) by combining the respective benefits of these
schemes [30]. Therefore, RZF is deemed the natural start-
ing point for this paper.
Next, we provide a brief review of RZF and prior per-

formance results in massiveMIMO systems. These results
serve as a starting point for Section 3.2, where we pro-
pose an alternative precoding scheme with a computa-
tional/hardware complexity more suited for large systems.

3.1 Review on RZF precoding in massive MIMO systems
Suppose we have a total transmit power constraint

tr
(
GGH

) = P. (8)

We stress that the total power P is fixed, while we let
the number of antennas, M, and number of UTs, K, grow
large.
Similar to [12], we define the RZF precoding matrix as

GRZF = β√
K
Ĥ
(
1
K
ĤHĤ + ξIK

)−1
P

1
2

= β

(
1
K
ĤĤH + ξIM

)−1 Ĥ√
K
P

1
2 , (9)

where the power normalization parameter β is set such
that GRZF satisfies the power constraint in (8) and P
is a fixed diagonal matrix whose diagonal elements are
power allocation weights for each user. We assume that P
satisfies the following:

Assumption 4. The diagonal values pk , k = 1, . . . ,K in
P = diag(p1, . . . , pK ) are positive and of orderO( 1

K ).

The scalar regularization coefficient ξ can be selected
in different ways, depending on the noise variance, chan-
nel uncertainty at the transmitter, and system dimensions
[12, 16]. In [12], the performance of each UT under RZF
precoding is studied in the large (M,K) regime. This
means that M and K tend to infinity at the same speed,
which can be formalized as follows.

Assumption 5. In the large (M,K) regime, M and K
tend to infinity such that

0 < lim inf
K
M

≤ lim sup
K
M

< +∞.

The user performance is characterized by SINRk in (5).
Although the SINR is a random quantity that depends on
the instantaneous values of the random users channels in
H and the instantaneous estimate Ĥ, it can be approxi-
mated using deterministic quantities in the large (M,K)

regime [10–13]. These are quantities that only depend
on the statistics of the channels and are often referred to
as deterministic equivalents, since they are almost surely
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(a.s.) tight in the asymptotic limit. This channel hardening
property is essentially due to the law of large numbers.
Deterministic equivalents were first proposed by Hachem
et al. in [10], who have also shown their ability to cap-
ture important system performance indicators. When the
deterministic equivalents are applied at finite M and K,
they are referred to as large-scale approximations.
In the sequel, by deterministic equivalent of a sequence

of random variablesXn, wemean a deterministic sequence
Xn which approximates Xn such that

Xn − Xn
a.s.−−−−→

n→+∞ 0. (10)

As an example, we recall the following result from [10],
which provides some widely known results on determin-
istic equivalents. Note that we have chosen to work with
a slightly different definition of the deterministic equiva-
lents than in [10], since this better fits the analysis of our
proposed precoding scheme.

Theorem 1. (Adapted from [10]) Consider the resol-
vent matrix Q(t) = ( t

KHHH + IM
)−1 where the columns

ofH are distributed according to Assumption 1. Then, the
equation

δ(t) = 1
K
tr
(

�

(
IM + t�

1 + tδ(t)

)−1
)

admits a unique solution δ(t) > 0 for every t > 0.
Let T(t) =

(
IM + t�

1+tδ(t)

)−1
and let U be any matrix with

bounded spectral norm. Under Assumption 5 and for t >

0, we have

1
K
tr (UQ(t)) − 1

K
tr (UT(t)) a.s.−−−−−−→

M,K→+∞ 0. (11)

The statement in (11) shows that 1
K tr(UT(t)) is a deter-

ministic equivalent to the random quantity 1
K tr(UQ(t)).

In this paper, the deterministic equivalents are essential
to determine the limit to which the SINRs tend in the large
(M,K) regime. For RZF precoding, as in (9), this limit is
given by the following theorem.

Theorem 2. (Adapted from Corollary 1 in [12]) Let ρ =
P
σ 2 and consider the notation T = T( 1

ξ
) and δ = δ( 1

ξ
).

Define the deterministic scalar quantities

γ = 1
K
tr (T�T�)

and

θ =
(
1 − τ 2

) pk
tr(P)/K δ2

(
(δ + ξ)2 − γ

)
γ
(
ξ2 − τ 2

(
ξ2 − (ξ + δ)2

)) + 1
K tr

(
�T2) (ξ+δ)2

ρ

.

(12)

Then, the SINRs with RZF precoding satisfies

SINRk − θ
a.s.−−−−−−→

M,K→+∞ 0, k = 1, . . . ,K .

Note that all UTs obtain the same asymptotic value of
the SINR since the UTs have homogeneous channel statis-
tics. Theorem 2 holds for any regularization coefficient
ξ , but the parameter can also be selected to maximize
the limiting value θ of the SINRs. This is achieved by the
following theorem.

Theorem 3. (Adapted from Proposition 2 in [12])
Under the assumption of a uniform power allocation,
pk = P

K , the large-scale approximated SINR in (12) under
RZF precoding is maximized by the regularization param-
eter ξ�, given as the positive solution to the fixed-point
equation

ξ� = 1
ρ

1 + ν(ξ�) + τ 2ρ γ
1
K tr(T�2)

(1 − τ 2)(1 + ν(ξ�)) + 1
(ξ�)2

τ 2ν(ξ�)(ξ + δ)2
,

where ν(ξ) is given by

ν(ξ) = ξ 1
K tr

(
�T3)

γ 1
K tr

(
�T2)

(
γ

1
K tr

(
�T2) −

1
K tr

(
�2T3)

1
K tr

(
�T3)

)
.

The RZF precoding matrix in (9) is a function of
the instantaneous CSI at the transmitter. Although the
SINRs converges to the deterministic equivalents given
in Theorem 2, in the large (M,K) regime, the precoding
matrix remains a random quantity that is typically recal-
culated on a millisecond basis (i.e., at the same pace as
the channel knowledge is updated). This is a major prac-
tical issue, because the matrix inversion operation in RZF
precoding is very computationally demanding in large sys-
tems [35]; the number of operation scale as O(K2M) and
the known inversion algorithms are complicated to imple-
ment in hardware (see Section 4 for details). The matrix
inversion is the key to interference suppression in RZF
precoding, thus there is a need to develop less complicated
precoding schemes that still can suppress interference
efficiently.

3.2 Truncated polynomial expansion precoding
Motivated by the inherent complexity issues of RZF pre-
coding, we now develop a new linear precoding class that
is much easier to implement in large systems. The pre-
coding is based on rewriting the matrix inversion by a
polynomial expansion, which is then truncated. The fol-
lowing lemma provides a major motivation behind the use
of polynomial expansions.
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Lemma 1. For any positive definite Hermitian matrixX,

X−1 = κ (I − (I − κX))−1 = κ

∞∑
�=0

(I − κX)� , (13)

where the second equality holds if the parameter κ is
selected such that 0 < κ < 2

maxn λn(X)
.

Proof 1. The inverse of an Hermitian matrix can be
computed by inverting each eigenvalue, while keeping the
eigenvectors fixed. This lemma follows by applying the
standard Taylor series expansion (1−x)−1 = ∑∞

�=0 x�, for
any |x| < 1, on each eigenvalue of the Hermitian matrix
(I−κX). The condition on x corresponds to requiring that
the spectral norm ‖I − κX‖2 is bounded by unity, which
holds for κ < 2

maxn λn(X)
. See [20] for an in-depth analysis

of such properties of polynomial expansions.

This lemma shows that the inverse of any Hermitian
matrix can be expressed as a matrix polynomial. More
importantly, the low-order terms are the most influential
ones, since the eigenvalues of (I − κX)� converge geo-
metrically to zero as � grows large. This is due to each
eigenvalue λ of (I − κX) having an absolute value smaller
than unity, |λ| < 1, and thus λ� goes geometrically to zero
as � → ∞. As such, it makes sense to consider a TPE of
the matrix inverse using only the first J terms. This corre-
sponds to approximating the inversion of each eigenvalue
by a Taylor polynomial with J terms, hence the approxima-
tion accuracy per matrix element is independent ofM and
K ; that is, J needs not change with the system dimensions.
TPE has been successfully applied for low-complexity

multiuser detection in [18–21] and channel estimation
in [22]. Next, we exploit the TPE technique to approx-
imate RZF precoding by a matrix polynomial. Starting
from GRZF in (9), we note that

β

(
1
K
ĤĤH + ξIM

)−1 Ĥ√
K
P

1
2 (14)

= βκ

∞∑
�=0

(
IM − κ

(
1
K
ĤĤH + ξIM

))� Ĥ√
K
P

1
2

(15)

≈ βκ

J−1∑
�=0

(
IM − κ

(
1
K
ĤĤH + ξIM

))� Ĥ√
K
P

1
2

(16)

=
J−1∑
�=0

(
βκ

J−1∑
n=�

(
n
�

)
(1 − κξ)n−� (−κ)�

)

