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Abstract

contending nodes.

To satisfy the increasing demand for wireless systems capacity, the industry is dramatically increasing the density of
the deployed networks. Like other wireless technologies, Wi-Fi is following this trend, particularly because of its
increasing popularity. In parallel, Wi-Fi is being deployed for new use cases that are atypically far from the context of
its first introduction as an Ethernet network replacement. In fact, the conventional operation of Wi-Fi networks is not
likely to be ready for these super dense environments and new challenging scenarios. For that reason, the high
efficiency wireless local area network (HEW) study group (SG) was formed in May 2013 within the IEEE 802.11 working
group (WG). The intents are to improve the “real world” Wi-Fi performance especially in dense deployments.

In this context, this work proposes a new centralized solution to jointly adapt the transmission power and the physical
carrier sensing based on artificial neural networks. The major intent of the proposed solution is to resolve the fairness
issues while enhancing the spatial reuse in dense Wi-Fi environments. This work is the first to use artificial neural
networks to improve spatial reuse in dense WLAN environments. For the evaluation of this proposal, the new
designed algorithm is implemented in OPNET modeler. Relevant scenarios are simulated to assess the efficiency of
the proposal in terms of addressing starvation issues caused by hidden and exposed node problems. The extensive
simulations show that our learning-based solution is able to resolve the hidden and exposed node problems and
improve the performance of high-density Wi-Fi deployments in terms of achieved throughput and fairness among
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1 Introduction

Today, IEEE 802.11 wireless local area network (WLAN)
[1] that is widely known as Wi-Fi is the dominant stan-
dard in WLAN technology. An infrastructure mode of
a basic IEEE 802.11 network is termed a basic service
set (BSS) and consists of an access point (AP) and at
least one associated station (STA). According to the IEEE
802.11 standard, the multiple access to the communi-
cation medium is based on the contention between the
different nodes operating on the same frequency channel.
The distributed coordination function (DCF) manages
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the contention-based access by implementing the carrier
sense multiple access with collision avoidance (CSMA-
CA) mechanism. As described in the standard, if a node
is transmitting, all the nodes located in its transmission
range must defer their transmissions. This behavior is
ruled by the physical carrier sensing (PCS) that is a part of
the clear channel assessment (CCA) mechanism. Accord-
ingly, at a given time, there is only one communication
occurring within the same BSS. Usually, this communi-
cation occurs between the AP and one of the associated
STAs and may take one of the two directions: downlink
(DL) towards the STA or uplink (UL) towards the AP.

If the contending nodes belong to different BSSs, we
talk about an overlapping BSS (OBSS) problem where the
nodes of the neighboring co-channel BSSs overhear each
other. When multiple co-channel BSS overlap, the com-
munication airtime is shared between them and hence the
total capacity of the network is divided by the number of
these OBSSs. Since the number of orthogonal frequency
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channels available for the operation of Wi-Fi networks
is limited to 3 in the 2.4-GHz band and may reach a
maximum of 24 channels in the 5-GHz band, prevent-
ing OBSSs is very challenging especially in dense WLAN
environments. The impact of the increasing density on
the adaptive channel selection schemes is studied in [2].
Adding to this quantitative limitation, the fact that an
interference-free operation on these unlicensed channels
is not always guaranteed because many other systems are
using them.

Since its introduction in 1997, the IEEE WLAN stan-
dard is continuously evolving. Increasing the peak phys-
ical throughput was always the main intent behind this
evolution. However, the achievable network throughput
in real world is affected by many factors that are mostly
related to the MAC layer protocols. On another hand,
the focus of the standardization activity was mainly on
enhancing the performance in a single BSS. Neverthe-
less, in reality, the inevitable presence of OBSSs aggravates
the spectral efficiency and hence the performance of the
system.

The increasing demand on high-throughput, large
capacity, and ubiquitous coverage for high data rate, real-
time, and always-on applications is driving the wireless
industry. To respond to these demands, the density of the
deployed Wi-Fi networks is drastically increasing in all the
deployment scenarios: indoor or outdoor public hotspots,
business offices, and private residences. For instance, by
2018, the number of hotspots will grow to the equivalent
average of one Wi-Fi hotspot for every 20 people on earth
according to a recent study [3].

Along with this unprecedented level of density, more
new challenging deployment scenarios are expected to
appear. Already, Wi-Fi is seen as the most suitable solution
to cover large venues, stadiums, airports, train stations,
and other crowded spaces in indoor and outdoor. Further-
more, Wi-Fi access points are being deployed in plains,
trains, and ships. Satisfying this variety of use cases is not
a simple task especially when a certain level of quality
of experience (QoE) is expected to be met. To deal with
the presented issues, the high efficiency WLAN (HEW)
study group (SG) [4] was launched and led to the cre-
ation of a new task group (TG) in May 2014 that took the
name of IEEE 802.11ax [5]. The main goal of this TG is
improving the spectrum efficiency to enhance the system
area throughput in high-density scenarios in terms of the
number of APs and/or STAs.

