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Abstract

In this paper, we investigate the robust relay beamforming design for a multi-input multi-output (MIMO) two-way
relay networks (TWRN) by considering imperfect and reciprocal channel state informations (CSIs). In order to maximize
the sum-rate (SR) subject to the individual relay power constraint, we first equivalently convert the objective problem
into a sum of the inverse of the signal-to-residual-interference-plus-noise ratio (SI-SRINR) problem. The SI-SRINR
problem can be reformulated as a biconvex semi-definite programming (SDP) which employs bounded channel
uncertainties as the worst-case model. Then, we convert residual-interference-plus-noise (RIN) and relay power
constraints into linear matrix inequalities (LMIs). By this way, the objective problem can be tackled by the proposed
efficient iterative algorithm. The analysis demonstrates the procedures of the proposed SI-SRINR robust design.
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1 Introduction
Recently, cooperative multi-input multi-output (MIMO)
relaying system approach is popularized to increase the
system capacity and improve the transmission reliabil-
ity by leveraging spatial diversity. The MIMO relay net-
work with perfect channel state information (CSI) has
been studied in [1–3]. In [1], the authors developed a
unified framework for optimizing two-way linear non-
regenerative MIMO relay systems. In [2], the authors
studied transceiver designs for a cognitive two-way relay
network aiming at maximizing the achievable trans-
mission rate of the secondary user. Based on iterative
minimization of weighted mean-square error (MSE), a
linear transceiver design algorithm for weighted sum-
rate maximization has been investigated in the cellular
network [3].
All the above works consider perfect CSI, which, how-

ever, is usually hard to obtain in practice, due to inaccurate
channel estimation, feedback delay, and so on. To evalu-
ate this imperfectness, by taking account into the channel
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uncertainties, the authors proposed a robust multi-branch
Tomlinson-Harashima precoding (MB-THP) transceiver
design in MIMO relay networks with imperfect CSI [4],
where the Kronecker model is adopted for the covari-
ance of the CSI mismatch. Moreover, the determinis-
tic CSI uncertainty model has been widely used in the
worst-case system [5–8]. In [5], the design of robust
relay beamforming for two-way relay networks with chan-
nel feedback errors was studied, where each node is
equipped with a single antenna. In [6], the authors inves-
tigated a robust beamforming scheme for the multi-
antenna non-regenerative cognitive relay network with
the bounded channel uncertainties which are modeled
by the worst-case model. In [7], the authors investigated
the multi-antenna non-regenerative relay network and
addressed the joint source-relay-destination beamform-
ing design problem under deterministic imperfect CSI
model. In [8], based on the linear beamformer at the
relay and QR successive interference cancelation (SIC) at
the destination, the authors proposed a robust minimum
MSE-regularized zero-forcing (MMSE-RZF) beamformer
optimized in terms of rate. In this work, the authors
assumed that the source can estimate the first-hop (form
the source to the relay) CSI perfectly via the reciprocal
channel when the high signal-to-noise (SNR) is training.
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In particular, in [9, 10], the authors considered the prob-
lem of robust minimum sum mean-square error (SMSE)
relay precoder design for the two-way relay networking
(TWRN).
For the one-way relay networks [4, 6–8, 10], the self-

interference is not considered and the objective problem
is easy to be converted into the convex version. For the
single-antenna scenarios [5, 11], the equivalent channel
can be expressed by employing the Hadamard product.
For above references, the objective problem is actually
only for the manipulation of a single node. By using
([12] Lemma 2), the robust minimum sum-MSE opti-
mization problem [9, 10] can be easily converted into a
convex problem. Therefore, the sum-rate (SR) maximiza-
tion problem with multi-relay nodes for TWRN with the
residual relay power constraint is more challenging and
more general. In this paper, we propose a joint source and
relay robust beamforming scheme for the MIMO TWRN
where both the first- and second-hop CSIs are consid-
ered to be reciprocal and imperfectly known at each node.
To get the accurate performance, the residual interference
has been reserved. Since the considered sum-rate (SR)
maximization problem is not only non-convex but also
subject to the semi-infinite relay power constraints, we
convert the objective problem into a sum of the inverse
of the signal-to-residual-interference-plus-noise ratio (SI-
SRINR) problem which is subject to the linear matrix
inequality (LMIs) version of the constraints. In order to
efficiently tackle the SI-SRINR problem, we first trans-
form the problem into a biconvex semi-definite program
(SDP) using the sign-definiteness lemma and then pro-
pose an alternating iterative algorithm with satisfactory
convergence.
Notations: AT and AH denote the transpose and the

Hermitian transpose of a matrix A, respectively. IN repre-
sents an N × N identity matrix. E(·), ⊗, and ‖·‖ stand for
the statistical expectation, the Kronecker product, and the
Frobenius norm.