×
(
1
K
ĤĤH

)� Ĥ√
K
P

1
2 , (17)

where (15) follows directly from Lemma 1 (for an appro-
priate selection of κ), (16) is achieved by truncating the
polynomial (only keeping the first J terms), and (17) fol-
lows from applying the binomial theorem and gathering
the terms for each exponent. Inspecting (17), we have a
precoding matrix with the structure

GTPE =
J−1∑
�=0

w�

(
1
K
ĤĤH

)� Ĥ√
K
P

1
2 , (18)

where w0, . . . ,wJ−1 are scalar coefficients. Although the
bracketed term in (17) provides a potential expression
for w�, we stress that these are generally not the opti-
mal coefficients when J < ∞. Also, these coefficients are
not satisfying the power constraint in (8) since the coeffi-
cients are not adapted to the truncation. Hence, we treat
w0, . . . ,wJ−1 as design parameters that should be selected
tomaximize the performance; for example, bymaximizing
the limiting value of the SINRs, as was done in Theorem 3
for RZF precoding. We note especially that the value of
κ in (17) does not need to be explicitly known in order
to choose, optimize, and implement the coefficients. We
only need for κ to exist, which is always the case under
Assumption 2. Besides the simplified structure, the pro-
posed precoding matrix GTPE possesses a higher number
of degrees of freedom (represented by the J scalars w�)
than the RZF precoding (which has only the regularization
coefficient ξ ).
The precoding in (18) is coined TPE precoding and actu-

ally defines a whole class of precoding matrices for differ-
ent J. For J = 1, we obtain G = w0√

K
ĤP

1
2 , which equals

MRT. Furthermore, RZF precoding can be obtained by
choosing J = min(M,K) and coefficients based on the
characteristic polynomial of ( 1

K ĤĤH + ξIM)−1 (directly
from Cayley-Hamilton theorem). We refer to J as the TPE
order and note that the corresponding polynomial degree
is J − 1. Clearly, proper selection of J enables a smooth
transition between the traditional low-complexity MRT
and the high-complexity RZF precoding. Based on the
discussion that followed Lemma 1, we assume that the
parameter J is a finite constant that does not grow withM
and K.

4 Complexity analysis
In this section, we compare the complexities of RZF and
TPE precoding in a theoretical fashion and in an imple-
mentation sense. The complexities are given as simple
numbers of complex addition and multiplication oper-
ations needed for a given arithmetic operation. The
number of floating point operations (flops) needed to
implement these complex operations varies greatly accor-
ding to the used hardware and complex number represen-
tation (i.e., polar or Cartesian). Thus, we will not attempt
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to give a measure in flops. Also, the ability to parallelize
operations and to customize algorithm-specific circuits
has a fundamental impact on the computational delays
and energy consumption in practical systems.

4.1 Sum complexity per coherence period for RZF and TPE
In order to compare the number of complex operations
needed for conventional RZF precoding and the proposed
TPE precoding, it is important to consider how often each
operation is repeated. There are two time scales: (1) oper-
ations that take place once per coherence period (i.e., once
per channel realization) and (2) operations that take place
every time the channel is used for downlink transmis-
sion. To differentiate between these time scales, we let
Tpcp
data denote the number of downlink channel uses for

data transmission per coherence period. Recall from (3)
that the transmit signal is Gs, where the precoding matrix
G ∈ C

M×K changes once per coherence period and the
data transmit symbols s ∈ C

K×1 are different for each
channel use.
The RZF precoding matrix in (9) is computed once per

coherence period. There are two equivalent expressions
in (9), where the difference is that the matrix inversion
is either of dimension K × K or M × M. Since K ≤ M
in most cases of practical interest, and especially in the
massive MIMO regime, we consider the first precoding
expression: 1√

K
Ĥ
(

1√
K
ĤH 1√

K
Ĥ + ξIK

)−1
P

1
2 β .

Assuming that 1√
K
Ĥ, ξ , β , and P

1
2 are available

in advance and the Hermitian operation is “free,” we
need to (1) compute the matrix-matrix multiplication
( 1√

K
ĤH)( 1√

K
Ĥ); (2) add the diagonal matrix ξIK to the

result; (3) compute 1√
K
Ĥ
( 1
K Ĥ

HĤ + ξIK
)−1; and (4) mul-

tiply the result with the diagonal matrix resulting from
P

1
2 β . These are standard operations for matrices; thus, we

obtain the numbers of complex operations as: K2(2M −
1), K, K3

3 + 2K2M, and MK + K operations, respec-
tively. Step 3 is not immediately obvious, but an efficient
method for this part is to compute a Cholesky factor-
ization of 1

K Ĥ
HĤ + ξIK (at a cost of K3/3) and then

solve a simple linear equation system for each row of
1√
K
ĤH (at a cost of 2K2 each) ([36], Slides 9–6, 9). This

approach is preferable to the alternative of completely
inverting the matrix (again using Cholesky factorization)
and then using matrix-matrix multiplication, as long as
K3 − KM > 0. Given that the alternative method has a
cost of 4K3/3+MK(2K − 1). It is interesting to note here
that, for the case ofM � K , the matrix-matrix multiplica-
tion is actually more expensive than the matrix inversion
(2MK2 vs. K3).1
Once GRZF has been computed, the matrix-vector

multiplication GRZFs requires M(2K − 1) operations
per channel use of data transmission. In summary, RZF

precoding has a total number of complex operations per
coherence period of

Cpcp
RZF = 4K2M + K3

3
+ K(M + 2) − K2

+ Tpcp
data (2MK − M) .

There is a second approach to looking at the RZF
precoder complexity. Let the transmit signal with RZF
precoding at channel use t be denoted as x(t)

RZF. The
transmitted signal is then x(t)

RZF = GRZFs(t) =
1√
K
Ĥ
( 1
K Ĥ

HĤ + ξIK
)−1

βP
1
2 s(t). Thus, one can replace

the “matrix times inverse of another matrix” operation
taking place each coherence period by a matrix-inverse
operation per coherence period and two matrix-vector
multiplications per data symbol vector. Thus, one effec-
tively splits the previous point (3) into two parts and
waits for the symbol vector to allow for the matrix-vector
multiplications. This results in

Cpcp
RZF2 = 2K2M + 4K3

3
− K2 + 2K

+ Tpcp
data (4MK − 2M + K) .

Still, this complexity is dominated by the matrix-matrix
multiplication inside the inverse. However, the per coher-
ence period complexity is reduced in exchange for a slight
increase in complexity per symbol. Depending on the use-
case of the precoder, this change can either be advanta-
geous or disadvantageous (see Fig. 1 and Subsection 4.2).
We note that choosing to incorporate the multiplication
with P

1
2 per coherence period or per symbol vector does

only insignificantly change the stated outcomes. In the
following, we will chose the appropriate version for each
comparison.

Fig. 1 Comparison arithmetic operations. Total number of arithmetic
operations of RZF precoding and TPE precoding (with different J) for
K = 100 users andM = 500
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Next, we consider TPE precoding. Similar to before, we
assume that 1√

K
Ĥ,w�, and P

1
2 are available in advance and

the Hermitian operation is “free.” Let the transmit signal
vector with TPE precoding at channel use t be denoted as
x(t)
TPE and observe that it can be expressed as

x(t)
TPE = GTPEs(t) =

J−1∑
�=0

w�x̃(t)
� ,

where s(t) is the vector of data symbols at channel use t
and

x̃(t)
� =

⎧⎨⎩
Ĥ√
K

(
P

1
2 s(t)

)
, � = 0,

Ĥ√
K

(
ĤH√
K
x̃(t)

�−1

)
, 1 ≤ � ≤ J − 1.

This reveals that there is an iterative way of computing
the J terms in TPE precoding. The benefit of this approach
is that it can be implemented using only matrix-vector
multiplications.2
Similar to the above, we conclude that the case � = 0

uses K +M(2K −1) operations and each of the J −1 cases
of � ≥ 1 needsM(2K − 1) + K(2M − 1) operations. One
remarks that it is impractical and unneeded to carry out a
matrix-matrix multiplication at this step. Finally, the mul-
tiplication with w� and the summation require M(2J − 1)
further operations. In summary, TPE precoding has a total
number of arithmetic operations of

Cpcp
TPE = Tpcp

data ((4J − 2)MK + (J − 1)M + K(2 − J)) .

When comparing RZF and TPE precoding, we note
that the complexity of precomputing the RZF precod-
ing matrix is very large, but it is only done once per
coherence period. The corresponding matrix GTPE for
TPE precoding is never computed separately but only
indirectly as GTPEs for each data symbol vector s. Intu-
itively, precomputation is beneficial when the coherence
period is long (compared to M and K), and the sequen-
tial computation of TPE precoding is beneficial when
the system dimensions M and K are large (compared to
the coherence period) or the coherence period is short.
This is seen from the large dimensional complexity scal-
ing which is O(4K2M) or O(2K2M) for RZF precoding
(the latter, if the RZF or RZF2 approach is used) and
O(4JKMTpcp

data) for TPE precoding; thus, the asymptotic
difference is significant. The break-even point, where TPE
precoding outperforms RZF, is easily computed looking at
Cpcp
RZF > Cpcp

TPE

⇒ Tpcp
data <

4K2M + K3

3 + K(M + 2) − K2

4(J − 1)MK + JM + (2 − J)K
≈ K

J − 1

and similar for Cpcp
RZF2 > Cpcp

TPE.