As argued by many researchers and standardization
contributers [6-8], the current MAC protocols are very
conservative when operating in dense environments.
Because of this overprotecting behavior, the performance
of the current high-density WLAN networks is degraded.
As previously discussed, this density will continue to
increase and the future networks will be more and more
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vulnerable to performance degradation. Obviously, opti-
mizing these protocols for more spatial reuse will boost
the overall performance of high-density WLANS in terms
of achieved throughput. This is why enhancing the spa-
tial reuse is one of the hot topics discussed in the IEEE
802.11ax task group. Accordingly, the IEEE 802.11ax spa-
tial reuse (SR) ad hoc group is created to work on improv-
ing spatial frequency reuse and other mechanisms that
enhance the concurrent use of the wireless medium by
multiple devices. Several interesting propositions are pre-
sented in this group. However, conserving the fairness
among different nodes is not always assured with the cur-
rently proposed solutions [9, 10]. In a previous work [11],
we proposed an adaptive distributed scheme to enhance
the network performance in densely deployed WLANs by
leveraging the spatial reuse.

In the same context, in the aim of leveraging the spatial
reuse in dense WLAN environments, this work envi-
sions the adaptation of the MAC protocols of a managed
WLAN system in a centralized manner. Since the next Wi-
Fi generation is intended to be carrier oriented, the future
Wi-Fi infrastructure will be increasingly deployed in a
planned manner like cellular networks. The centralized
approach, subject of this work, is appropriate for plenty
of current and future Wi-Fi deployment scenarios. One of
the most relevant scenarios studied in the current IEEE
802.11ax task group is the stadium scenario. Actually, two
scenarios out of a total of four scenarios discussed in this
task group are fully managed (see [12]).

In this paper, we exploit a new artificial neural network
(ANN)-based solution to apply jointly a physical carrier
sensing adaptation (PCSA) and a transmit power control
(TPC) in a way that preserves fairness between all the
nodes in terms of throughput. ANNs [13] are commonly
used to address a wide range of pattern recognition prob-
lems [14] including classification, clustering, and regres-
sion. However, the worth of ANNs to model complex and
nonlinear problems is desirable for many real-world prob-
lems. In telecommunications domain, ANNs are adopted
for a large number of applications [15], such as equalizers,
adaptive beam-forming, self-organizing networks, net-
work design and management, routing protocols, local-
ization, etc. Furthermore, many data mining techniques
make use of ANNSs to derive meaning from complicated or
imprecise data. In WLAN, the main applications of ANNs
can be classified as follows: data rate adaptation [16], qual-
ity of service (QoS) provisioning [17], frame size adapta-
tion [18], channel allocation [19], channel estimation [20],
and indoor localization [21].

To the best of our knowledge, this is the first work to
use ANNSs to enhance the spatial reuse for high-density
WLANSs. As shown in Fig. 1, a central entity (the con-
troller) controls all the APs of the managed WLAN sys-
tem. This controller is capable of collecting feedback data
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Controller

Fig. 1 Managed wireless LAN topology former by several basic
service sets (BSS) controlled by a centralized entity (the controller)

from all the nodes attached to the system (normally via
their corresponding APs) in a periodic manner. The IEEE
802.11k amendment [22] that describes the mechanisms
for APs and STAs to dynamically measure and report their
radio resources can be useful to design the feedback col-
lection function. In this work, the feedback data consists
of the values of the adapted parameters and the average
throughput achieved by every node. After the collection
phase, the collected data is used by the ANN to learn
the nonlinear relation between the parameters in input
and the corresponding throughputs in output. The trained
ANN is then used to adapt the parameters in such a way
to minimize a predefined cost function.

The envisioned approaches to improve the spatial
reuse in dense WLANSs are presented in Section 1.1. In

Page 3 0f 19

Section 1.2, we introduce the ANNs theory and the role
they play in the proposed solution. Then, the system
model is detailed in Section 1.3. The proposed optimiza-
tion technique is presented in Section 1.4 before explain-
ing the implementation of the whole system in details in
Section 1.5. For the evaluation part, Section 1.6 describes
the simulation scenarios and discusses the obtained
results. Finally, the paper is concluded in Section 2.

1.1 Spatial reuse in dense WLANs

In order to enhance the performance of WLANSs in dense
deployment scenarios, improving spatial reuse is com-
pulsory. In cellular deployments, the most important
approaches are prudent site planning and emerged chan-
nel assignment for each cell. Although these solutions are
always efficient for traditional networks, they are no more
sufficient for current dense WLAN environments. Sat-
isfying the tremendously increasing demand in capacity
is not possible without densifying network deployments,
i.e,, installing more APs to serve more STAs. However,
as explained earlier, due to the contention-based access
mechanism, the number of concurrent transmissions is
largely reduced when co-channel APs are closer to each
other (OBSS problem). In these circumstances, multiple
approaches are envisioned to enhance the situation. In the
following, we describe the TPC and the PCSA in the light
of their advantages and drawbacks. Then, we present a
previous work [11] that proposes a combination of them.

1.1.1 Transmit power control (TPC)

Decreasing the transmission power of the possible inter-
ferers helps to fulfill the required SINR at the neighboring
receivers. As shown in Fig. 2, theoretically, the same SINR
can be obtained by decreasing the transmission power
of all the devices of “x dB” which leads to decrease also
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Fig. 2 Transmit power control (TPC)
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the interference power by “x dB” In that way, the trans-
mission ranges in the neighboring networks are shrunk.
Widely used in mobile networks, TPC is one of the pow-
erful mechanisms to shrink cells while densifying and
hence to permit more spatial reuse. By the same logic,
TPC is suggested for high-density WLANs. While TPC is
very effective when applied in fully managed architectures
over licensed spectrum, many drawbacks are shown when
applying it to less managed networks. WLAN deploy-
ments are known to be chaotic since in most cases, the
APs are individually installed. As the frequency spec-
trum is unlicensed, managed networks cannot guarantee
interference-free operation. In practice, any AP (even if it
is a soft AD, i.e., tethering applications) operating in vicin-
ity may disturb the performance of the managed network
at any time.

