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Abstract

Recent years have witnessed major innovations in mobile crowdsourcing networks. For selfish participants,
conventional methods resort to incentive mechanism design for resource utilization, which might overlook the
inherent equilibrium property among mobile users. In contrast to these proposals, we investigate the problem that
whether or not the selfish users could be enabled to endorse stable task sharing with balanced allocations without
incentive mechanism designs. Before making a positive answer to this problem, we need to address the following
challenge, i.e., users have to make their balancing decisions with only very limited and dynamic local load information,
which could possibly incur longer convergence time and imbalanced task allocations. In tackling this difficulty, we
propose two distributed selfish load balancing schemes, themax-weight best response policy for strong information
scenario, where load information could be sufficiently collected; and the proportional allocation policy for weak
information scenario. We make experimental studies to validate proposed schemes. In our simulation study with real
trace data, the proposed schemes converge fast in many typical settings with fairly good balancing performance. As
for data traces from RollerNet (Tournoux et al., The accordion phenomenon 2009), the performance of load balancing
and convergence property are further validated.
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1 Introduction
Recent years have witnessed the emergence of mobile
crowdsourcing network, which is a human based, dis-
tributed, and task-driven ecosystem, such as Serendipity
[1], Bikenet [2], and smartphone-based sensing applica-
tions [3–8]. Instead of improving the capacity and avail-
ability among users, these systems enable the unconscious
cooperations for tasks, incorporating distributed mobile
users in non-invasive manner, and achieving cloud-like
service with loosely coupled mobile devices. Furthermore,
mobile crowdsourcing networks could be proliferated to
promote distributed cooperations among users.
To this end, the mobile data and task load could

be effectively shared and allocated among users and
enabled to utilize network resources more effectively and
efficiently [1].
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Unfortunately, status quo solutions heavily rely on
incentive mechanism design [9, 10], where users are
encouraged to participate the crowdsourcing practice for
rewards. In contrast, hardly any of these solutions focus
on the fair task allocation among users, i.e., encourag-
ing more selfish users involved in crowdsourcing practice
[11, 12].
Thus, balancing the working load among selfish users

is desperately needed [11–13]. Indeed, an inevitable stale-
mate exists: If there is no effective load balancing scheme
among participatory users, it is difficult to propose a pow-
erful incentive mechanism design, because no user would
like to cooperate under unfair allocations. Fully consider-
ing the selfish behavior among users would effectively help
to break this stalemate. This paper investigates a simple
but fundamental question: can we perform efficient coop-
eration among distributed crowdsourcing networks, fully
considering the selfish behaviors among mobile users?
Furthermore, can such cooperative design converge fast
enough in dynamic and uncertain crowdsourcing net-
work? Positive answers to these questions could enhance
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the gains of crowdsourcing network to a more applicable
system.
In this work, we present an innovative task allocation

scheme, where tasks are distributed among selfish mobile
users. In that, the selfish behavior could be summarized
in the sense that mobile users are attempting to optimize
their own situation1, i.e., trying to assign their tasks to
the least loaded user, instead of trying to optimize the
global situation. In general, Nash equilibrium among self-
ish users is a balanced state, such that there is no incentive
among users for changing the status quo allocation. In
other words, no user has an incentive to reallocate their
tasks to other users.
Our algorithms show good balancing performance

with fast enough convergence speed in both strong and
weak information cases2. Surprisingly, even for the weak
information case, proportional allocation scheme could
achieve similar performance to that for strong infor-
mation case. Specifically, for real trace data set [14],
the algorithms could still show relatively good con-
verge property. We further show that the Nash equi-
librium is a fairly good balancing allocation for each
user. Such that, our design could improve the coopera-
tion efficiency and reduce the potential cost for future
crowdsourcing network as well. Moreover, important
factors are discussed and evaluated with spectrum of
settings.
The rest of the paper is organized as follows. We review

the related work in Section 2. After that, we introduce our
basic systemmodel and formulate our investigate problem
in Section 3. Section 4 introduces our proposed scheme
with algorithmic descriptions. We present the experimen-
tal evaluation results in Section 5 and conclude the paper
in Section 6.