2 Systemmodel and objective problem
A TWRN consisting of two source nodes 1 and 2, S1 and
S2, and L relay nodes {R1,R2, . . . ,RL} is considered. The
source and relay nodes are equipped withM andN anten-
nas, respectively. Each transmission involves two time
slots. At the first time slot, after linearly processed by a
transceiver beamforming matrix Bt ∈ C

M×Mb ,∀t ∈ {1, 2}
and Mb ≤ M, with the power constraint as ‖Bt‖2 ≤
Pt . Denote the data symbol vector transmitted from the
source node St as xt ∈ C

Mb×1 with E
{
xtxHt

} = IMb . The
received signal at Ri can be expressed as

yRi = Fi,1B1x1 + Fi,2B2x2 + nRi , (1)

where Fi,t ∈ C
N×M,∀i ∈ {1, ..., L} represents the channel

coefficient from the source node St to the relay node Ri

and nRi ∼ CN(0, σ 2
RiIN ) denotes the additive white Gaus-

sian noise (AWGN) vector with zero mean and variance
σ 2
RiIN .
At the second time slot, the relay node Ri linearly ampli-

fies yRi with an N ×N matrixWi and then broadcasts the
amplified signal vector xRi to source nodes 1 and 2. The
signal transmitted from relay node Ri can be expressed as

xRi = WiyRi . (2)

From (2), the average transmit power consumed by the
relay node Ri can be derived as

E
{∥∥xRi∥∥2} = ∥∥WiFi,1B1

∥∥2+∥∥WiFi,2B2
∥∥2 + σ 2

Ri‖Wi‖2. (3)
The received signal at source node St for t ∈ {1, 2} can

be written as

yt =
L∑

i=1
Gt,iWi

(
Fi,tBtxt + Fi,tBtxt

)+
L∑

i=1
Gt,iWinRi + nt ,

where Gt,i denotes the channel coefficient form the relay
node Ri to the source node St of dimensionM ×N and nt
is the noise vector at the source node St with zero mean
and variance σ 2

St IM. By taking into account the estimation
error and delay, we further assume that the CSI is partially
known at each node and the channels are reciprocal, i.e.,
Fi,t = GT

t,i. To model this imperfect effect, we consider the
following additive CSI uncertainties:

Fi,t � F̃i,t + �Fi,t , (4)

where F̃i,t and �Fi,t are the nominal values and channel
uncertainty of the channel Fi,t . For simplicity, we assumed
that the channel uncertainties are norm-bounded errors
(NBEs) in analogy with [13, 14], i.e.,∥∥�Fi,1

∥∥ = ∥∥�G1,i

∥∥ = αi,
∥∥�Fi,2

∥∥ = ∥∥�G2,i

∥∥ = βi, (5)

where the slack values satisfy 0 ≤ {αi,βi} � 1, which is a
reasonable assumption in a practical system.
In TWRN, since the signal transmitted by the

transceiver nodes reappear as self-interference, by
employing the successive interference cancelation (SIC),
the self-interference can be completely eliminated with
perfect CSI [15]. Nevertheless, considering the imper-
fect CSI in this paper, the self-interference at both
source nodes cannot be completely canceled, and the
approximate residual self-interference1 at the source St is

χt =
L∑

i=1

(
Gt,iWiFi,tBtxt − G̃t,iWĩFi,tBtxt

)
≈

L∑
i=1

(
G̃t,iWi�Fi,t + �Gt,iWĩFi,t

)
Btxt , (6)

where the term �Gt,iWi�Fi,tBtxt has been set to be
0 because if we retain this term in χt , it will result
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in some terms involving high order of channel uncer-
tainties which is very close to 0 when calculating
the covariance of the residual interference. Let χ̃t =∑L

i=1
(
G̃t,iWi�Fi,t + �Gt,iWĩFi,t

)
. The received SRINR at

receivers can be thus expressed as

SRINRt =
∥∥∑L

i=1Gt,iWiFi,tBt
∥∥2

‖χ̃tBt‖2 + σ 2
Ri
∥∥∑L

i=1Gt,iWi
∥∥2 + σ 2

St

, (7)

where t = 3 − t for t = {1, 2}. The objective of this paper
is to maximize the SR, which is subject to the individual
relay transmit power constraint, shown as

T1 : max
Bt ,Wi

2∑
t=1

1
2
log2 (1 + SRINRt)

s.t.
∥∥xRi∥∥2 ≤ PRi , ‖Bt‖2 ≤ Pt ,

where PRi is the maximum allocated power to the relay
and the factor 1

2 is due to the half-duplex relay. Obviously,
the objective problem T1 is non-convex since the variables
Wi and Bt are in the numerator and the denominator of
the SRINRt . Moreover, since the semi-infinite expressions
of the optimalWi,Bt are intractable, it is difficult to obtain
the globally optimal solution. In the next section, we will
propose a subpotimal solution to solve T1.