The selflessness of TPC prevents WLAN administrators
and producers from activating it when there is no punctual
regulatory need (e.g., operating on a frequency band that
interferes with neighboring radar systems). Authors in
[23, 24] and [25] show the detrimental effect of asymmet-
rical links caused by the application of TPC in some case
scenarios. Actually, TPC is more problematic to achieve
in a distributed manner or when the spectrum is free
because it fosters higher power transmitters, that are not
applying it, at the expense of lower power transmitters
that are applying TPC.

1.1.2 Physical carrier sensing adaptation (PCSA)

For the reasons discussed above, another approach that is
more suitable to the contention-based access of WLAN
is proposed. This approach is called PCSA and is based
on the adaptation of the carrier sensing mechanism used
by the CCA procedure. In PCSA, instead of decreasing
its transmission power, a node will decrease its sensitiv-
ity in detecting signals in its environment. In Fig. 3, the
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PCS threshold is increased so that tolerable concurrent
transmissions are prohibited from triggering busy channel
assessments. Consequently, in situations where the sig-
nal of interest is received with a power sufficiently higher
than the interference power, the reuse between neighbor-
ing networks will be possible. In contrast to TPC, there
is an important incentive for network administrators and
equipment vendors to apply PCSA since the benefit goes
directly to the devices that applies it.

1.1.3 Balanced TPC and PCS adaptation (BTPA)

However, as shown in [11], there are some fairness issues
when adopting one of the previous approaches alone.
More precisely, it has been shown that while TPC favors
the legacy devices (that are not applying TPC), PCSA
favors the devices that applies the adaptation. In real
world networks, the devices implementing the latest ver-
sion of the 802.11 standard operate in the same networks
with older devices (legacies). The interoperability and
backward compatibility is an essential feature in 802.11
WLAN. Preserving fairness between different devices
(particularly with legacies) is important for the overall
network performance.

Consequently, we proposed in [11] the balanced TPC
and PCS adaptation (BTPA). The proposal defines a
mechanism to calculate two adaptation values Atpc and
Apcs based on the power level received from the cor-
responding peer device (i.e., the AP in UL). According
to the proposal, the transmission power is reduced by
Atpc while the PCS threshold is increased by Apcs. This
leads to an optimal protection range around the trans-
mitter X where one node transmits at a given instance.
Outside this range, co-channel nodes are able to success-
fully transmit simultaneously with X. In a dense cellular
deployment simulation scenario, the proposed technique
is able to ameliorate the fairness in different situations,

Physical carrier sensing (PCS)

Signal of interest received power

Minimum required SINR

I Interference power

Co-Channel Interference

Fig. 3 Physical carrier sensing adaptation (PCSA)

Background noise floor
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while improving the average throughput by four times
compared to the standard performance.

Although BTPA could be applied in both distributed
and centralized network architecture, in fully managed
deployments, we can take benefit from the presence of a
central controller to conceive more intelligent solutions.
In the present work, we design and implement a central-
ized learning-based solution that uses also an approach
based on a joint adaptation of transmission power and car-
rier sensing. This new solution benefits from the ANN’s
ability to model complex nonlinear functions to intelli-
gently enhance the spatial reuse while preserving fairness.

1.2 Introduction to artificial neural networks

Artificial neural networks (ANNs) [13] derive their com-
puting power through their parallel distributed structure
that gives them the ability to learn and therefore to gen-
eralize by producing reasonable outputs for new unseen
inputs. The properties of ANN are summarized as the fol-
lowing: input-output mapping capability, adaptivity, non-
linearity, and fault tolerance.

1.2.1 An artificial neuron

The artificial neuron is the basic block of an ANN. The
architecture of this fundamental processing unit is shown
in Fig. 4. Accordingly, the transfer function through a
single neuron is defined as follows:

(1)

n
y=a (Zwixi—i—b)
i=1

where y is the output of the neurone, 4(.) is the activation
function, # is the number of inputs to the neuron, w; is
the weight of input j, x; is the value of input i, and b is the
bias value. Depending on the problem that the ANN needs
to solve, the activation function can be a step function, a
linear function, or a nonlinear sigmoid function.
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1.2.2 An artificial neural network

An ANN is obtained by combining multiple artificial neu-
rons. These single neurons are distributed over several
layers, namely input, hidden, and output layers. The num-
ber of hidden layers and the interconnections between dif-
ferent neurons can be defined in different ways resulting
in different ANN topologies [13]. Building the topology of
an ANN is just half of the task before being able to use this
ANN to solve the given problem. An ANN needs to learn
how to respond to given inputs. The learning (or train-
ing) step can be achieved in a supervised, unsupervised, or
reinforcement way. The unsupervised approach consists
on setting the weights and biases to values that minimize
a predefined error function.