One should not forget the overhead signaling required
to obtain CSI at the UTs, which makes the number of
channel uses Tdata available for data symbols reduce with
K. For example, suppose Tcoherence is the total coherence
period and that we use a TDD protocol, where ηDL is the
fraction used for downlink transmission and μK channel
uses (for some μ ≥ 1) are consumed by downlink pilot
signals that provide the UTs with sufficient CSI. We then
have Tdata = ηDLTcoherence − μK . Using this relation-
ship, the number of arithmetic operations are illustrated
numerically in Fig. 1 for ηDL = 1

2 , K = 100, and μ = 2.3
This figure shows that TPE precoding uses fewer opera-
tions than RZF precoding when the coherence period is
short and the TPE order is small, while RZF is competitive
for long coherence times.
We remark that all previously found results change in

favor of TPE, if one uses the canonical transformation of
complex to real operations by doubling all dimensions.

Remark 1. Power normalization. In this section, we
assumed that β and w� (and ξ ) are known beforehand.
These factors are responsible for the power normalization
of the transmit signal. Depending on the chosen normal-
ization, for example, the average per one UT in this paper
requires the full precoding matrix to be known. Thus,
it forbids the alternative implementation of RZF precod-
ing detailed before. Note that this could be remedied by
changing to “strict” per UT normalization. In general, we
can find values for β and w�, which only rely on channel
statistics and are valid in the large (M,K) regime. This,
and the possible fix for the alternative RZF approach, has
motivated us to assume β and w� as known.

4.2 Delay to the first transmission for RZF and TPE
A practically important complexity metric is the num-
ber of complex operations for the first channel use. This
number can also be interpreted as the delay until the
start of data transmission. This complexity can easily be
found from the previous results, by choosing Tdata =
1. Directly looking at the massive MIMO case, we find
C1st
RZF = 4MK2, C1st

RZF2 = 2MK2, and C1st
TPE = 4JMK .

Hence, the first data vector is transmitted by a factor of
K/(2J) earlier,4 when TPE precoding is employed. This
factor is significant and gives TPE precoding practical rel-
evance, especially in massive MIMO systems and in very
fast changing environments, i.e., when coherence peri-
ods are very short. We also remark that not wasting time
during the coherence period pays off greatly, as the lost
channel uses are given by the saved time multiplied by the
(often large) coherence bandwidth.

4.3 Implementation complexity of RZF and TPE precoding
In practice, the number of arithmetic operations is not
the main issue, but the implementation cost in terms
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of hardware complexity, time delays, and energy con-
sumption. The analysis in Subsection 4.1 showed that we
can only expect improvements in the sum of complex
operations from TPE precoding per coherence period in
certain scenarios. However, one advantage of TPE pre-
coding is that it enables multistage hardware implemen-
tation where the computations are pipelined [20] over
multiple processing cores (e.g., application-specific inte-
grated circuits (ASICs)). This structure is illustrated in
Fig. 2, where the transmitted signal x(t) is prepared in
various cores (black path), while the preceding and suc-
ceeding transmit signals are computed in the “free” cores
(gray paths). Each processing core performs two sim-
ple matrix-vector multiplications, each requiring approx-
imately O(2MK) complex additions and multiplications
per coherence period. This is relatively easy to imple-
ment using ASICs or FPGAs, which are know to be very
energy-efficient and have low production cost. Conse-
quently, we can select the TPE order J as large as needed
to obtain a certain precoding accuracy, if we are prepared
to use as many circuits of the same type as needed. Then,
the delay between two consecutive transmitted symbol
vectors is given only by the delay of two matrix-vector
multiplications.
In comparison, the inversion of RZF precoding can only

be pseudo-parallelized by using tree structures. Hence,
the pipelining of the CRZF complex operations per coher-
ence period is limited by the delay of a single process-
ing core that implements the inverse of a matrix-matrix;
this delay is most probably much larger than the two
matrix-vector multiplications of TPE. The delay of a sec-
ond core implementing the multiplication of the inverse

Fig. 2 Simple pipelined implementation. A simple pipelined
implementation of the proposed TPE precoding with J = 2, which
removes the delays caused by precomputing the precoding matrix.
Each block performs a simple matrix-vector multiplication, which
enables highly efficient hardware implementation, and J can be
increased by simply adding additional cores

with the channel matrix is negligible in comparison.
Like mentioned before, the precomputation of the RZF
precoding matrix causes non-negligible delays that forces
Tpcp
data to be smaller than for TPE precoding; for exam-

ple, [35] describes a hardware implementation from [37]
where it takes 0.15ms to compute RZF precoding for K =
15, which translated to a loss of 0.15ms × 200 kHz =
30 channel uses in a system with coherence bandwidth
200 kHz. Also, the number of active UTs can be much
larger than this in large-scale MIMO systems [38]. TPE
precoding does not cause such delays because there are no
precomputations—the arithmetic operations are spread
over the coherence period.
In practice, this means one can argue that only the curve

pertaining to J = 1 in Fig. 1 is relevant for comparisons
between TPE and RZF after implementation; if one is pre-
pared to add (seemingly unfairly) as many computation
cores as necessary to TPE.

5 Analysis and optimization of TPE precoding
In this section, we consider the large (M,K) regime,
defined in Assumption 5. We show that SINRk , for k =
1, . . . ,K , under TPE precoding converges to a limit, a
deterministic equivalent, that depends only on the coef-
ficients w�, the respective attributed power pk , and the
channel statistics.
Recall the SINR expression in (5) and observe that gk =

Gek and hH
kGkGH

khk = hH
kGGHhk − hH

kgkg
H
khk , where ek is

the kth column of the identity matrix IK . By substituting
the TPE precoding expression (18) into (5), it is easy to
show that the SINR writes as

SINRk = wHAkw
wHBkw + σ 2 , (19)

wherew =[w0 . . . wJ−1]T and the (�,m)th elements of the
matrices Ak , Bk ∈ C

J×J are

[Ak]�,m= pk
K
hH
k

(
1
K
ĤĤH

)�

ĥkĥH
k

(
1
K
ĤĤH

)m
hk (20)

[Bk]�,m= 1
K
hH
k

(
1
K
ĤĤH

)�

ĤPĤ
(
1
K
ĤĤH

)m
hk

− [Ak]�,m (21)

for � = 0, . . . , J − 1 andm = 0, . . . , J − 1.5
Since the random matrices Ak and Bk are of finite

dimensions, it suffices to determine a deterministic equiv-
alent for each of their elements. To achieve this, we
express them using the resolvent matrix of Ĥ. This can be
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done by introducing the following random functionals in
t and u:

Xk,M(t,u) =
1
K2h

H
k

(
t
K
ĤĤH + IM

)−1
ĥkĥH

k

( u
K
ĤĤH + IM

)−1
hk

(22)
Zk,M(t,u) =
1
K
hH
k

(
t
K
ĤĤH + I

)−1
ĤPĤ

( u
K
ĤĤH + IK

)−1
hk .

(23)

By taking derivatives of Xk,M(t,u) and Zk,M(t,u) at the
point (t,u) = (0, 0), we obtain

X(�,m)

k,M =
(−1)�+m�!m!

K2 hH
k

(
ĤĤH

K

)�

ĥkĥH
k

(
ĤĤH

K

)m

hk (24)

Z(�,m)

k,M =
(−1)�+m�!m!

K
hH
k

(
ĤĤH

K

)�

ĤPĤ
(
ĤĤH

K

)m

hk . (25)

Substituting (24) and (25) into (20) and (21), respec-
tively, we obtain the alternative expressions

[Ak]�,m = Kpk(−1)�+m

�!m!
X(�,m)

k,M

[Bk]�,m = (−1)�+m

�!m!

(
−nkX(�,m)

k,M + Z(�,m)

k,M

)
.

It, thus, suffices to study the asymptotic convergence of
the bivariate functions Xk,M(t,u) and Zk,M(t,u). This is
achieved by the following new theorem and its corollary:

Theorem 4. Consider a channel matrix Ĥ whose
columns are distributed according to Assumption 3.
Under the asymptotic regime described in Assumption 5,
we have

Xk,M(t,u) − XM(t,u)
a.s.−−−−−−→

M,K→+∞ 0

and

− KpkXk,M(t,u) + Zk,M(t,u) − tr(P) bM(t,u)

a.s.−−−−−−→
M,K→+∞ 0,

where

XM(t,u) =
(
1 − τ 2

)
δ(t)δ(u)

(1 + tδ(t))(1 + uδ(u))

bM(t,u) =
(

τ 2 +
(
1 − τ 2

)
(1 + uδ(u))(1 + tδ(t))

)
βM(t,u),

and βM(t,u) is given by

βM(t,u) =
1
K tr (�T(u)�T(t))

(1 + tδ(t))(1 + uδ(u)) − tu
K tr (�T(u)�T(t))

.