3 Joint optimal beamformer design and
proposed algorithm

3.1 Joint optimal beamformer design

Let Nt = σ 2
Ri
∥∥∑L

i=1Gt,iWi
∥∥2 + σ 2

St and Ht =∑L
i=1Gt,iWiFi,t . The beamforming matrix Wi and Bt are

optimized by solving the following problem:

T2 : max
Bt ,Wi

2∑
t=1

1
2
log

(
1 +

∥∥HtBt
∥∥2∥∥χ̃tBt

∥∥2 + Nt

)
s.t.

∥∥xRi∥∥2 ≤ PRi , ‖Bt‖2 ≤ Pt ,∀t = {1, 2} .

Further denoting at = ‖HtBt‖2∥∥χ̃tBt
∥∥2+Nt

, for t = 1, 2, the

objective function can be expressed as

max
{
1
2
log (1 + a1) + 1

2
log (1 + a2)

}
= max

1
2
log {(1 + a1) × (1 + a2)}

a= max {a1 + a2 + a1a} , (8)

where (a) follows log(·) is a monotonic function and 1
is a constant. Now, we have the equivalent optimization
problem as

Q1 : max
Bt ,Wi

a1 + a2 + a1a2

s.t.
∥∥xRi∥∥2 ≤ PRi , ‖Bt‖2 ≤ Pt .

Since the CSIs are imperfectly known, Q1 cannot be
solved by using zero-gradient (ZG) algorithm [16]. In par-
ticular, due to a1 and a2 are both not only non-convex but
also non-concave, the objective function a1 + a2 + a1a2
is difficult to convert into the convex version. To effi-
ciently solve T2, we propose a biconvex SDP to obtain the
suboptimal solution of the worst-case SR.

Proposition 1. The problem T2 is equivalent to T3 with
inequality constraints which is given as

T3 : min
Bt ,Wi,γt

γ1 + γ2

s.t. qt ≤ γt ,
∥∥xRi∥∥2 ≤ PRi , ‖Bt‖2 ≤ Pt ,

where qt = ‖χ̃tBt‖2+Nt
‖HtBt‖2 and γt is an auxiliary optimization

variable which serves as upper bound of qt for t = 1, 2.

Proof. The objective problem of the SR can be formu-
lated as follows:

1
2 log

(
1 + ‖H2B2‖2

‖χ̃1B1‖2+N1

)
+ 1

2 log
(
1 + ‖H1B1‖2

‖χ̃2B2‖2+N2

)
= 1

2 log
{
1
(
1 + ‖H2B2‖2

‖χ̃1B1‖2+N1

) (
1 + ‖H1B1‖2

‖χ̃2B2‖2+N2

)}
.
(9)

Since the optimal solution of {max (1 + A)(1 + B)} is
equivalent to the problem

{
min

( 1
A + 1

B
)}

[17] and the
fact that log(·) is a monotonic function, letting qt =
‖χ̃tBt‖2+Nt
‖HtBt‖2 , the SR maximization problem can be equiv-

alently converted into
{
min (q1 + q2)

}
. Similar to [9],

by introducing the auxiliary optimization variable γt , the
problem

{
min (q1 + q2)

}
can be recast in the epigraph

form [18] as {min (γ1 + γ2)} , s.t. qt ≤ γt2, and we have
the objective problem T3.