1.2.3 The weights update

In the training phase, the training data is fed into inputs,
then the output of a neuron is calculated as described in
Eq. (1). This procedure is repeated for all neurons at the
input layer, then at the hidden layer(s), and finally at the
output layer. Afterwards, the error values are calculated
based on the desired output value and the actual output
value. This error is used to update the weights of all the
connections in the ANN. This update is done by a back
propagation of the error value, meaning that the weights
connecting the output layer neurons to the last hidden
layer neurons are updated in the first place. When all the
weights are updated, the ANN is ready for the next epoch
of the training phase. The maximum number of epochs
is predefined depending on the specific problem and the
available dataset. The commonly used error function is
the mean squares error (MSE) that is defined by

Mk
1
MSE = E(Z Z(desired_output;” — current_output]”))
m=1 i=1
)
where M is the number of training datasets. When the cal-
culated value of the MSE is less or equal to the predefined
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desired MSE (MSEqcs), the training is stopped and the
ANN is considered as sufficiently trained. Furthermore,
the stop point may be controlled by other customized
metrics.

1.2.4 Why artificial neural networks?

The impact of the MAC protocols on the network perfor-
mance is very complicated to model. Usually, researchers
provide a set of unrealistic assumptions of ideal chan-
nel conditions and homogeneous link qualities to simplify
their studies. However, these assumptions result in biased
results that do not reflect the real life situations. Conse-
quently, optimization efforts basing on these impractical
models result in inefficient solutions.

The relation between the individually achieved through-
puts for every node and the MAC parameters used on
every node is nonlinear, complex, and time variant which
is very difficult to predict using an analytical model [26].
This is the motivation behind the use of ANNs to model
this highly complicated relation. When the network is
sufficiently trained, it will model the aforementioned rela-
tion between outputs and inputs. This model can be
used to minimize a cost function to determine the best
MAC parameter values for each node in order to enhance
the performance of the network. For this optimization,
we have to define a real-time learning and adaptation
algorithm.

1.2.5 Related applications of artificial neural networks in
the literature
In the literature, artificial neural networks are employed
to model nonlinear relationship between the inputs and
the outputs of a given system. The power of neural net-
works resides in their capability to approximate nonlinear
functions. In [27], authors consider a multi-layered feed-
forward neural network as a “universal approximator”.
Typical problems addressed by neural networks include
pattern recognition, clustering, data compression, signal
processing, image processing, and control problems. In
telecommunications, ANNs are implemented for many
applications, such as equalizers, adaptive beam-forming,
self-organizing networks, network design and manage-
ment, routing protocols, and localization. ANNs are
also proposed in the literature to enhance the perfor-
mance of WLANSs. In [16], authors propose an adap-
tation of the transmission data rate based on ANN
to improve the aggregate throughput of a WLAN sys-
tem. QoS provisioning is addressed in [17] using fuzzy
logic control to enhance the IEEE 802.11e enhanced
distributed channel access (EDCA) function [28] and
frame size adaptation [18]. Other important applications
of the ANN theory in WLAN systems include indoor
localization [21], channel estimation [20], and channel
allocation [19].
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An adaptive algorithm is proposed in [29] to satisfy a
predefined user throughput requirement by optimizing
some back-off mechanism parameters. Precisely, the min-
imum contention window (CW i) and the arbitration
inter-frame spacing (AIFS) are chosen as the adaptable
parameters. After propagating the current values of these
parameters over a multilayer neural network, the corre-
sponding output is compared to the desired throughput
to calculate the training error. Once the MSE is satis-
fied, the trained neural network is used to optimize the
input parameters using a back-propagation mechanism.
This optimization consists in minimizing the following
cost-reward function:

k
(T; — T_Thr;)?
W Cost = _ 3
ang_Cos ; T Thr, (3)

where T; is the result of the forward-propagation over
the ANN and 7_Thr; is the required user throughput of
user i.

1.3 The proposed system model

In this work, we chose the multilayer perception (MLP),
the most common ANN topology [13]. We consider an
ANN topology of three layers: the input layer, one hid-
den layer, and the output layer. As shown in Fig. 5, the
input layer contains 2k neurons, where k is the number
of WLAN nodes in the network. Since we are consider-
ing the joint optimization of the PCS threshold (PCS,)
and the transmit power (Tx,), then we need to adapt 2k
parameters (two parameters for each WLAN node). The
output layer consists of k neurons because we consider the
throughput achieved by every node.

By the means of this ANN, we aim to model the correla-
tion function ¢f(.) between the throughput (Thr) achieved
by the different WLAN nodes of the network and their
associated MAC parameters.

(Thry, Thry, ..., Thry) = cf(PCSth,, Tx_p1, PCSthys Txp,,

- PCSys Tpy)
(4)

The aim of this study is to enhance the performance
of the network in terms of throughput and preserving
fairness between nodes. To chose the new adapted param-
eters, a minimization of the following cost function is
proposed.

K
> x)?
=

14

(5)

Costfajrness = 1 — I ,
K Zl x;
i=

Minimizing this Cost is equivalent to the maximization of
the Jain’s fairness index [30]. This index rates the fairness
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of a set of throughput values where K is the number of
nodes and x; is the throughput achieved at the ith node.
The values generated by the Jain’s index have a range
between 0 and 1, where a value of 1 means the best fair-
ness. Minimizing the Cost function in Eq. (5) is the same
as approaching 1 for the Jain’s index.