(26)

Proof 2. The proof leans heavily on lemmas presented in
Appendix 1 and is detailed in Appendix 2.

Corollary 1. Assume that Assumptions 1 and 5 hold
true. Then, we have

X(�,m)

k,M − X(�,m)

M
a.s.−−−−−−→

M,K→+∞ 0

and(
−KpkX(�,m)

k,M + Z(�,m)

k,M

)
− tr(P) b(�,m)

M
a.s.−−−−−−→

M,K→+∞ 0.

Proof 3. See Appendix 4.

Corollary 1 shows that the entries of Ak and Bk , which
depend on the derivatives of Xk,M(t,u) and Zk,M(t,u), can
be approximated in the asymptotic regime byT(�) and δ(�),
which are the derivatives of T(t) and δ(t) at t = 0. Such
derivatives can be computed numerically using the itera-
tive algorithm of [21], which is provided in Appendix 6 for
the sake of completeness.
It remains to compute the aforementioned derivatives.

To this end, we denote f (t) = − 1
1+tδ(t) , T (t) =

−f (t)T(t), and by f (�), T (�) their derivatives at t = 0.
T (�) can be calculated using the Leibniz derivation rule
T (�) = (−T(t)f (t)

)(�) |t=0 = −∑�
n=0

(
�
n
)
T(n)f (�−n) and

the respective values from Appendix 6. Rewriting (26) as

βM(t,u)

(
1 − tu

K
tr (�T (u)�T (t))

)
= 1

K
tr (�T (u)�T (t)) ,

and using the Leibniz rule, we obtain for any integers �

andm greater than 1, the expression

β
(�,m)
M = 1

K
tr
(
�T (�)�T (m)

)
+

�∑
k=1

m∑
n=1

kn
(

�

k

)(
m
n

)
β

(k−1,n−1)
M

× 1
K
tr
(
�T (�−k)�T (m−n)

)
.

An iterative algorithm for the computation of β
(�,m)
M is

given in Appendix 5.
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With these derivation results on hand, we are now in
the position to determine the expressions for the deriva-
tives of the quantities of interest, namely Xk,m(t,u) and
bM(t,u). Using again the Leibniz derivation rule, we
obtain

X(�,m)

M =(
1 − τ 2

) �∑
k=0

m∑
n=0

(
�

k

)(
m
n

)
δ(k)δ(n)f (�−k)f (m−n)

b(�,m)

M =

τ 2β(�,m)+(
1 − τ 2

) �∑
k=0

m∑
n=0

(
�

k

)(
m
n

)
β

(�−k,m−n)
M

× f (k)f (n).

Using these results in combination with Corollary 1, we
immediately obtain the asymptotic equivalents of Ak and
Bk :

Corollary 2. Let Ã and B̃ be the J × J matrices, whose
entries are[

Ã
]
�,m = (−1)�+m X(�,m)

M
�!m![

B̃k
]
�,m = (−1)�+mb(�,m)

M
�!m!

.

Then, in the asymptotic regime, for any k ∈ 1, . . . ,K we
have

max
(‖Ak − KpkÃ‖, ‖Bk − tr (P) B̃‖) a.s.−−−−−−→

M,K→+∞ 0.

5.1 Optimization of the polynomial coefficients
Next, we consider the optimization of the asymptotic
SINRs with respect to the polynomial coefficients w =
[w0 . . .wJ−1]T . Using results from the previous sections,
a deterministic equivalent for the SINR of the kth UT is

γk = KpkwTÃw
tr (P)wTB̃w + σ 2 .

The optimized TPE precoding should satisfy the power
constraints in (8)

tr
(
GTPEGH

TPE
) = P (27)

or equivalently

wTCw = P, (28)

where the (�,m)th element of the J × J matrix C is

[C]�,m = 1
K
tr

⎛⎝( ĤĤH

K

)�

ĤPĤH

(
ĤĤH

K

)m
⎞⎠ . (29)

In order to make the optimization problem independent
of the channel realizations, we replace the constraint in
(28) by a deterministic one, which depends only on the

statistics of the channel. To find a deterministic equivalent
of the matrix C, we introduce the random quantity

YM(t,u) =
1
K
tr
((

t
K
ĤĤH + I

)−1
ĤPĤH

( u
K
ĤĤH + I

)−1
)

whose derivatives Y (�,m)
M satisfy

[C]�,m = (−1)�+mY (�,m)
M

�!m!
.

Using the same method as for the matrices A and B, we
achieve the following result:

Theorem 5. Considering the setting of Theorem 4, we
have the following convergence results:

1. Let c(t,u) = 1
K tr(�T(u)T(t))

(1+tδ(t))(1+uδ(u))
(1 + tuβ(t,u)), then

YM(t,u) − tr (P) c(t,u)
a.s.−−−−−−→

M,K→+∞ 0.

2. Denote by c(�,m) the �th and mth derivatives with
respect to t and u, respectively, then

c(�,m) =
�∑

k=1

m∑
n=1

kn
(

�

k

)(
m
n

)
β(n−1,k−1)

× 1
K
tr
(
�T (�−k)T (m−n)

)
+ 1

K
tr
(
�T (m)T (�)

)
3. Let C̃ be the J × J matrix with entries given by

[ C̃]�,m = (−1)�+mc(�,m)

�!m!
.

Then, in the asymptotic regime

‖C − tr (P) C̃‖ a.s.−−−−−−→
M,K→+∞ 0.

Proof 4. The proof relies on the same techniques as
before, so we provide only a sketch in Appendix 7.

Based on Theorem 5, we can consider the deterministic
power constraint

tr (P)wTC̃w = P (30)

which can be seen as an approximation of (28), in the
sense that for any w satisfying (30), we have

wTCw − P a.s.−−−−−−→
M,K→+∞ 0.
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Now, the maximization of the asymptotic SINR of UT k
amounts to solving the following optimization problem:

maximize
w

KpkwHÃw
tr (P)wHB̃w + σ 2

subject to tr (P)wHC̃w = P.
(31)

The next theorem shows that the optimal solution,wopt,
to (31) admits a closed-form expression.

Theorem 6. Let a be a unit norm eigenvector corre-
sponding to the maximum eigenvalue λmax of(

B̃ + σ 2

P
C̃
)− 1

2
Ã
(
B̃ + σ 2

P
C̃
)− 1

2
. (32)

Then, the optimal value of the problem in (31) is achieved by

wopt =
√

P
αtr (P)

(
B̃ + σ 2

P
C̃
)− 1

2
a, (33)

where the scaling factor α is

α =
∥∥∥∥∥∥C̃ 1

2

(
B̃ + σ 2

P
C̃
)− 1

2
a

∥∥∥∥∥∥
2

. (34)

Moreover, for the optimal coefficients, the asymptotic
SINR for the kth UT is

γk = Kpkλmax
tr (P)

. (35)

Proof 5. The proof is given in Appendix 8.

The optimal polynomial coefficients for UT k are given
in (33) of Theorem 6. Interestingly, these coefficients
are independent of the user index; thus, we have indeed
derived the jointly optimal coefficients. Furthermore, all
users converge to the same deterministic SINR up to an
UT-specific scaling factor Kpk

γ tr(P)
.

Remark 2. The asymptotic SINR expressions in (35) are
only functions of the statistics and the power allocation
p1, . . . , pK . The power allocation can be optimized with
respect to some system performance metric. For example,
one can show that the asymptotic average achievable rate

1
K

K∑
k=1

log2
(
1 + Kpkλmax

tr (P)

)
ismaximized by a uniformpower allocation pk = P

K for all k.

Remark 3. Theorem 6 shows that the J polynomial coef-
ficients that jointly maximize the asymptotic SINRs can be

computed using only the channel statistics and the chan-
nel estimation error. The optimal coefficients are then
given in closed form in (33). Numerical experiments show
that the coefficients are very robust to underestimation of
τ and robust to overestimation. Hence, the main feature
of Theorem 6 is that the TPE precoding coefficients can
be computed beforehand or at least be updated at the rel-
atively slow rate of change of the channel statistics. Thus,
the cost of the optimization step is negligible with respect
to calculating the precoding itself. The performance of
finite-dimensional large-scaleMIMO systems is evaluated
numerically in Section 6.

Remark 4. Finally, we remark that Assumption 5 pre-
vents us from directly analyzing the scenario where K is
fixed and M → ∞, but we can infer the behavior of
TPE precoding based on previous works. In particular, it
is known that MRT is an asymptotically optimal precod-
ing scheme in this scenario [4]. We recall from Section 3.2
that TPE precoding reduces to MRT for J = 1. Hence,
we expect the optimal coefficients to behave as w0 
= 0
and w� → 0 for � ≥ 1 when M → ∞. In other words,
we can reduce J as M grows large and still keep a fixed
performance gap to RZF precoding.