The problem T3 is still non-convex with respect to the
constraint qt . In order to solve this problem, qt ≤ γt can be
converted into following three convex subproblems which
are:

(1) : Nt ≤ ςt , (2) : ‖χ̃tBt‖2 ≤ τt ,
(3) :

∥∥HtBt
∥∥2 ≥ 1

γt
(ςt + τt) ,

(10)

where ςt and τt are slack values which serve as upper
bounds of Nt and ‖χ̃tBt‖2, respectively. Now, the prob-
lem T3 is equivalent to a convex SDP with inequality
constraints as:

T4 : min
Bt ,Wi,γt

γ1 + γ2

s.t. Nt ≤ ςt ,
∥∥xRi∥∥2 ≤ PRi , ‖χ̃tBt‖2 ≤ τt ,∥∥HtBt

∥∥2 ≥ 1
γt

(ςt + τt) , ‖Bt‖2 ≤ Pt .
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Proposition 2. The constraint Nt ≤ ςt can be equiv-
alently converted into the linear matrix inequality (LMI)
version as⎡⎢⎢⎢⎣


1 −∑l
i=1 νiqH1 q1 −�1,t

H
1 · · · −�l,t

H
l−�1,t1 ν1IMN · · · 0

...
...

. . .
...

−�l,tl 0 · · · νlIMN

⎤⎥⎥⎥⎦ � 0, (11)

where �i,1 = αi and �i,2 = βi, νi ≥ 0 are slack variables,
q1= [−1, 01×MN ], i=

[
0MN×1,�H

i
]
, for i = 1, ..., l and


1 =
[

ς�
t ϒ̃H

ϒ̃ IMN

]
.

Proof. See Appendix 1.

Using ‖A + B‖ ≤ ‖A‖ + ‖B‖ and ‖AB‖ ≤ ‖A‖ ‖B‖ for
the residual interference covariance, we have

‖χ̃tBt‖2 =
∥∥∥∥∥
( L∑

i=1
G̃t,iWi�Fi,t +

L∑
i=1

�Gt,iWĩFi,t

)
Bt

∥∥∥∥∥
2

≤
∥∥∥∥∥

L∑
i=1

G̃t,iWi�Fi,tBt

∥∥∥∥∥
2

+
∥∥∥∥∥

L∑
i=1

�Gt,iWĩFi,tBt

∥∥∥∥∥
2

+2

∥∥∥∥∥
L∑

i=1
G̃t,iWi�Fi,tBt�Gt,iWĩFi,tBt

∥∥∥∥∥
≤ 4�2

i,t

∥∥∥∥∥
L∑

i=1
BtG̃t,iWi

∥∥∥∥∥
2

. (12)

Letting 4�2
i,t

∥∥∥∑L
i=1 BtG̃t,iWi

∥∥∥2= τt , similar to Appendix 1,
the SRINR constraint can be further rewritten as

∥∥HtBt
∥∥2 =

∥∥∥∥ϕ +
L∑

i=1
MGt,ivec

(
�Gt,i

)+
L∑

i=1
MFi,tvec

(
�Fi,t

)∥∥∥∥2
≥ 1

γt
(τt + ςt) ,

(13)

where ϕ = ∑L
i=1 vec

(
G̃t,iWĩFi,tBt

)
, MFi,t = ∑L

i=1 BT
t ⊗(

G̃t,iWi
)
andMGt,i = ∑L

i=1
(
WĩFi,tBt

)T⊗IM. Substituting
quantities ϕ,MFi,t , andMGt,i into the LMI version of (13),
we have⎡⎢⎢⎢⎣


2 −∑2l
j=1 φjqH2 q2 −ξ1,t�

H
1 · · · −ξ2l,t�

H
2l

−ξ1,t�1 φ1IMN · · · 0
...

...
. . .

...
−ξ2l,t�2l 0 · · · φ2lIMN

⎤⎥⎥⎥⎦ � 0,(14)

where q2 = [−1, 01×MMb

]
, φj ≥ 0 is the slack variables for

j = 1, ..., 2l. �i =
[
0MbM×1,MH

Gt,i

]
, and ξi,t = ∥∥�Gt,i

∥∥ for

i = 1, ..., l, �i =
[
0MbM×1,MH

Fi,t

]
, and ξi,t =

∥∥∥�Fi,t

∥∥∥ for
i = l, ..., 2l, and


2 =
[ 1

γt
(τt + ςt) ϕH

ϕ IMMb

]
.

After introducing B̂t = vec(Bt)vec(Bt)H , WiFi,t = Qt ,
WĩFi,t = Q̃t , Wi�Fi,t = �Qt , and PRi − σ 2

Ri ‖Wi‖2 ≤
P̂Ri , the individual relay power constraint can be then
rewritten as:

2∑
t=1

{
vec

(
Q̃t
)
B̂tvec

(
Q̃t
)+ vec

(
�Qt

)H B̂tvec
(
�Qt

)H
+ 2�

{
vec

(
Q̃t
)
B̂tvec

(
�Qt

)H}}− P̂Ri ≤ 0.