Although the aim is to preserve fairness in individual
achieved throughput, we have to maintain a minimum
average throughput per device. Accordingly, Xt is defined
as the individual average throughput target. Below X, the
average throughput achieved by a given device needs to
be enhanced. To satisfy this throughput requirement, we
need to minimize the expression described in Eq. (6).

K

X7 — %:)?
Costy = Y L 50 (6)
i—1 XT

For the final cost (Eq. 7) used by the proposed algo-
rithm, the previously defined costs are summed together.
The term multiplied by Costr is used to normalize it so
that it will produce the same weight in the total cost as
Costfairness-

1
Costior = Costfairness + 17C05tT (7)

K
> Xr
=1

1.4 The new optimization algorithm—updating the MAC
parameters
For the (n + 1)th adaptation, the ith MAC parameter is

adapted by incrementing or decrementing it by A,Bi(") .

B =B + A" ®)

where 1 < i < 2K at layer / = 0. To minimize the
cost function with respect to ﬂi(n), according to the gradi-
ent descent optimization technique, A,Bl.(”) is equal to the
negative gradient of the cost function as follows:

8Cost

(n)
i

)

where 7 is the update rate of the optimization process.
Introducing the activation function at layer (/) to Eq. (9),
we obtain

5Cost 8Cost  8al(l)
m s ) (10)
5B; da; (D) 5B;
Let us consider
6Cost
1) = ——5 (1)
da; (D
default
V S
start @—>| INIT ——>| IDLE TRAIN
COLLECT
Fig. 6 Controller process model
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Table 1 ANN creation

previously described. Ag") (0) are then derived from Ag") 1)

that are derived from AE") (2), all using the chain-rule

Input Metrics to optimize PCS threshold and transmission  manner described by
power of each node

Symbol  Metric Description

Output Achieved throughput  Average throughput of each node

Nipa
WD =Y A"+ Dajd+ DwyL+ 1) (13)
At the output layer (I = 2), )\gn) (l) is given by j=1
)Ll(”) ) = —% (12)  accordingly, we have
52" (2)
where the Sal(.n) (2) is the activation function value calcu- k?") ) = — 851())“ = _8C(()ns)t (14)
lated at the output layer after the feed forward process da; " (0) 5p;
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since a?") (0) (the ith input of the ANN) is equal to /3[-(")
(the current value of the iy, parameter). Equation (8)
becomes

B = B 4 a(0) (15)

Our proposal reposes on the expression of Eq. (15) to
calculate the new adapted parameters during the opti-
mization process.

1.5 Implementation of the proposed solution

We used OPNET modeler 17.5 as the simulation tool.
OPNET is a system level simulator that implements the
PHY and MAC layers described by the IEEE 802.11n stan-
dard. The essential procedures of the proposed solution
are described in this section.

A new OPNET node model is created to simulate the
controller entity. The process model is represented by its
finite state machine shown in Fig. 6. The ANN is created
in the initialization phase INIT, then the process enters
the IDLE state and remains there until the next scheduled
collection time. The collection event releases the process
that enters the COLLECT state. At the end of the collec-
tion procedure, the process returns to the IDLE state and
waits for the training event. Once fired, process goes to
the TRAIN state, trains the ANN, and returns to the IDLE
state.

1.5.1 Overview on the proposed solution

As shown in Fig. 7, each device has to send a registra-
tion request to the controller. Upon receipt of this request,
the controller creates a registration context specific to
the requesting device. The controller affirms or denies
the registration with an appropriate registration response.
A newly associated device can have the latest optimized
parameters via this response.

At a predefined moment, the controller sends a col-
lection start command to all the registered devices. The
collection procedure is described in details in the next
section. After collecting all the datasets, the controller
performs an online training for the previously created
neural network. Then, the trained neural network is used
to adapt the parameters of the devices. The optimization
procedure is described later in this paper.

Finally, the controller sends the optimized parameters
values to the corresponding devices. After receiving the
update parameters request, each device applies the new
parameters and continues its normal operation. Accord-
ing to the circumstances and the predefined policies,
the controller is able to send a new collection command
whenever it needs.

1.5.2 The different procedures of the proposed algorithm
After examining every procedure apart from others, the
overall algorithm is shown in Fig. 8. The optimization
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round consists of returning to the start step after run-
ning through the different steps depicted in the flowchart.
An optimization round # begins by an initialization phase
where the ANN is created and configured (Table 1). Then,
the current version of the training dataset is fetched. As
it will be described in detail later on, initially, the offline
dataset is divided randomly into two parts, one is a part
of the training dataset and the other constitutes the test-
ing dataset. The fetched dataset is the offline training
part appended to the previously collected dataset entries

Fetch offline
testing dataset

Run one epoch

Calculate test-
ing MSE value

Fig. 10 Testing procedure details
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during past optimization rounds (< 7). Then, a new col-
lection procedure starts and the resulting dataset entry is
appended to the fetched training dataset. At this point,
we are ready to proceed to the training phase described
in Section 1.5.3. After that, the ANN is tested using
the testing dataset as outlined in Section 1.5.4. If the
resulting testing MSE increases’ compared to that of the
previous optimization round (n — 1), the process quits
the training phase and enters the optimization procedure
(see Section 1.5.5). At the end of the optimization pro-
cedure, the process returns to the start point and a new
optimization round (n + 1) starts.

1.5.3 Training procedure

In this section, we describe the training procedure of the
ANN. The latter is based on two types of datasets, the first
is collected offline (when the real network is not in oper-
ational mode) and the second is the result of an online
collection (while the normal system operation).