2 Related work
Our work relates to the efficient data transfer schemes
over disruption-tolerant networks or opportunistic net-
works [1, 15, 16]. The intermittent contacts between ran-
domly roaming users are useful for data sharing, which
has been explored and studied extensively in variety of
network settings, from military warfare [17] to disaster
recovery [18]. The opportunistic access will bring more
chances for data sharing. Even further, the social rela-
tionship will enhance these opportunities with higher task
execution efficiency and stability.
Selfish load balancing correlates to the congestion game,

which is very similar to our concerned working scenario.
The aforementioned results have not addressed how to
find Nash equilibrium efficiently. For worst case analysis,
the convergence time could be exponentially long [19–21].
While best and better response dynamics are a plausible
model of selfish behavior, the associated algorithms typ-
ically require that migrations be done one-by-one, and

another common assumption is that best responses are
always selected.
Even-Dar and Mansour [22] consider concurrent and

independent task migration policies, where tasks are
allowed to migrate from the overloaded machines to the
under-loaded resources. Such assumption would break
the selfish behavior rule and could not achieve the Nash
equilibrium. To this end, the ε-approximate Nash equi-
librium could be leveraged to settle down this stalemate
[20, 23]. A state x is called an ε-approximate Nash equi-
librium, when for any 0 ≤ ε ≤ 1, no task can decrease the
load bymore than factor of (1−ε). In such a state, for every
user i and every neighboring user j, the ε-approximate
Nash equilibrium could be achieved, where the following
inequality holds:

(1 − ε) · W (xi)
si

≤ W (xj) + 1
sj

(1)

whereW (xj) is the sum of task weights on machine j.

3 Systemmodel and problem formulation
3.1 Systemmodel
In our system model, the task could be a typical sens-
ing or computing task. Users are considered as selfish
agents, where actions are unilaterally played, and tasks
are migrated concurrently. Note that, although there is
a platform, it is hardly applicable to incorporate central-
ized scheduling due to large network overhead and delays
[24, 25]. In our model, the decision should be made in dis-
tributed way, and no global knowledge is available to any
mobile user.
As the crowdsourcing tasks are increasing over the

time, the number of users should be constant. Although
the users could leave and join the crowdsourcing net-
work dynamically, the number of participatory users are
limited. Thus, suppose that m � n, which is typically
considered in previous studies [12, 20].
As shown in Fig. 1, we discuss the difference between

traditional load balancing and selfish load balancing
schemes. If the load among users are equal, it is called load
balancing state. As depicted in Fig. 1a, the task load of
each user is 3 and they have reached balancing state. How-
ever, in selfish load balancing scheme, every user tends
to selfishly migrate task to the least loaded neighbors. In
Fig. 1b, if user A migrates a task to B, where the weight
of task equals to 1, the cost of this task is 2 + 1 + 1 = 4,
which is greater than the initial cost (2) in user A. If user A
removes this task to user C, the cost of this task could be
2+2+1, which is still greater than the initial cost in user A.
Such that, user A would not migrate tasks at the moment.
For user C, any task migration would lead to the increase
of task cost. To this end, each user could not reduce the
task cost by unilaterally migrating tasks to anyone, which
leads to a nash equilibrium state.
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(a) (b)

Fig. 1 Difference between traditional load balancing scheme and selfish load balancing scheme

3.2 Problem formulation
Our main objective is to propose an efficient task loading
algorithm for each selfish mobile user. Additionally, there
are two design requirements:

• The “ε − Nash” condition, i.e., for any 0 ≤ ε ≤ 1, no
task can decrease the load by more than factor of
(1 − ε).

• The algorithm should converge fast enough, since the
mobile crowdsourcing network only provides
intermittent connections.

Typically, we consider two working scenarios:

• First, we suppose mobile users have sufficient time
and bandwidth, for sharing the task load information
among all neighbor nodes. As depicted in Fig. 2a,

users could use WiFi connections and have relatively
long contact window to share data, such working
scenario is typical for crowdsourcing network [1].