(15)

Proposition 3. The individual relay power constraints
can be converted to the following LMI:⎡⎣ B̂1 + λ1I vec

(
Q̃1
)
B̂1 0

B̂1vec
(
Q̃1
)H

�t B̂2vec
(
Q̃2
)H

0 vec
(
Q̃2
)
B̂2 B̂2 + λ2I

⎤⎦� 0, (16)

where �t = ∑2
t=1 vec

(̃
Fi,t

)
B̂tvec

(̃
Fi,t

)H − λ1ω
2
i α

2
i −

λ2ω
2
i β

2
i − P̂Ri with ωi = ‖Wi‖.

Proof. See Appendix 2.

By putting all these components together, the objective
problem T4 becomes

T5 : min
Bt ,Wi,γt

γ1 + γ2

s.t. (11), (12), (14), (27), ‖Bt‖2 ≤ Pt ,
τt ≥ 0, ςt ≥ 0, λt ≥ 0, νi ≥ 0,φj ≥ 0,
∀t = 1, 2,∀i = 1, ..., l,∀j = 1, ..., 2l.

It is clear that the problem T5 is a biconvex SDP with
linear objective function, which can be efficiently solved
by an iterative algorithm. Furthermore, with fixed Bt/Wi,
T5 is convex with regard toWi/Bt which can be solved by
CVX [18].

3.2 Proposed algorithm and computational complexity
analysis

Now, we summarize the proposed beamforming method
in Algorithm 1.

The proposed Algorithm 1 will converge to a sub-
optimal solution as

∑2
t=1 γ

(n)
t −∑2

t=1 γ
(n−1)
t ≤ ξ . There-

fore, ξ is initialized to be a small value, and Nmax is set to
limit the number of iterations.
The process of Algorithm 1 with details are as fol-

lows: let J ({Wi} , {Bt}) represent the objective function
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Algorithm 1 The proposed SI-SRINR method
1. Initialize: ξ = 10−3, Nmax, B(0)

t , set n = 0;
2. Repeat:
1: for n = 0 to Nmax do
2: for fixedW(n−1)

i , B(n−1)
t update B(n)

t via solving T5;
3: for fixedW(n−1)

i , B(n)

t update B(n)
t via solving T5;

4: for given B(n)
t and B(n)

t updateW(n)
i and

∑2
t=1 γ

(n)
t via

solving T5;
5: if

∑2
t=1 γ

(n)
t −∑2

t=1 γ
(n−1)
t ≤ ξ , then

break;

6: end if
7: end for

γ1 + γ2. At the (n + 1)th iteration, the value of {Wi}
which can be denoted by

{
W(n+1)

i

}
is the solution to

T4 that maximizes the objective J under the constraints.
Because T4 is convex (with fixed Wi), updating Bt will
only increase or maintain the objective J. By this way, with
computed

{
W(n+1)

i

}
, we obtain

{
B(n+1)
t

}
which implies

that J
({

W(n+1)
i

}
,
{
B(n+1)
t

})
≥ J

({
W(n)

i

}
,
{
B(n+1)
t

})
.

From the previous inequalities, we observe that

J
({

W(n+1)
i

}
,
{
B(n+1)
t

})
≥ J

({
W(n)

i

}
,
{
B(n)
t

})
,

i.e., the objective function increases monotonically with
the number of iterations. This observation, coupled with
the fact that J ({Wi} , {Bt}) is upper-bounded, implies that
the proposed algorithm converges to a limit as number
n −→ ∞.
Discussion 1: For two-way relay networks, once the sec-

ond transmission phase finishes, the signal transmitted by
the transceiver nodes reappears as self-interference.With-
out eliminating the self-interference, with the condition of
the imperfect CSI, the exactly optimal solution is difficult
to obtain. In spite of this, the proposed suboptimal solu-
tion is very close to the exactly optimal solution when the
CSI uncertainty is small enough and the number of the
iterations n −→ ∞ in the proposed algorithm.
To better analyze the complexity of Algorithm 1,

the standard real-valued SDP problem is given as
min ctx, s.t. A0 + ∑n

i=1 xiAi, where Ai denotes the sym-
metric block-diagonal matrices with K diagonal blocks of
size ak × ak , for k = 1, ...,K . The number of elementary
arithmetic operations for solving this problem is given by
[19]

O(1)
(
1 +

K∑
k=1

ak

)1/2

n
(
n2 + n

K∑
k=1

a2k +
K∑

k=1
a3k

)
. (17)