The offline dataset is divided into two separate datasets.
The first part is used as the initial part of the training
dataset, while the second part is used to test the ANN
during the training process. The testing procedure is an
important player in determining the end of the training
process and the beginning of the optimization process.

The online dataset is the complementary part of the
training data set. After every optimization round, the
collected dataset entry is appended to the latest train-
ing dataset. Accordingly, the ANN is trained with an
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incremental training dataset, increasing in size after each
optimization round. This assures an adaptive behavior of
the proposed solution.

The detailed training procedure is depicted in Fig. 9.
To increase the robustness of the training phase, we inte-
grate two test levels to verify if the network is successfully
trained or not. To implement our approach, we consider
two different criteria. One of them is the well-known
desired mean square error (MSEges). The other criteria
is the number of output errors exceeding certain abso-
lute value (the desired fail limit FLqe5) that is equivalent
to the difference between the output neuron value and
the related value in the dataset. We define the desired fail
number ratio FNrges as the ratio of output errors exceed-
ing FLges to the total number of output values in the
training dataset (number of ANN’s outputs K times the
number of dataset entries DSepp,). Accordingly, the first
test level consists of a verification whether the current
MSE value is less than MSE4es value. Once the desired
MSE is satisfied, we move to the second test level by test-
ing the number of fails. If the latter does not satisfy the
predefined FNgyes value, the MSEqes and the learning rate
u are decreased.

1.5.4 Testing procedure

The testing procedure consists of fetching the offline test-
ing dataset entries and running the ANN for one epoch.
Obviously, this run will not affect the trained ANN, mean-
ing that the weights are not updated. Consequently, the

Calculate cost gra-
dients li(">(2)

!

Backpropagate
cost gradients

!

Get otimiza-
tion step Aﬁi(”)

!

Simulate the new cost

Fig. 11 Optimization procedure details
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testing MSE value is calculated to be used later to con-
clude if the ANN is enough trained or not. Figure 10
depicts the described procedure.

1.5.5 The optimization procedure

The optimization procedure described in this section
integrates the analytical algorithm early detailed in
Section 1.4. The working flow of the implemented opti-
mization procedure is shown in Fig. 11. Firstly, the gra-
dients of the cost function are calculated at the last layer

Table 2 Simulation parameters

Parameter Value Description
K 4 Number of nodes in hidden and
exposed scenarios
63 Number of nodes in cellular scenario
NHp 8 Number of hidden layer neurons in
hidden and exposed scenarios
126 Number of hidden layer neurons in
cellular scenario
n 0.001 Learning rate
n 0.01,0.001 Optimization update rate
MaxEpochspp 1000 Maximum number of training epochs
MSEges 1076 Desired mean squares error
FLdes 04 Desired fail limit (Mbps)
FNrdes 0.1 Desired fail number ratio
Offline DSenp 15 Offline data set entries number
Ton 105 Data collection interval duration
MINpcsa —110dBm Minimum PCS threshold value
MAXpcsa —60 dBm Maximum PCS threshold value
DEFpcsa —82dBm Default PCS threshold value
MAXtpc 15 dBm Maximum transmit power value
MINTpc 0dBm Minimum transmit power value
DEFtpc 6 dBm Default transmit power value
Load 20 Mbps Traffic load per device in hidden and
exposed scenarios
4 Mbps Traffic load per device in cellular
scenario
X7 20 Mbps Target throughput per device in hidden
and exposed scenarios
4 Mbps Target throughput per device in cellular
scenario
NSS 1 Number of spatial streams (antennas)
B 5GHz Frequency band
BW 20 MHz Channel bandwidth
MCS MCSy Modulation and coding scheme (no rate

control)
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Fig. 12 Hidden node scenario, illustration of the protection range at
optimization round 0 (initial situation)

of the ANN as described in Eq. (12). Then, these val-
ues are backpropagated through the ANN as described by
Eq. (13). Consequently, the AB values that will be used
to adapt the MAC parameters are obtained as described
by Eq. (14). In order to get the new optimized MAC
parameters, each AB value is added to its related old
MAC parameter value as shown by Eq. (8). The update
rate 1 determines how much the optimization process is
aggressive in updating MAC parameters. Unless other-
wise stated, the update rate n is set to its default value
indicated in Table 2.

Before sending the newly updated parameters /3!.(”“) to
their corresponding nodes, their performance is verified
by simulating the resulting cost using the trained ANN.
This step will prevent an unnecessary parameters update
that may alter the current performance of the operational
network. If the simulated cost is better than the cur-
rent cost (cost decreases), an update message is sent back

Fig. 13 Hidden node scenario, illustration of the protection range at
optimization round 5
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to every registered node asking them to configure their
transmission power and carrier sensing using the new
optimized values. Otherwise, the nodes are not updated
and they continue to use the old parameters ,Bi(”) until the
next optimization round.