• Second, we consider the weak connection case, where
the contact window is short or the transmission
bandwidth is limited. For mobile crowdsourcing
network, this concern is very necessary as such weak
communication opportunities are very common.
Although the data sharing is not sufficient,
contacting with small number of users could be
allowed, which is illustrated in Fig. 2b.

4 Algorithm description
4.1 Max-weight best response (strong information case)
We investigate typical case for strong information, where
users could have their neighbors’ load information in each
round. In other words, people could compare the load of

(a) Strong Information Case (b) Weak Information Case

Fig. 2 Two typical working scenarios for information collection in crowdsourcing networks
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among users accurately in communication range to make
decision wisely.
We leverage the basic principle that users could reach

a satisfied state if and only if the task is placed on the
leasted loaded user among neighbors [23]. Such that, a
best response never decreases the minimum load among
users [23]. To this end, a satisfied user could be unsatis-
fied only for one reason: i.e., the load of the user holding
this task increases because another taskmoves in. Inspired
by this intuition, we proposed an adaptive algorithm:
max-weight best response.

Algorithm 1:Max-weight best response
input : Task T, User U, WeightW, Speed S,

Round interval t, Round times R,
Initial user load L = {l1, l2, . . . ln},
Encounter(i, j), {i, j ∈ U, i �= j}.

output: User load: L, Gap in each round: G
for round = 1 : R do

for task i in descending weight order do
Let u(i) be the current located user of task i for
u(j) ∈ N/u(i) do

if
Encounter(u(i),u(j)) ∈ [ t ∗ (round− 1), t ∗
round] then N ← j else continue

end
ifN �= ∅, Find the least loaded neighbor q then

lu(i)
round:current load of user u(i) ljjround:

current load of user jj
if lu(i)/su(i) > (lq + W (i))/sq then

Move task i from user u(i) to q
u(i) ← q
L ← {l1, l2, . . . lq + wi, . . . , lu(i) −
wi, . . . , ln}

end
end

end
end

The proposed algorithm works as follows: Given tasks
T = {1, 2, . . . ,m} and task weight W = {w1,w2, . . .wm}
accordingly, mobile users U = {1, 2, . . . n} could be
enabled with diverse computing speed: S = {s1, s2, . . . sn}.
First, we rank the task weights in descending order. The
unsatisfied user holding the task with highest weight
should be considered firstly. If one would always allocate
the task of minimum weight among the unsatisfied users,
then it will need an exponential number of best response
steps to reach a pure Nash equilibrium [23, 26].
Let u(i) denote the user holding task i, for other user

u(j), if there is an encounter record between user u(i) and

u(j) in current round interval, we include u(j) in the neigh-
bor set of u(i). As we have mentioned in the very first of
this section, if and only if the task is handed over to the
least loaded user, the dynamic equilibrium could be real-
ized eventually. Under this discipline, we use the polling
method to get the least loaded neighbor umin and compare
the work load of u(i) and umin.

4.2 Proportional allocation (weak information case)
Since the network is distributed, intermittent, and unpre-
dictable, it is difficult to get the global information for
task load [27]. As depicted in Fig. 2b, users can only get
weak local information with limited number of neighbors.
For this typical scenario, we put forward proportional
allocation, where tasks are migrated in parallel for each
round.

Algorithm 2: Proportional allocation
input : Task T, User U, WeightW, Speed S,

Round interval t, Round times R,
Initial user load L = {l1, l2, . . . ln},
Encounter(i, j), {i, j ∈ U, i �= j}.

output: User load: L, Gap in each round: G
for round = 1 : R do

for each task in parallel do
for j ∈ N/u(i) do

if
Encounter(u(i), j) ∈ [ t ∗ (round − 1), t ∗
round] then N ← j

end
ifN �= ∅, randomly choose neighbor k then

if lu(i)/su(i) > lk/sk then
P ← 1 − lk/lu(i)
lk ← lk + W (i) ∗ P
lu(i) ← lu(i) − W (i) ∗ P
u(i) ← k

end
end

end
end

Let lu(i) be the current load of u(i), where u(i) denotes
the user holding task i. Next, according to the weak local
information constraint, the user u(i) would randomly
choose a neighbor k to compare its task load. Due to
the selfishness behavior, if the load on user k is smaller
than that of user u(i), task i could be migrated from user
u(i) to user k with probability P = 1 − lk/lu(i). Different
from Algorithm for strong information case, users could
make such mixed strategies to ensure self-profit, where
the probability distribution over different choices could
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be leveraged to achieve Nash equilibrium within limited
steps.