We measure the performance of the proposed
Algorithm 1 for each iteration in terms of the compu-
tational complexity compared with non-SI-SRINR one
by using the total number of floating point operations
(FLOPs). A FLOP is defined as a real floating operation,
i.e., a real addition, multiplication, division, and so on.
The details of the computational complexity of the pro-
posed robust beamforming method is summarized in
Table 1. The unknown variables to be determined for Bt
is of size n = 2MMb + 3L + 6, and for Wi are of size
n = 2N2 +3L+6, where the first term corresponds to the
real and image parts of Bt and Wi while the other terms
represent the additional slack variables (γt , τt , ςt , λt , νi,φj).
To compute the optimal

∑2
t=1 γt , for t = 1, 2., the number

of diagonal blocks K is equal to 3, which are related to the
SRINR constraint, the individual relay power constraint,
and the noise power constraint. By employing (17), and
further denoting βδ and αδ as the block dimensions
and the number of the variables for δ ∈ {̂

PRi , ςt , γt
}
,

respectively, the total FLOPs can be obtained as

RFLOPs = ∑
δ=P̂Ri ,ςt ,γt

O(1) (1 + βδ)
1/2 αδ

(
α2

δ + αδβ
2
δ + β3

δ

)
.

(18)

Similar to [9], by introducing the slack variables ε1, ε2,
and ω̃, we can recast the non-SI-SRINR method Q1 as

Q2 : max
Bt ,Wi

ε1 + ε2 + ω̃

s.t. εi ≤ ai, ω̃
a1a2 ≤ 1, εi > 0, ω̃ > 0,

∥∥xRi∥∥2 ≤ PRi ,
‖Bt‖2 ≤ Pt ,∀ i ∈ {1, 2} .

(19)

We introduce further auxiliary variables θ1 ≥ 0 and
θ2 ≥ 0, and assume θ21 ≤ ω̃

a1 , θ22 ≤ 1
a2 . By this way, the

constraint ω̃
a1a2 ≤ 1 can be converted into θ21 θ22 ≤ 1. By

employing Schur-complement theorem [18], we have

θ21 ≤ ω̃

a1
−→

[
ω̃ θ1
θ1

1
a1

]
� 0, (20)

θ22 ≤ 1
a2

−→
[
1 θ2
θ2

1
a2

]
� 0. (21)

Table 1 Computational complexity of the proposed SI-SRINR
algorithm

Step Operations Block dimensions (ak) Number of variables (n)

1 P̂Ri 2MMb + 1 2MMb + 2N2 + 6L + 12

2 ςt (l + 1)MN + 1 2N2 + 3L + 6

3.1 τt l
(
2N2 + 3L + 6

)
× (2MMb + 3L + 6)

3.2 γt 2lMN + MMb + 1
(
2N2 + 3L + 6

)
× (2MMb + 3L + 6)
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Finally, putting (20) and (21) together, the optimization
problemQ2 can be efficiently converted into the following
biconvex problem

Q3 : max
Bt ,Wi

ε1 + ε2 + ω̃

s.t.
[

ω̃ θ1
θ1

1
a1

]
� 0,

[
1 θ2
θ2

1
a2

]
� 0, L (εi ≤ ai) , ω̃ > 0,

L
(∥∥xRi∥∥2 ≤ PRi

)
, ‖Bt‖2 ≤ Pt ,∀ i ∈ {1, 2} ,

where L(A) denotes the LMI version of A. Obviously,
the constraints L (εi ≤ ai) and L

(∥∥xRi∥∥2 ≤ PRi
)

have
the same computational complexity to the proposed SI-
SRINR method as shown in Table 1. In addition, since
the constraints (20) and (21) in Q3 not only request
more FOLPs but also lead to lower convergence per-
formance, our proposed SI-SRINR method outperforms
non-SI-SRINR one.

4 Simulation results
In this section, we study the performance of the pro-
posed SI-SRINR robust beamforming design for TWRN.
The channel estimates G̃t,i, F̃i,t are assumed to be recipro-
cal and identically distributed complex Gaussian random
variables. The proposed scenario is considered with two
source nodes and L = 2 relay nodes. The source and relay
nodes are equipped with Mb = M = N = 4 antennas.
We further assume that the noise variances σ 2

Ri , σ
2
St for i =

1, ..., L and t = 1, 2, are equally given as σ 2 = 1. All results
are averaged over Nmax = 1000 channel realizations with
ξ = 10−4.
With suboptimalBt andWi which are obtained by using