1.6 Results and discussion

In this section, the performance of the proposed learning-
based joint adaptation of PSCA and TPC is evaluated
through extensive system level simulations. For these sim-
ulations, we use the modified WLAN node model of
OPNET 17.5 that implements the neural network solution
as described earlier in this paper. The main parameters
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of the simulation system are shown in Table 2. The men-
tioned values are the initial values at the beginning of a
simulation run. In order to assess the maximum amelio-
ration that the proposed solution can achieve, the target
throughout X7 is set to the value of the traffic load.
The performance of an ANN depends upon its general-
ization capability. To avoid overtraining of the network,
we stop the training procedure at the minimum of the
validation error. The effect of some key parameters on
the performance of the proposed solution is discussed
and highlighted in this section. Firstly, we evaluate the
performance of the proposed solution in mitigating hid-
den and exposed node problems in two simple scenarios.
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Fig. 14 The performance of the proposed optimization in hidden nodes scenario. a The cost in terms of optimization round. b: the aggregate
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Fig. 15 Exposed node scenario, illustration of the protection range at
optimization round 0 (initial situation)

Then, we consider a more complex scenario that reflects a
real-world high-density deployment and we evaluate our
proposal in such challenging circumstances.

1.7 Hidden node scenario

We talk about a hidden node problem when a node that
is not able to sense the signal transmitted by an another
neighboring node (the hidden node) operating at the same
channel, and hence, it assumes that the medium is free and
transmits. The simultaneously transmitted signals inter-
fere at the receiving node causing a failure in the reception
process. As a solution to this problem, an exchange of
request to send (RTS) and clear to send (CTS) frames is
described in the IEEE 802.11 standard. However, as widely
highlighted in the literature [31], the RTS/CTS mecha-
nism introduces an important overhead and reduces the

Fig. 16 Exposed node scenario, illustration of the protection range at
optimization round 5
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capacity of the network in terms of throughput since
each node has to transmit the RTS and wait for the CTS
response before any transmission. Furthermore, in spe-
cific scenarios, this mechanism fails to eliminate hidden
nodes [32]. In this study, we experiment the performance
of our solution in solving the hidden node problem with-
out using the RTS/CTS.

The topology used for this scenario consists of four
nodes (two couples: couplea includes node 0 and node
1 and couple B includes node 2 and node 3) placed as
shown in Fig. 12. All these nodes are operating at the
same frequency channel. Each node generates a saturated
constant bit rate (CBR) traffic to the other node of the
same couple. In this scenario, in order to reproduce the
hidden node problem, the distances between the differ-
ent nodes are configured in such a way that if two nodes
belonging to different couples transmit simultaneously,
both receiving nodes will not be able to receive the sig-
nal of interest successfully. This means that couple A and
couple B are sharing the total capacity of the network. Bas-
ing on a simple simulation of a single transmitter-receiver
couple, without any source of co-channel interference,
the maximum capacity of a network using the default
configurations is around 49 Mbps.

Furthermore, by properly configuring the carrier sens-
ing parameters, each node is able to sense the transmis-
sions of all the other nodes except node 3 that is not able to
sense the transmissions of the nodes of couple B. Hence,
node 3 is a hidden node and its transmissions degrade the
performance of the network. In Fig. 12, we illustrate the
initial protection range around each node. At the end of
the simulation, the final protection ranges are depicted in
Fig. 13. All the collected results related to this scenario
are plotted in Fig. 14 in terms of the optimization round
number. For this evaluation, we consider four metrics: the
aggregate throughput (or global throughput), the average
throughput (per node), the cost function, and the Jain’s
fairness index. Each metric is evaluated for two different
optimization update rates n: 0.01 and 0.001. Since all the
nodes of this scenario are in the same contention domain
and the mutual interference between the two couples is
destructive in case of simultaneous communications, the
maximum achievable throughput is bounded by the max-
imum capacity of a single transmitter-receiver couple (i.e.,
49 Mbps). However, the presence of the hidden node (i.e.,
node 3 in Fig. 12) is degrading the performance of the sys-
tem. As depicted in Fig. 14b, at the optimization round
0 (initial situation before any optimization), the achieved
aggregate throughput is not reaching its optimal level. At
the final optimization round, the aggregate throughput
is improved by more than 20 % compared to the initial
situation. Thanks to the learning-based mechanism, the
hidden node problem is completely revealed as illustrated
by Fig. 13. Consequently, the total capacity of the system
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is fairly shared between the four nodes as shows the Jain’s
fairness index in Fig. 14c.

As defined in Eq. (15), n determines the aggressiveness
of the optimization round update. The Fig. 14a shows that
with a higher 5, the cost is minimized with less optimiza-
tion rounds. The same logic applies to the Jain’s fairness
that reaches its maximum value after the first two opti-
mization rounds for n = 0.01. It is worth mentioning
that the cost function is not minimized to zero since the
individual average throughput cannot reach X7 (i.e., the
target throughput). In fact, the maximum capacity of the
network is attained before the satisfaction of the target
throughput.
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1.7.1 Exposed node scenario

In this scenario, we examine the ability of the proposed
solution to mitigate the exposed node problem. The sce-
nario topology shown in Fig. 15 consists of the same two
couples of nodes used in the previous section but differ-
ently configured to reproduce the exposed node problem.
Here, the SINR values at a receiver node, in the presence of
a simultaneous transmission with the other couple, always
permit the receiver to decode successfully the signal of
interest. However, the transmission power and carrier
sensing are configured in such a way as to prohibit node
3 from transmitting when one of the nodes of couple A is
transmitting. Node 3 that belongs to couple B is exposed
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here to the transmissions of the nodes of couple A as
illustrated in Fig. 15.