5 Performance analysis and evaluation
5.1 Simulation tests
5.1.1 Load balancing performance
We focus on the load balancing problem caused by users’
selfishness. First of all, we evaluate the load balancing per-
formance with the converged task load. We set different
task weight values to each task, such that the tasks could
bemigrated among users. If the task weights are randomly
selected from a larger range, the diversities among users
would be more significant.
In this evaluation, the duration of task sharing round

is set to 20 s, and the inter-contact frequency λ is uni-
formly distributed in range3 [10, 30]. In Fig. 3a, the task
weight range is set to [1, 50]. Similarly, in Fig. 3b, c, the task
weight range is set to [1, 100] and [1, 500], respectively.
As depicted in the three sub-figures in Fig.3, proportional
allocation and max-weight best response could achieve
balanced load among users. Surprisingly, although pro-
portional allocation scheme only has weak information,
the balancing performance is comparable to that of max-
weight best response scheme. The reason is, in our simula-
tions, the proportional allocations are executed in parallel,
which could make task migration with sufficient times.
Thus, the task load could be effectively compared among
users. Such that, it could still achieve similar performance
in strong information scheme, because mobility would
help the contacts among users, and provide opportunities
for task load information sharing.
Note that, for proportional allocation scheme, there are

small portion of unbalanced load in some users, which
have been shown in Fig. 3b, c. The reason is, with the
increasing range of task weight, some tasks with large task
weight could not migrate to other users, since no user
would admit the migration for such a big job for some
rounds in our simulation.

5.1.2 Convergence property
The convergence property is fundamentally important to
load balancing scheme. Specifically, in our study, we need
the algorithm with ensured convergence property and fast
enough convergence speed.
Basically, we evaluate the convergence speed of the pro-

portional allocation scheme. Note that the convergence
time relates to the duration of each task allocation round.
This parameter correlates to the mobility, i.e., the inter-
contact frequency, λ. As depicted in Fig. 4a, we set differ-
ent values for λ, i.e., and the ranges for random selection
are set to [5, 10] , [15, 20] , [20, 40], respectively. The length
of each round is set to 20. When the range value for λ

is set to [5, 10] , [15, 20], we find that, the convergence
property is good. However, when it is set to [20, 40], the
convergence property does not hold anymore. The rea-
son is, when the contact interval becomes larger, users
would have less opportunities for task migration. Thus,
the assumption for sufficient data sharing in each round
does not hold. Users with more contact opportunities
could unfairly offload tasks.
This observation motivates us to make a further study.

That is, we need to investigate the relationship between
the duration of each round and the inter-contact inter-
val, i.e., the λ. As shown in Fig. 4b, when the duration
of each sharing round is set to 30, and the inter-contact
frequency λ is set uniformly with interval [10, 20]. The
proportional allocation scheme could perfectly converge.
When the round length is set to 15, there is a dynamic pro-
cess, and the algorithm could achieve convergence state
after 80 rounds again. Notably, when the round length is
set to 10, there is no significant convergence state shown
in our evaluations. The reason is, due to the extremely
short round length, users could not migrate their tasks
sufficiently, i.e., from dynamic allocation to stable Nash
equilibrium, where the balanced task allocation could not
be achieved. To this end, the task sharing rounds should
be larger or approximate to that of the inter-contact