6 Simulation results
In this section, we compare the RZF precoding from [16]
(which was restated in (9)) with the proposed TPE precod-
ing (defined in (18)) by means of simulations. The purpose
is to validate the performance of the proposed precod-
ing scheme and illustrate some of its main properties. The
performance measure is the average achievable rate

r = 1
K

K∑
k=1

E[ log2(1 + SINRk)]

of the UTs, where the expectation is taken with respect
to different channel realizations and users. In the simula-
tions, we model the channel covariance matrix as

[�]i,j =
{
aj−i, i ≤ j,(
ai−j)∗ , i > j,

where a is chosen to be 0.1. This approach is known as the
exponential correlationmodel [39]. More involvedmodels
could be chosen here but would make it harder to evaluate
the performance and function of TPE, while not offering
more insight. The sum power constraint

tr
(
GRZF/TPEGH

RZF/TPE
) = P

is applied for both precoding schemes. Unless otherwise
stated, we use uniform power allocation for the UTs, since
the asymptotic properties of RZF precoding are known in
this case (see Theorem 3). Without loss of generality, we
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have set σ 2 = 1. Our default simulation model is a large-
scale single-cell MIMO system of dimensions M = 128
and K = 32.
We first take a look at Fig. 3. It considers a TPE order of

J = 3 and three different quality levels of the CSI at the
BS: τ ∈ {0.1, 0.4, 0.7}. From Fig. 3, we see that RZF and
TPE achieve almost the same average UT performance
when a bad channel estimate is available (τ = 0.7). Fur-
thermore, TPE and RZF perform almost identically at low
SNR values, for any τ . In general, the unsurprising obser-
vation is that the rate difference becomes larger at high
SNRs andwhen τ is small (i.e., withmore accurate channel
knowledge).
Figure 4 shows more directly the relationship between

the average achievable UT rates and the TPE order J. We
consider the case τ = 0.1,M = 512, andK = 128, in order
to be in a regime where TPE performs relatively bad (see
Fig. 3) and the precoding complexity becomes an issue.
From the figure, we see that choosing a larger value for J
gives a TPE performance closer to that of RZF. However,
doing so will also require more hardware; see Section 4.3.
The proposed TPE precoding never surpasses the RZF
performance, which is noteworthy since TPE has J degrees
of freedom that can be optimized (see Section 5.1), while
RZF only has one design parameter. Hence one can regard
RZF precoding as an upper bound to TPE precoding in
the single-cell scenario.6
It is desirable to select the TPE order J in such a way

that we achieve a certain limited rate-loss with respect
to RZF precoding. Figure 5 illustrates the rate-loss (per
UT) between TPE and RZF, while the number of UTs
K and transmit antennas M increase with a fixed ratio
(M/K = 4). The figure considers the case of τ = 0.1. We
observe that the TPE order J and the system dimensions
are independent in their respective effects on the rate-loss

Fig. 3 Rate for varyingCSI.AverageperUT rate vs. transmit-power-to-noise
ratio for varying CSI errors at the BS (J = 3,M = 128, K = 32)

Fig. 4 Rate for varying order. AverageUT rate vs. transmit-power-to-noise
ratio for different orders J in the TPE precoding (M = 512, K = 128,
τ = 0.1)

between TPE and RZF precoding. This observation is
in line with previous results on polynomial expansions,
for example, [19] where reduced-rank received filtering
was considered. The independence between J and the
system dimensions M and K (given the same ratio) is
indeed a main motivation behind TPE precoding, because
it implies that the order J can be kept small evenwhenTPE
precoding is applied to very large-scale MIMO systems.
The intuition behind this result is that the polynomial
expansion approximates the inversion of each eigenvalue
with the same accuracy, irrespective of the number of
eigenvalues; see Section 3.2 for details. Although the
relative performance loss is unaffected by the system
dimensions, we also see that J needs to be increased
along with the SNR, if a constant performance gap is
desired.

Fig. 5 Rate-loss for varying K. Rate-loss of TPE vs. RZF with respect to
growing K, where the ratioM/K is fixed at 4 and the average SNR is
set to 10 dB (τ = 0.1)
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In the simulation depicted in Fig. 6, we introduce a
hypothetical case of TPE precoding (TPEopt) that opti-
mizes the J coefficients using the estimated channel coef-
ficients in each coherence period, instead of relying solely
on the channel statistics. More precisely, the optimal coef-
ficients in Theorem 6 are not computed using the deter-
ministic equivalents of Ã, B̃, and C̃ but using the original
matrices from (20), (21), and (29). This plot illustrates
the additional performance loss caused by precalculat-
ing the TPE coefficients based on channel statistics and
asymptotic analysis, instead of carrying out the optimiza-
tion step for each channel realization. The difference is
virtually zero at low SNRs and high at high SNRs. Further-
more, we note that increasing the value of J has the same
performance-gap-reducing effect on TPEopt, as it has on
TPE (see Figs. 4 and 5). In order to preserve readability,
only the curves pertaining to J = 3 are shown in Fig. 6.
Finally, to assess the validity of our results, we treat the

case of non-uniform power allocation (i.e., with differ-
ent values for pk). In particular, we considered a situation
where the users are divided into four classes correspond-
ing to {c1, c2, c4c4} = {1, 2, 3, 4}, where pk = ck

K in order
to adhere to the scaling in Assumption 4. Figure 7 shows
the theoretical large (M,K) regime (DE; based on (35))
and empirical (MC; based on (19)) average rate per UT
for each class, when K = 32,M = 128, and τ = 0.1.
We especially remark the very good agreement between
our theoretical analysis and the empirical system perfor-
mance.

7 Conclusions
Conventional RZF precoding provides attractive system
throughput in massive MIMO systems, but its compu-
tational and implementation complexity is prohibitively

Fig. 6 Rate using optimal weights. Average UT rate vs. transmit-
power-to-noise ratio with RZF, TPE, and TPEopt precoding (J = 3,
M = 128, K = 32, τ = 0.4)

Fig. 7 Rate with power control. Average rate per UT class vs.
transmit-power-to-noise ratio with TPE precoding (J = 3,M = 256,
K = 64, τ = 0.1)

high, due to the required channel matrix inversion. In this
paper, we have proposed a new class of TPE precoding
schemes where the inversion is approximated by trun-
cated polynomial expansions to enable simple hardware
implementation. In the single-cell downlink withM trans-
mit antennas and K single-antenna users, this new class
can approximate RZF precoding to an arbitrary accuracy
by choosing the TPE order J in the interval 1 ≤ J ≤
min(M,K). In terms of implementation complexity, TPE
precoding has several advantages: (1) There is no need to
compute the precoding matrix beforehand (which leaves
more channel uses for data transmission); (2) the delay to
the first transmitted symbol is reduced significantly; (3)
the multistage structure enables pipelining; and (4) the
parameter J can be tailored to the available hardware.
Although the polynomial coefficients depend on the

instantaneous channel realizations, we have shown that
the per-user SINRs converge to deterministic values in the
large (M,K) regime. This enabled us to compute asymp-
totically optimal coefficients using merely the statistics
of the channels. The simulations revealed that the differ-
ence in performance between RZF and TPE is small at
low SNRs and for large CSI errors. The TPE order J can
be chosen very small in these situations, and in general, it
does not need to scale with the system dimensions. How-
ever, to maintain a fixed per-user rate-loss compared to
RZF, J should increase with the SNR or as the CSI quality
improves.

Endnotes
1Matrix multiplication combined with matrix inversion

can be implemented using the Strassen’s algorithm in
[40] and the improved Coppersmith-Winograd algorithm
in [41]. These are divide-and-conquer algorithms that
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exploit that 2 × 2 matrices can be multiplied efficiently
and thereby reduce the asymptotic complexity of
multipling/inverting K × K matrices toO(K2.8074) and
O(K2.373), respectively. Unfortunately, the overhead in
these algorithms is heavy and thus K needs to be at the
order of several thousands to achieve a lower complexity
than the Cholesky approach considered here. Hence,
these alternative algorithms are unfavorable for matrices
of practical sizes.

2Intuitively, one circumvents the expensive
matrix-matrix multiplication with a domino-like chain of
2J − 1 (less expensive) matrix-vector multiplications per
transmitted symbol vector. This became possible by
replacing the inverse of a matrix-matrix multiplication in
the RZF with a sum of weighted matrix powers.

3These parameter values correspond to symmetric
downlink/uplink transmission, 2 downlink pilot symbols
per UT (at different frequencies). Looking at values
similar the LTE standard ([42] Chapter 10), e.g., a
coherence bandwidth of 200 kHz, and a coherence
period of 5 ms one would arrive a Tcoherence of 1000.