Algorithm 1, we compare the convergence performance of
the average worst-case SR for SI-SRINR method with the
non-SI-SRINR one with fixed αi = βi = 0.01 and trans-
mit SNR = 30 dB as shown in Fig. 1. For non-SI-SRINR
methodQ1, the near optimal solution is obtained by using
(1 + a1)(1 + a2) ≈ a1a2, where at = SRINRt . It is found
that the SI-SRINR and the non-SI-SRINR methods can
achieve same optimal worst-case SR solution with almost
400 and 700 iterations, respectively. This is reasonable
because, for the non-SI-SRINR method, the SR is calcu-
lated by using multiplication of SRINR which increases
the complexity as discussed in Section 3.2.
In Fig. 2, we compare the proposed SI-SRINR method

with the non-SI-SRINR one, non-robust one, and the per-
fect one with fixed CSI error as αi = βi = 0.03 versus
SNR. For the perfect CSI one, the channel coefficients are
perfectly known at each node where the channel uncer-
tainties �Fi,t = 0, for t = 1, 2, which serves as the
performance upper bound for our proposed robust beam-
forming design. For the robust one, the nominal values of
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Fig. 1 The convergence performance of the output average
worst-case SR versus number of iterations

the channels F̃i,t can be estimated and the channel uncer-
tainties �Fi,t is NBEs as αi, for t = 1, and βi, for t = 2,
respectively. For the non-robust one, the channel esti-
mates are directly used as the actual channel responses
without considering channel uncertainties. It is clear from
Fig. 2 that, for different values of SNR, the solution of our
proposed robust beamforming design shows better per-
formance than the non-SI-SRINR one and the non-robust
one.
In Fig. 3, we compare the average worst-case SR for

SI-SRINR method with the non-SI-SRINR one for differ-
ent CSI errors as 0.01, 0.05 versus relay power, where the
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Fig. 2 The output average worst-case SR versus transmit SNR
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Fig. 3 The output average worst-case SR versus relay power

transmit SNR is given as SNR = 10 dB. It is clear from
Fig. 1 that, the solution of our proposed SI-SRINR robust
beamforming design shows better performance than the
non-SI-SRINR one with increasing relay power. This is
because the approximation (1 + a1)(1 + a2) ≈ a1a2 loses
the performance gain at not extremely high SNR region.
Figure 4 depicts the performance of our proposed SI-

SRINR method performance versus the number of the
relays Z by comparing with the perfect case and the non-
robust max-power beamforming solution [20] with fixed
αi = βi = 0.01. We consider a practical scenario with the
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Fig. 4 The output average SR versus the number of the relay Z

relay power constraints as PR = 20 dB. It is easy to see
that the solution of our proposed SI-SRINR algorithm is
close to the perfect one and outperforms the non-robust
max-power beamforming one for different values of the
transmit power P1 and P2.

5 Conclusions
In this paper, we considered MIMO TWRN with the
robust relay beamforming design and proposed an effi-
cient iterative algorithm to solve the SR maximization
problem. The worst-case robust design problem was first
converted into a SI-SRINR problem. After then, by utiliz-
ing the sign-definiteness lemma, the objective problems
were represented as the tractable ones which are obtained
through the SDP-based iterative optimization. Numeri-
cal results showed that the performance of the proposed
SI-SRINR robust design is improved compared to the
non-SI-SRINR one and non-robust one.

Appendix 1
Since the CSIs are imperfect, the upper bound of Nt can-
not be straightforwardly obtained with existent channel
uncertainties. Therefore, we employ the ([14] Lemma 1)
to solve this problem. For the constraint

Nt = σ 2
Ri

∥∥∥∥∥
L∑

i=1
Gt,iWi

∥∥∥∥∥
2

+ σ 2
St ≤ ςt , (22)

assuming
(
ςt − σ 2

St

)
/σ 2

Ri = ς�
t , we have

∥∥∥∑L
i=1Gt,iWi

∥∥∥2
≤ ς�

t . Using the identity ‖X‖ = ‖vec[X] ‖ for any given
matrix X, we have

∥∥∥∥∥
L∑

i=1
Gt,iWi

∥∥∥∥∥
2

= ∥∥∑L
i=1 vec

[
Gt,iWi

] ∥∥2 . (23)

Using the identity vec[ABC]= (
CT ⊗ A

)
vec[B], where

(·)T and ⊗ denote the transpose and Kronecker product,
we have

L∑
i=1

Gt,iWi =
L∑

i=1
G̃t,iWi+

L∑
i=1

[ L∑
i=1

WT
i ⊗ IM

]
vec

(
�Gt,i

)
.