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

User

T
as

k 
Lo

ad

Propotional Allocation
Max−weight Best Response
Initial Task Load

(a) Task weight randomly
from 1 to 50

1 2 3 4 5 6 7 8 9 10
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

User

T
as

k 
Lo

ad

Proportional Allocation
Max−weight Best Response
Initial Task Load

(b) Task weight randomly
from 1 to 100

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6
x 10

4

User

T
as

k 
Lo

ad

Propotrional Allocation
Max−weight Best Response
Initial Task Load

(c) Task weight randomly
from 1 to 500

Fig. 3 Load balancing performance comparisons between proportional allocation and best response, when the task weights are concerned
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Fig. 4 Analysing convergence characters in different inter-contact rates and round intervals

frequency, such that fast and stable convergence state
could be achieved.
These dynamic features motivate us to take another

concern, i.e., the dynamics during convergence process.
We set round length to 15 and set the inter-contact rate
λ with interval [10, 30]. We make evaluations on the con-
vergence property of proportional allocation. As shown
in Fig. 4c, there are two intermittent stable states, where
a relatively balanced tasks assignment could be achieved.
The gap at these states are very low, say, less than 500.
Comparing to the initial value, 5000, it is still a good result.
Note that in those states, if the Nash equilibrium condi-
tion could be relaxed, we can achieve faster convergence
results.
Also, it is worth noting that we have not shown the

convergence property of the max-weight best response
method, because it could get immediate convergence
property once task weights are ordered and tasks
are allocated sequentially, which has been proved
in [23].

5.1.3 Comparisonwith random allocation
In order to show the performance of our algorithms,
we compare them with ‘Random Allocation’. As depicted
in Fig. 5a, both algorithms we proposed perform better
than ‘Random Allocation’. Especially for Gap evaluation,
as depicted in Fig. 5b, ‘Random Allocation’ can hardly
converge but fluctuate. Whereas, ‘Proportional Alloca-
tion’ finally reaches equilibrium through a period of up-
down and “max-weight best response” acts almost perfect
because tasks are ordered by weight.

5.2 Balancing among users and tasks
As we have aforementioned in Section 3, the task number
m is assumed to be much larger than the user number n
considering the crowdsourcing network fact. To further
explore the impact of proportion of task number and user
number, we run the “proportional allocation” for different
settings ofm and n.
As shown in Fig. 5c, the gap for each task allocations

under different number of tasks and users are colored with
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data values. Note that the value is processed with log-
normal function, so as to see the differences more clearly.
we can clearly find two zones. One is the balanced zone,
achieving balancing tasks, and the other zone is unbal-
anced. We draw a thick red line to separate these two
zones.
According to Fig. 5c, we summarize the following

properties. First, with increasing number of tasks, the
chances falling in balanced zone would be large accord-
ingly. While with the increasing number of users, the
chances falling in unbalanced zone would be large. To
this end, when more tasks are presented with less users,
the balancing performance would possibly be good. Sec-
ond, when the number of users and tasks are all very
large, the algorithm would achieve unbalanced perfor-
mance. In tackling with this defect, we need to balance
the users and tasks. That is, we need to mitigate some
users, e.g., users with less processing ability and less con-
tact frequency, such that the balanced allocations could be
achieved.

6 Conclusions
We propose a fast converging load balancing algorithm
for crowdsourcing network, fully considering the self-
ish behavior among users. In our concern, two major
network scenarios, users with strong and weak load
information, are fully considered. We propose max-
weight best response policy and simple distributed allo-
cation scheme with probabilistic assignment. We find
that these simple schemes are effective in achieving self-
ish load balancing. The fundamental reason is, although
users are intermittently connected, the user diversity
also increases, which will speedup convergence process
in sense of selfish behavior considerations. Such that,
the mobility provides sufficient diversity among users,
which makes the task offloading policy more robust.
Evaluations have been extensively processed for vali-
dating the effectiveness and efficiency of the proposed
scheme.
In future work, social relationship can be explored

and exploited for semi-cooperative design, where bal-
anced task offloading could be performed among friends,
and unfamiliar mobile users, and plays an important
role for task execution efficiency. Finally, we plan to
apply our methods to realistic applications, such as pro-
cessing pictures to translate words within crowds of
participants.

Endnotes
1In our concern, the situation is the sense of task load
2For strong information scenario, the local information

could be sufficiently collected; while for weak information
case, only local and limited information is available.

3The dimension for λ is hertz (Hz). We omit Hz for
brevity in the following iterations.
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