As in the previous scenario, we run the simulation for
different n values and we plot the resulting metrics over 5
optimization rounds in Fig. 17. At the initial situation (i.e.,
optimization round 0), the Jain’s fairness index in Fig. 17¢
shows clearly the impact of the exposed node problem.
Node 3 is not able to gain access to the medium because
it is exposed to the transmissions of the other couple. In
this scenario, thanks to the initial configurations of the
network topology, the maximum attainable capacity of
the network is the aggregation of two transmitter-receiver
couples (about 98 Mbps). This is due to the fact that
relative interfering couples separation is sufficient for suc-
cessful simultaneous transmissions. However, as clearly
depicted in Fig. 17b, the aggregate throughput at the opti-
mization round O is far away from the optimal value
because node 3 is not able to initiate transmissions neither
responding to the transmissions received from node 2.

Our proposed scheme is able to relieve the exposed
node situation by decreasing the protection range around
the exposed node (node 3) as illustrated in Fig. 16. This
led, in this particular scenario, to a twofold increase in the
aggregate throughput as shown in Fig. 17b at optimiza-
tion round 5. Since the target throughput X7 can be easily
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attained by the different nodes before the saturation point
of the system, the cost function plotted in Fig. 17a is min-
imized to zero at the last optimization round for all the 5
values.

1.7.2 High-density cellular deployment scenario

In this scenario, we consider a challenging super dense
deployment. The definition of this scenario is based on
the simulation scenarios defined by the IEEE 802.11ax
TG [12]. An important real-world use case considered at
the standardization TG is deploying Wi-Fi in a stadium
which is characterized by very high numbers of APs and
STAs [33]. In such deployments, the distance between two
co-channel APs is below 25 m. The cellular scenario con-
sidered for our evaluation is illustrated in Fig. 18. Each
BSS is formed by an AP and eight associated STAs. With a
frequency reuse equal to 3 and a cell radius of 7 m, the dis-
tance between two co-channel APs is about 21 m. All the
BSSs shown in the simulated scenario in Fig. 18 operate
on the same frequency channel.

The obtained results are presented in Fig. 19. The first
important observation when comparing to the results of
the previous scenarios is that the system needs more opti-
mization rounds to converge. This is normal since the
scenario is more complex because of the much higher

Fig. 18 High-density cellular deployment scenario
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number of devices, and hence, the ANN has larger num-
ber of neurons with 126 inputs and 63 outputs. Another
observation is related to the Jain’s fairness index curve
plotted in Fig. 19c. Contrary to the previous scenarios, this
index does not reach its maximum value in the current
scenario, meaning that not all the devices are achieving
the same throughput.

In fact, this is due to the difference in throughput
between uplink and downlink flows. The AP that is trans-
mitting to eight STAs has almost the opportunity to access
the medium as any other ordinary STA. Since the network
is saturated, the share of airtime used by the AP to trans-
mit data to one STA is much lower than that used by a

STA to send data to the AP. However, after the conver-
gence of the adaptation, the fairness index is importantly
enhanced (from ~0.5 at optimization round 0 to ~0.7 at
the final round). This enhancement reflects the ability of
the proposed adaptation to solve the exposed node sit-
uations and increasing the spatial reuse between all the
BSSs. This enhancement in spatial reuse is clearly seen in
Fig. 19b, where the gain in aggregate throughput exceeds
45 %.

2 Conclusions
A key perspective considered in the ongoing develop-
ment of the next WLAN generation is increasing the



Jamil et al. EURASIP Journal on Wireless Communications and Networking (2016) 2016:184

spatial reuse in high-density deployments by adapting the
MAC layer protocols. While the control of the trans-
mission power (i.e., TPC) has always been the chosen
technique when targeting spatial reuse improvements
(traditionally in cellular technologies), many researchers
investigated the weakness points in TPC especially in
deployments where the compliance of all the wireless
devices is not always possible. Adapting the physical car-
rier sensing is proposed in the IEEE 802.11ax task group
where the preparations for the next WLAN standard
are taking place. While, there are many more incentives
behind preferring this adaptation over TPC, many con-
tributions highlight some fairness issues especially when
legacy devices are present in the network.

To overcome the previous problem, we exploit in this
work a new solution for jointly optimizing the transmis-
sion power and the physical carrier sensing. The main
motivation of this joint solution is that the impact of one
of these two key parameters on the performance of legacy
devices is opposed to the other. While TPC mechanisms
favor the legacies, the adaptation of the carrier sensing
mechanism disfavors these devices. In this paper, we pro-
posed a new learning-based mechanism using artificial
neural networks that is able to optimally adapt the two
mechanisms (TPC and PCSA) in order to increase spatial
reuse and preserve fairness. This approach takes benefit
from the capability of artificial neural networks to approx-
imate complex functions in order to model the throughput
performance in terms of MAC layer parameters. This
allows an intelligent adaptation of these parameters that
enhances the spatial reuse in dense deployments. We
showed through extensive simulations that our proposal
is capable of resolving hidden and exposed node problems
and hence leveraging the aggregate throughput in high-
density deployments while enhancing the fairness among
all the nodes.

Furthermore, this solution could be used to optimize
other important parameters in the future IEEE 802.11ax
WLANs such as the length of the transmit opportu-
nity (TxOP). Future centralized deployments could ben-
efit directly from this new approach to achieve better
QoE. This would allow the integration of high efficiency
WLANSs in mobile cellular networks for traffic offloading.
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