4Depending on the massive MIMO system, K can be
on the order of 100 andM of the order 10K , while we will
see later that J = 4 is sufficient for many cases.

5The entries of matrices are numbered from 0, for
notational convenience.

6The optimal precoding parametrization in [15] has
K −1 parameters. To optimize some general performance
metric, it is therefore necessary to let the number of
design parameters scale with the system dimensions.

Appendix 1: Useful lemmas
Lemma 2. (Common inverses of resolvents) Given any

matrix Ĥ ∈ C
M×K , let ĥk denote its kth column and Ĥk

denote the matrix obtained after removing the kth column
from Ĥ. The resolvent matrices of Ĥ and Ĥk are denoted by
Q(t) = ( t

K ĤĤH + IM
)−1 and Qk(t) = ( t

K ĤkĤH
k + IM

)−1,
respectively. It then holds that

Q(t) = Qk(t) − 1
K

tQk(t)̂hkĥH
kQk(t)

1 + t
K ĥ

H
kQk(t)̂hk

(36)

and also

Q(t)̂hk = Qk(t)̂hk
1 + t

K ĥ
H
kQk(t)̂hk

. (37)

Proof 6. This follows from the Woodbury identity [43].

The following lemma characterizes the asymptotic
behavior of quadratic forms. It will be of frequent use in
the computation of deterministic equivalents.

Lemma 3. (Convergence of quadratic forms) Let xM =
[X1, . . . ,XM]T be a M × 1 vector with i.i.d. complex
Gaussian random variables with unit variance. Let AM
be an M × M matrix independent of xM, whose spectral
norm is bounded; that is, there exists CA < ∞ such that
‖A‖2 ≤ CA. Then, for any p ≥ 1, there exists a constant Cp
depending only on p, such that

ExM

[∣∣∣∣ 1MxH
MAMxM − 1

M
tr(AM)

∣∣∣∣p] ≤ CpC
p
A

Mp/2 ,

where the expectation is taken over the distribution of xM.
By choosing p ≥ 2, we thus have that

1
M

xHAMx − 1
M

tr(AM)
a.s.−−−−−→

M→+∞ 0.

Lemma 4. Let AM be as in Lemma 3, and xM, yM be
random, mutually independent with complex Gaussian
entries of zero mean and variance 1. Then,

1
M

yH
MAMxM

a.s.−−−−−−→
M,K→+∞ 0.

Lemma 5. (Rank-one perturbation lemma) LetQ(t) and
Qk(t) be the resolvent matrices as defined in Lemma 2.
Then, for any matrix A we have

tr (A (Q(t) − Qk(t))) ≤ ‖A‖2.

Lemma 6. Let XM and YM be two scalar random vari-
ables, with vary such that var(XM) = O

(
M−2) and

var(XM) = O
(
M−2) = O

(
K−2). Then,

E[XMYM]= E[XM]E[YM]+o(1).

Proof 7. We have

E[XMYM]=
E [(XM − E[XM] )(YM − E[YM] )] + E[XM]E[YM] .

Using the Cauchy-Schwartz inequality, we see that

E [|(XM − E[XM] ) (YM − E[YM] )|]
≤ √

var(XM)var(YM)

= O
(
K−2)

which establishes the desired result.

Appendix 2: Proof of Theorem 4
Here, we present the proof of Theorem 4, which estab-
lishes the asymptotic convergence of Xk,M(t,u) and
Zk,M(t,u) to deterministic quantities.
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Deterministic equivalent for Xk,M(t, u)

Wewill begin the proof by looking at the random quantity
Xk,M(t,u). Using the notation of Lemma 2, we can write

Xk,M(t,u) = 1
K2h

H
kQ(t)̂hkĥH

kQ(u)hk .

To control the quadratic form 1
K h

H
kQ(t)̂hk , we need to

remove the dependency ofQ(t) on vector ĥk . For that, we
shall use the relation in (36), thereby yielding

1
K
hH
kQ(t)̂hk = 1

K
hH
kQk(t)̂hk

− t
K2

hH
kQk(t)̂hkĥH

kQk(t)̂hk
1 + t

K ĥ
H
kQk(t)̂hk

. (38)

Using Lemma 3, we thus have

1
K
ĥH
kQk(t)̂hk − 1

K
tr (�Qk(t))

a.s.−−−−−−→
M,K→+∞ 0.

Since 1
K tr (�Qk(t)) − 1

K tr (�Q(t)) a.s.−−−−−−→
M,K→+∞ 0, by the

rank-one perturbation property in Lemma 5, we have

1
K
ĥH
kQk(t)̂hk − 1

K
tr (�Q(t)) a.s.−−−−−−→

M,K→+∞ 0.

Finally, Theorem 1 implies that

1
K
ĥH
kQk(t)̂hk − δ(t) a.s.−−−−−−→

M,K→+∞ 0. (39)

The same kind of calculations can be used to deal with
the quadratic form 1

K h
H
kQk(t)̂hk , whose asymptotic limit

is the same as
√
1−τ 2
K ĥH

kQk(t)̂hk , due to the independence
between the channel estimation error and the channel
vector hk . Hence,

1
K
hH
kQk(t)̂hk −

√
1 − τ 2δ(t) a.s.−−−−−−→

M,K→+∞ 0. (40)

Plugging the deterministic approximation of (39) and
(40) into (38), we thus see that

1
K
hH
kQ(t)̂hk −

√
1 − τ 2δ(t)
1 + tδ(t)

a.s.−−−−−−→
M,K→+∞ 0

and hence,

Xk,M(t,u) − (1 − τ 2)δ(t)δ(u)

1 + tδ(t)(1 + uδ(u))

a.s.−−−−−−→
M,K→+∞ 0.

Deterministic equivalent for Zk,M(t, u)

Finding a deterministic equivalent for Zk,M(t,u) is
much more involved than for Xk,M(t,u). Following the

same steps as in section “Deterministic equivalent for
Xk,M(t,u)” Appendix 2, we decompose Zk,M(t,u) as

Zk,M(t,u) = 1
K
hH
kQk(t)ĤPĤHQk(u)hk

−
u
K2hH

kQk(t)ĤPĤHQk(u)̂hkĥH
kQk(u)hk

1 + u
K ĥ

H
kQk(u)̂hk

−
t
K2hH

kQk(t)̂hkĥH
kQk(t)ĤPĤHQk(u)hk

1 + t
K ĥ

H
kQk(t)̂hk

+
tu
K3hH

kQk(t)̂hkĥH
kQk(t)ĤPĤHQk(u)̂hkĥH

kQk(u)hk
(1 + t

K ĥ
H
kQk(t)̂hk)(1 + u

K ĥ
H
kQk(u)̂hk)

� X1(t,u) + X2(t,u) + X3(t,u) + X4(t,u).

As it will be shown next, to determine the asymptotic
limit of the random variablesXi(t,u), i = 1, . . . , 4, we need
to find a deterministic equivalent for

1
K
tr
(
�Q(t)ĤPĤHQ(u)

)
.

This is the most involved step of the proof. It will, thus,
be treated separately in Appendix 3, where we establish
the following lemma:

Lemma 7. Let H be an M × K random matrix whose
columns are drawn according to Assumption 1. Define for
t ≥ 0, the resolvent matrixQ(t) = ( t

KHHH + IK
)−1 . LetA

be an M×M deterministic matrix with uniformly spectral
norm and α̂M(t,u,A) given as

α̂M(t,u,A) = 1
K
tr
(
AQ(t)HPHHQ(u)

)
.

Then, in the asymptotic regime described by Assumption 5,
we have

α̂M(t,u,A) − αM(t,u,A)
a.s.−−−−−−→

M,K→+∞ 0,

where

αM(t,u,A) = tr(P)

1
K tr (�T(u)AT(t))

(1 + tδ(t)) (1 + uδ(u))

+ tr(P)

(1 + tδ(t))(1 + uδ(u))

×
tu
K tr (�T(u)AT(t)) 1

K tr (�T(u)�T(t))
(1 + tδ(t))(1 + uδ(u)) − tu

K tr (�T(u)�T(t))
.

(41)

In particular, if A = �, we have

αM(t,u,�) =
tr(P) 1

K tr (�T(u)�T(t))
(1 + tδ(t))(1 + uδ(u)) − tu

K tr (�T(u)�T(t))
.

The proof of this lemma is adjourned to Appendix 3.
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Let us begin by treating X1(t,u)

1
K
hH
kQk(t)ĤPĤHQk(u)hk =
1
K
hh
kQk(t)ĤkPkĤkQk(u)hk

+ pk
K
hH
kQk(t)̂hkĥH

kQk(u)hk .

The right-hand side term in the equation above can be
treated using (40), thereby yielding

pk
K
hH
kQk(t)̂hkĥH

kQk(u)hk − Kpk(1 − τ 2)δ(t)δ(u)

a.s.−−−−−→
M,K→∞ 0.