(24)

Further assuming
∑L

i=1 vec
[
Gt,iWi

] = ϒ , the con-
straint

∥∥∑L
i=1Gt,iWi

∥∥2 ≤ ς�
t can be represented in terms

of the following LMI

[
ς�
t ϒH

ϒ IMN

]
� 0. (25)
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Let
∥∥∑L

i=1 G̃t,iWi
∥∥2 = ϒ̃ ,

[∑L
i=1WT

i ⊗ IM
]

= �i and

insert the structure of
∥∥∥∑L

i=1Gt,iWi

∥∥∥2 into (25), we have

[
ς�
t ϒ̃H

ϒ̃ IMN

]
� −

L∑
i=1

[
0

(
�ivec

(
�Gt,i

))H
�ivec

(
�Gt,i

)
IMN

]
.

(26)

By employing S-Lemma, we can recast (26) as the fol-
lowing matrix inequality:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ς�
t −∑L

i=1 νi ϒ̃H 01×MN · · · · · · · · · · · · 01×MN

ϒ̃ IMN −α1�
H
1 · · · −αl�

H
l −β1�

H
l+1 · · · −βl�

H
2l

0MN×1 −α1�1 ν1IMN 0MN · · · · · · · · · 0MN

...
... 0MN

. . .
. . .

. . .
. . .

...
... −αl�l

...
. . . νlIMN

. . .
. . .

...
... −β1�l+1

...
. . .

. . . νl+1IMN
. . .

...
...

...
...

. . .
. . .

. . .
. . .

...

0MN×1 −βl�2l 0MN · · · · · · · · · · · · ν2lIMN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 0,

where αi = ∥∥�Fi,1
∥∥ = ∥∥�G1,i

∥∥, βi = ∥∥�Fi,2
∥∥ = ∥∥�G2,i

∥∥
are the norm-bounded errors (NBEs) of channel uncer-
tainties, and 0MN denotes MN × MN zero matrix. This
completes the proof.

Appendix 2
(Lemma 1 [14]): Define the functions

fj(x) = xHAjx + 2Re
{
bHj x

}
+ cj, j = 1, 2 (27)

where Aj is a square semi-definite matrix and cj is a real
constant. The implication of fj(x) ≤ 0 holds true if and
only if there exists λ ≥ 0 such that

λ

[
A1 b1
bH1 c1

]
−
[
A2 b2
bH2 c2

]
� 0.

By employing ([14] Lemma 1) and treating the terms
involving t = 2 as constants, (15) can be rewritten as[

B̂1 + λ1I vec (Q1) B̂1
B̂1vec (Q1)

H φ

]
� 0,

where φ = vec
(
�Q1

)
B̂1vec

(
�Q1

)H + vec (Q2) B̂2vec
(Q2)

H −λ1ω
2
i α

2
i − P̂t , with ωi = ∥∥W◦

i
∥∥, withW◦

i denoting
optimal solution ofWi.
([21] Theorem 4.2): If D � 0, i = 1, 2, then the following
QMI system[

H1 H2 + H3X
(H2 + H3X)H H4 + H5X + (H5X)H + XHH6X

]
� 0, ∀X : tr(DiXXH ≤ 1).i = 1, 2,

is equivalent to the LMI system: ∃λ ≥ 0, (28) is satisfied
which is shown as⎡⎣ H1 H2 H3

HH
2 H4 H5

HH
3 HH

5 H6

⎤⎦−
∑
i=1

λi

⎡⎣ 0 0 0
0 I 0
0 0 −Di

⎤⎦ � 0. (28)

Based on ([21] Theorem 4.2) and define H1 = B̂1 + λ1I,
H2 = vec

(̃
Fi,1

)
B̂1,H3 = 0,H4 = �t ,H5 = B̂2vec

(
Q̃2
)H ,

H6 = B̂2, and D = λ2I, the individual relay power
constraints can be converted to the following LMI:⎡⎣ B̂1 + λ1I vec

(
Q̃1
)
B̂1 0

B̂1vec
(
Q̃1
)H

�t B̂2vec
(
Q̃2
)H

0 vec
(
Q̃2
)
B̂2 B̂2 + λ2I

⎤⎦� 0, (29)

where �t = ∑2
t=1 vec

(̃
Fi,t

)
B̂tvec

(̃
Fi,t

)H − λ1ω
2
i α

2
i −

λ2ω
2
i β

2
i − P̂Ri . This completes the LMI version of the

individual relay power constraint.
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