Using Lemma 3, we can prove that
1
K
hH
kQk(t)ĤkPkĤH

kQk(u)hk

− 1
K
tr
(
�Qk(t)ĤkPkĤH

kQk(u)
) a.s.−−−−−−→

M,K→+∞ 0. (42)

Continuing, according to Lemma 7, we have
1
K
tr
(
�Qk(t)ĤkPkĤH

kQk(u)
) − tr (P) βM(t,u)

a.s.−−−−−−→
M,K→+∞ 0. (43)

Combining (42) with (43) yields
1
K
hH
kQk(t)ĤkPkĤH

kQk(u)hk − tr (P) βM(t,u)

a.s.−−−−−−→
M,K→+∞ 0.

Thus, in the asymptotic regime, we have

X1(t,u) − (
Kpk

(
1 − τ 2

)
δ(t)δ(u) + tr(P)βM(t,u)

)
a.s.−−−−−−→

M,K→+∞ 0. (44)

Controlling the other terms Xi(t,u), i = 2, 3, 4, will also
include the term β(t,u). First note that X2(t,u) is given by

X2(t,u) = −uY2(t,u)

1
K ĥ

H
kQk(u)hk

1 + u
K ĥ

H
kQkĥk

,

where

Y2(t,u) = 1
K
hH
kQk(t)ĤPĤHQk(u)̂hk .

Observe that Y2(t,u) is very similar to X1(t,u). The only
difference is that Y2(t,u) is a quadratic form involving vec-
tors hk and ĥk , whereas X1(t,u) involves only the vector
hk . Following the same kind of calculations leads to

Y2(t,u) −
(
Kpk

√
1 − τ 2δ(t)δ(u)

+
√
1 − τ 2tr (P) βM(t,u)

) a.s.−−−−−−→
M,K→+∞ 0.

Since
1
K ĥH

kQk(u)hk
1+ u

K ĥkQk(u)̂hk
satisfies

1
K ĥ

H
kQk(u)hk

1 + u
K ĥkQk(u)̂hk

−
√
1 − τ 2δ(u)

1 + uδ(u)

a.s.−−−−−−→
M,K→+∞ 0,

we now have

X2(t,u)+
uδ(u)

(
Kpk

(
1 − τ 2

)
δ(t)δ(u) + (

1 − τ 2
)
tr (P) βM(t,u)

)
1 + uδ(u)

a.s.−−−−−−→
M,K→+∞ 0. (45)

Similarly, X3(t,u) satisfies

X3(t,u)+
tδ(t)

(
Kpk

(
1 − τ 2

)
δ(t)δ(u) +(

1 − τ 2
)
tr (P) βM(t,u)

)
1 + tδ(t)

a.s.−−−−−−→
M,K→+∞ 0. (46)

Finally, X4(t,u) can be treated using the same approach,
thereby providing the following convergence:

X4(t,u)−
tuδ(t)δ(u)(1 − τ 2) (Kpkδ(t)δ(u) + tr (P) βM(t,u))

(1 + tδ(t))(1 + uδ(u))
a.s.−−−−−−→

M,K→+∞ 0. (47)

Summing (44), (45), (46), and (47) yields

Zk,M(t,u) −
(

Kpk
(
1 − τ 2

)
δ(t)δ(u)

(1 + tδ(t))(1 + uδ(u))

+tr (P)

(
τ 2 +

(
1 − τ 2

)
(1 + uδ(u))(1 + tδ(t))

)
βM(t,u)

)
a.s.−−−−−−→

M,K→+∞ 0.

Appendix 3: Proof of Lemma 7
The aim of this section is to determine a deterministic
equivalent for the random quantity

α̂M(t,u,A) = 1
K
tr
(
AQ(t)HPHHQ(u)

)
.

The proof is technical and will make frequent use
of results from Appendix 1. First, we need to control
var (̂αM(t,u)). This has already been treated in [10] where
it was proved that var (̂αM(t,u,A)) = O(K−2) when t =
u. The same calculations hold for t 
= u, thus we consider
in the sequel that var (̂αM(t,u,A)) = O(K−2). Hence, we
have

α̂M(t,u,A) − E[ α̂M(t,u,A)] a.s.−−−−−−→
M,K→+∞ 0. (48)
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Equation (48) allows us to focus directly on controlling
E[ α̂M(t,u,A)]. Using the resolvent identity

Q(t) − T(t) = T(t)
(
T−1(t) − Q−1(t)

)
Q(t)

= T(t)
(

t�
1 + tδ(t)

− t
K
HHH

)
Q(t),

we decompose α̂M(t,u,A) as

α̂M(t,u,A) = 1
K
tr
(
AT(t)HPHHQ(u)

)
+ t tr (AT(t)�Q(t)HPHHQ(u))

K(1 + tδ(t))

− t
K2 tr

(
AT(t)HHHQ(t)HPHHQ(u)

)
= Z1 + Z2 + Z3.

We will only directly deal with the terms Z1 and Z3,
since Z2 will be compensated by terms in Z3. We begin
with Z1:

E [Z1] = 1
K

K∑
�=1

p�E
[
tr
(
AT(t)h�hH

�Q(u)
)]

= 1
K

K∑
�=1

p�E

[ hH
�Q�(u)AT(t)h�

1 + u
K h

H
�Q�(u)h�

]

=
K∑

�=1

p�

K

× E

[
hH

�Q�(u)AT(t)h�

( u
K tr (�Q�) − u

K h
H
�Q�(u)h�

)(
1 + u

K h
H
�Q�(u)h�

) (
1 + u

K tr�Q�(u)
) ]

+ p�

K
E

[hH
�Q�(u)AT(t)h�

1 + u
K tr�Q�(u)

]
.

Using Lemma 3, we can show that the first term on
the right-hand side of the above equation is negligible.
Therefore,

E [Z1] =
K∑

�=1

p�

K
E

[ hH
�Q�(u)AT(t)h�

1 + u
K tr (�Q�(u))

]
+ o(1)

=
K∑

�=1

p�

K
E

[
tr�Q�(u)AT(t)
1 + u

K tr (�Q�)

]
+ o(1).

Using Lemma 5, we have

E [Z1] =
K∑

�=1

p�

K
E

[
tr (�Q(u)AT(t))
1 + u

K tr (�Q(u))

]
+ o(1).

Theorem 1, thus, implies

E [Z1] =
K∑

�=1

p�

K
E

[
tr (�T(u)AT(t))

(1 + uδ(u))

]
+ o(1)

=
1
K tr(P) 1

K tr (�T(u)AT(t))
1 + uδ(u)

+ o(1).

We now look at Z3, where

Z3 = − t
K2

K∑
�=1

tr
(
AT(t)h�hH

�Q(t)HPHHQ(u)
)
.

Using (37), we arrive at

Z3 = − t
K2

K∑
�=1

tr
(
AT(t)h�hH

�Q�(t)HPHHQ(u)
)

1 + t
K h

H
�Q�(t)h�

.

From (36), Z3 can be decomposed as

Z3 = − t
K2

K∑
�=1

tr
(
AT(t)h�hH

�Q�(t)HPHHQ�(u)
)

1 + t
K h

H
�Q�(t)h�

+ tu
K3

K∑
�=1

tr
(
AT(t)h�hH

�Q�(t)HPHHQ�(u)h�hH
�Q�(u)

)(
1 + t

K h
H
�Q�(t)h�

) (
1 + u

K h
H
�Q�(u)h�

)
= Z31 + Z32.

We sequentially deal with the terms Z31 and Z32. The
same arguments as those used before allow us to substi-
tute the denominator by 1 + tδ(t), thereby yielding

E [Z31]

= − t
K2

K∑
�=1

E

[hH
�Q�(t)HPHHQ�(u)AT(t)h�

1 + tδ(t)

]
+ o(1)

= − t
K2

( K∑
�=1

E

[hH
�Q�(t)H�P�HH

�Q�(u)AT(t)h�

1 + tδ(t)

]
+p�E

[hH
�Q�(t)h�hH

�Q�(u)AT(t)h�

1 + tδ(t)

])
+ o(1)

= − t
K2

( K∑
�=1

E

[
tr
(
�Q�(t)H�P�HH

�Q�(u)AT(t)
)

1 + tδ(t)

]

+p�E

[hH
�Q�(t)h�hH

�Q�(u)AT(t)h�

1 + tδ(t)

])
+ o(1)

� χ1 + χ2.

By Lemma 3, the quadratic forms involved in χ2 have
variance O(K−2), and thus can be substituted by their
expected mean (see Lemma 6). We obtain

χ2 = −t
K∑

�=1
p�E

[
1
K tr (�Q�(t)) 1

K tr (�Q�(u)AT(t))
1 + tδ(t)

]
+ o(1)

= − tδ(t)
1 + tδ(t)

tr(P)
1
K
tr (�T(u)AT(t)) + o(1). (49)

The term χ1 will be compensated by Z2. To see that,
observe that the first order of χ1 does not change if we
substituteH� byH and P� by P. Besides, due to Lemma 5,
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we can substituteQ�(t) byQ(t) andQ�(u) byQ(u), hence
proving that

χ1 = −E [Z2] + o(1). (50)

Finally, it remains to deal with Z32. Substituting
1
K h

H
�Q�(t)h� and 1

K h
H
�Q�(u)h� by their asymptotic equiv-

alent δ(t) and δ(u), we get

E [Z32] =
tu
K3

K∑
�=1

E

[hH
�Q�(u)AT(t)h�hH

�Q�(t)H�P�HH
�Q�(u)h�

(1 + tδ(t))(1 + uδ(u))

]

+ tu
K3

K∑
�=1

p�E

[hH
�Q�(u)AT(t)h�hH

�Q�(t)h�hH
�Q�(u)h�

(1 + tδ(t))(1 + uδ(u))

]
+ o(1).

Analogously to before, E [Z32] can be simplified as

E [Z32] =
tu
K3

K∑
�=1

E

[
tr (�Q(t)HPHHQ(u)) tr (�T(u)AT(t))

(1 + tδ(t))(1 + uδ(u))

]

+ tu
K

K∑
�=1

p�δ(t)δ(u)tr (�T(u)AT(t))
(1 + tδ(t))(1 + uδ(u))

+ o(1)

= tu
K

tr (�T(u)AT(t))E[ α̂M(t,u,�)]
(1 + tδ(t))(1 + uδ(u))

+ δ(t)δ(u)tr(P) tuK tr (�T(u)AT(t))
(1 + tδ(t))(1 + uδ(u))

+ o(1). (51)

Combining (7), (50), and (51), we obtain

E[ α̂M(t,u,A)]= tr(P) 1
K tr (�T(u)AT(t))

(1 + tδ(t))(1 + uδ(u))

+ tu
K

tr (�T(u)AT(t))E[ α̂M(t,u,�)]
(1 + tδ(t))(1 + uδ(u))

+ o(1).

(52)

ReplacingAwith�, one finds a deterministic equivalent

E[ α̂M(t,u,�)]=
tr(P) 1

K tr (�T(u)�T(t))
(1 + tδ(t))(1 + uδ(u)) − tu

K tr (�T(u)�T(t))
+ o(1).

(53)

Finally, substituting (53) into (52) establishes (41).

Appendix 4: Proof of Corollary 1
The proof of Corollary 1 relies on Montel’s theorem [44].
We only prove that the result for Xk,M(t,u), Zk,M(t,u)

follows analogously. Note that Xk,M(t,u) and Xk,M(t,u)

are analytic functions, when their domains are extended
to C\R− × C\R−, where R− is the set of negative real-
valued numbers. Since Xk,M(t,u) − Xk,M(t,u) is almost

surely bounded for large M and K on every compact sub-
set of C\R−, Montel’s theorem asserts that there exists a
converging subsequence, which converges to an analytic
function. Since this limiting function is necessarily zero on
the positive real axis, it must be zero everywhere. Thus,
from every subsequence, one can extract a convergent one
that converges to zero thus,

Xk,M(z1, z2) − Xk,M(z1, z2)
a.s.−−−−−−→

M,K→+∞ 0

∀z1, z2 ∈ C\R−. (54)

Since Xk,M(z1, z2) is analytic, the derivatives of
Xk,M(z1, z2) − Xk,M(z1, z2) converge to zero. In particular,
if t̃ and ũ are strictly positive scalars, we have

X(m,�)
k,M (t̃, ũ) − X(m,�)

k,M (t̃, ũ)
a.s.−−−−−−→

M,K→+∞ 0. (55)

This result can be extended to the case of t̃ = 0 and
ũ = 0. To see this, let η > 0 and decompose

X(m,�)
k,M − X(m,�)

k,M = α1 + α2 + α3,

where

α1 = X(m,�)
k,M − X(m,�)

k,M (η, η)

α2 = X(m,�)
k,M (η, η) − X(m,�)

k,M (η, η)

α3 = X(m,�)
k,M (η, η) − X(m,�)

k,M .

Now, let ε > 0. Since the derivatives of X(m,�)
k,M and X(m,�)

k,M
are almost surely bounded for large M and K, the quanti-
ties |α1| and |α3| can be made smaller than ε/3 when η is
small enough. On the other hand, (55) implies that α2 con-
verges to zero almost surely. There exists M0, such that,
for M ≥ M0, we have |α2| ≤ ε

3 . Therefore, for M large
enough,

∣∣∣X(m,�)
k,M − X(m,�)

k,M

∣∣∣ ≤ ε, thereby proving

X(m,�)
k,M − X(m,�)

k,M
a.s.−−−−−−→

M,K→+∞ 0.

Appendix5: Iterative algorithm for computingβ
(�,m)
M

An iterative approach for computing β
(�,m)
M is given in the

following by Algorithm 1.

Appendix 6: Iterative algorithm for computing T(q)

For the sake of completeness, we provide hereafter
Algorithm 2 that can be used to compute T(q). It is an
adapted version of the iterative algorithm given in [21].
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Algorithm 1 Iterative algorithm for the computation of
β

(�,m)
M
for k = 0 → J do

β
(k,0)
M ← 1

K tr
(
�T (k)�

)
, β(0,k)

M ← 1
K tr

(
�T (k)�

)
end for
form = 1 → J do

for k = 1 → J do
β

(k,m)
M ← 1

K tr
(
�T (k)�T (m)�

)
for pk = 1 → k do

for qm = 1 → m do
β

(k,m)
M ← β

(k,m)
M −

pkqm
( k
pk

)(m
qm
)
β

(pk−1,qm−1)
M

1
K tr

(
�T (k−pk)�T (m−qm)

)
end for

end for
end for

end for

Algorithm 2 Iterative algorithm for computing T(q), q =
1, . . . , p

δ(0) ← 1
K tr(�)

g(0) ← 0
f (0) ← − 1

1+g(0)

T(0) ← IM
R(0) ← 0M
for i = 1 → p do

R(i) ← if (i−1)�

T(i) ←
i−1∑
n=0

n∑
j=0

(i−1
n
)(n

j
)
T(i−1−n)R(n−j+1)T(j)

f (i) ←
i−1∑
n=0

i∑
j=0

(i−1
n
)(n

j
)
(i − n)f (j)f (i−j)δ(i−1−n)

g(i) ← iδ(i−1)

δ(i) ← 1
K tr(�T(i))

end for

Appendix 7: Sketch of the proof of Theorem 5
The goal of this section is to provide an outline of the
proof for finding the deterministic equivalent of the quan-
tity

[
C̃
]
�,m = 1

K
tr

⎛⎝( ĤĤH

K

)�

ĤPĤH

(
ĤĤH

K

)m
⎞⎠ .

A full proof proceeds in the following steps:

1. First, compute the deterministic equivalent for

YM(t,u) = 1
K
tr
(
Q(t)ĤPĤHQ(u)

)
,

where Q(t) = ( t
KHHH + I

)−1. This can be achieved
by using Lemma 7, where it is proved that

YM(t,u) − αM(t,u, I) a.s−−−−−−→
M,K→+∞ 0

and thus,

YM(t,u) − tr(P)c(t,u)
a.s.−−−−−−→

M,K→+∞ 0.

2. Now, since

[
C̃
]
�,m = (−1)�+mY (�,m)

M
�!m!

,

we can prove, using the same approach as in the
proof of Theorem 1, that

YM(t,u)(�,m) − tr(P)c(�,m) a.s−−−−−−→
M,K→+∞ 0.

3. Finally, one computes the derivative of c(t,u) at
t = 0 and u = 0, using the Leibniz rule, to arrive at
the desired result.

Appendix 8: Proof of Theorem 6
By using tr(P)wHC̃w

P = 1 and dividing the objective function
by the constant Kpk

tr(P)
, the problem (31) can be rewritten as

(P1) : maximize
w

wHÃw
wHB̃w + σ 2

P wHC̃w
(56)

subject to wHCw = P
tr (P)

.

Making the change of variable a =
(
B̃ + σ 2

P C̃
) 1

2 w, we
transform (P1) into

(P2) :

maximize
a

aH
(
B̃ + σ 2

P C̃
)− 1

2 Ã
(
B̃ + σ 2

P C̃
)− 1

2 a

aHa

s.t. aH

(
B̃ + σ 2

P
C̃
)− 1

2
C̃
(
B̃ + σ 2

P
C̃
)− 1

2
a= P

tr (P)
.

We notice that the objective function of (P2) is inde-
pendent of the norm of a. We can, therefore, select a
to maximize the objective function and then adapt the
norm to fit the constraint. If we discard the constraint,
what remains is a classic Rayleigh quotient [45], which
is maximized by the eigenvector a corresponding to the
maximum eigenvalue of(

B̃ + σ 2

P
C̃
)− 1

2
Ã
(
B̃ + σ 2

P
C̃
)− 1

2
.
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By transforming a back to the original variable w, we
obtain (33), where the scaling in (34) corresponds to a
scaling of a in order to satisfy the constraint.
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