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Abstract

Based on the compressed sensing (CS) technique, the carrier frequency offset (CFO) is estimated in compressive
sampling scenarios. We firstly confirm the compressibility of estimation metric vector (EMV) of conventional
maximum likelihood (ML)-based CFO estimation, and thus conduct the compressive sampling at receiver. By
exploiting the EMV features, introducing a circle cluster, and proposing a novel coherence-pattern, we then form a
feature-aided weight coherence (FAWC) optimization to optimize measurement-matrix. Besides the proposed FAWC
optimization, by referencing compressive sampling matching pursuit (CoSaMP) algorithm and exploiting EMV
features, a metric-feature based CoSaMP (MFB-CoSaMP) algorithm is proposed to improve the EMV-reconstruction
accuracy, and to reduce computational complexity of classic CoSaMP. With reconstructed EMV, we finally develop a
CFO estimation method to estimate the coarse CFO and fine CFO. Relative to weighted coherence minimization
(WCM) and classic CoSaMP, the elaborate performance evaluations show that the FAWC and MFB-CoSaMP can
independently or jointly improve accuracy of the CFO-estimation (including coarse CFO-estimation and fine
CFO-estimation), and the improvement is robust to system parameters, e.g., sparsity level, number of measurements,
etc. Furthermore, the mean squared error (MSE) of proposed CFO estimation method can almost reach to its
Cramér-Rao lower Bound (CRLB) when a relative large number of measurements, a relative high carrier-to-noise ratio
(CNR), and a reasonable length of observed signals can be obtained.
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1 Introduction

The carrier frequency offset (CFO), which is one of the
well understood radio frequency (RF) impairment, may
result in severe performance degradation at the receiver
[1, 2]. To improve receiver performance, the CFO estima-
tion has been studied comprehensively. In [3-5], the CFO
estimations for additive white Gaussian noise (AWGN)
channels, flat fading channels and frequency-selective
fading channels are respectively addressed. Recently, the
proposed compressive sensing (CS) approach [6, 7], which
enables sub-Nyquist sampling of sparse or compressible
signals in some domain, can be employed to reduce sys-
tem complexity and to save power significantly. By exploit-
ing the sparsity profile, the CS-based CFO estimation is
presented in [8, 9] for multi-user uplink. Compared with
the CFO estimation without utilizing CS, the estimation
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accuracy is improved due to the priori information of
sparse approximation. Although various methods of CFO
estimation are proposed with and without utilizing CS, the
sampling rate of these existing methods for CFO estima-
tion, e.g., [3-5, 8, 9], needs to be at least the Nyquist rate,
resulting in excessive power consumption and design dif-
ficulty for the analog-to-digital converter (ADC) when the
high sampling rate is experienced [10, 11].

To reduce the sampling rate, the CS is introduced into
synchronization issue in [12—14]. In [12], a fast and rough
estimate of pseudo-noise (PN) code phase and Doppler
frequency with a reduced number of parallel correla-
tors (i.e., compressed correlators) is proposed, where the
sparse expression is based on autocorrelation. For binary
phase-shift keying (BPSK) signals and binary offset carrier
(BOC) modulation signals, the 2-D compressed correla-
tor (TDCC) technique for the rough estimate of PN code
phase and Doppler frequency is introduced in [13, 14],
respectively. Based on hypothesis testing for a code phase
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and Doppler frequency next to the true hypothesis can
yield a non-negligible amount of signal energy, the com-
pressed correlators technique in [12-14] tests a com-
pressed hypothesis and coherently combines the signal
energy in the neighboring hypotheses. Although the num-
ber of correlators is reduced, the compressed correlator
technique can only roughly estimate Doppler frequency.
Furthermore, the features of estimation metric vector
(EMV) of CFO estimation are not exploited for com-
pressive sampling and signal reconstruction. Thus, the
CS-based CFO estimation, which includes coarse estima-
tion and fine estimation, is not intensively investigated
in [12-14].

By exploiting the features of EMV, a novel CS-based
CFO estimation is proposed in this paper. The com-
pressive sampling is introduced into Maximum Likeli-
hood (ML)-Based CFO estimation to reduce sampling rate
while holding estimation performance be not deteriorated
significantly. We briefly describe some critical points of
the proposed CS-based CFO estimation as the follows.

e Feasibility analysis of compressive sampling:
Based on the compressibility of EMV in ML-based
CFO estimation [15], we first verify the received
signal can be obtained with compressive sampling,
and the ADC requirement can be reduced.

e Optimization of measurement matrix: In
compressive sampling, measurement matrix directly
determines whether the reconstruction can be
realized successfully [6, 7]. The designing of efficient
measurement matrices becomes the core problem for
higher probability of reconstruction. In [16], Baraniuk
et al. have been proved that many random matrices
are good measurement matrices, and some optimized
methods can also be found in existing literatures,
such as [17-22]. These existing methods, however,
are not specially designed for CFO estimation, and
thus cannot obtain an optimized performance (e.g.,
reconstruction-accuracy improvement for EMV
recovery). To obtain a more suitable measurement
matrix, we exploit the features of EMV. Firstly, the
EMV is expressed as a circle cluster to reduce the
block-sparsity to one (i.e., significant amplitudes are
gathered in one sub-block when EMYV is divided into
multiple sub-blocks). With the special structure of
block-sparsity, a novel coherence-pattern is proposed
to fully utilize structure information of circle cluster.
Then, a feature-aided weight coherence (FAWC)
optimization, based on the algorithm of weighted
coherence minimization (WCM) [22], is developed
to optimize measurement-matrix without
computational complexity increasing.

e Reconstruction algorithm: The reconstruction
algorithm is another critical factor for successful
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reconstruction. With the compressive sampling at
receiver, many recovery algorithms are proposed.
Among these reconstruction algorithms, we mainly
reference the compressive sampling matching
pursuit (CoSaMP) [23, 24], due to its high
reconstruction accuracy and excellent robustness to
noise. According to the CoSaMP algorithm and the
EMV features, a metric feature-based CoSaMP
(MFB-CoSaMP) algorithm is proposed to improve
the EMV reconstruction accuracy, and to reduce the
computational complexity of classic CoSaMP.

e CFO estimation: With the reconstructed EMV, we
implement the CFO estimation by using a two-step
procedure which includes coarse and fine CFO
estimation. In the coarse of CFO estimation, the
likelihood function is constructed according to EMV
and to seek the local maximum. As for the fine CFO
estimation, the received signal vector is recovered at
Nyquist rate with the reconstructed EMV and then
used to generate the likelihood function, with which
an interpolation method is employed to seek the
local maximum near to the value of coarse CFO
estimation.

Performance evaluation shows that the proposed
CS-based CFO estimation can be implemented with
reduced sampling-rate, along with an acceptable esti-
mation deterioration in terms of mean squared error
(MSE). Compared with the optimization of weighted
coherence minimization (WCM) [22] and the recon-
struction algorithm CoSaMP, the elaborate performance
evaluations present the proposed FAWC and MFB-
CoSaMP can independently or jointly improve the
accuracy of CFO-estimation (including coarse CFO-
estimation and fine CFO-estimation), and the improve-
ment is robust to system parameters, e.g., the sparsity
level, the number of measurement, and the length of the
observed signal. Furthermore, the MSE of proposed CFO-
estimation can almost reach to its Cramér-Rao lower
bound (CRLB) when the reasonable conditions can be
obtained.

The main contributions of this paper are summarized as
follows.

(a) We confirm the compressibility of CFO EMV in
conventional maximum likelihood (ML)-based CFO
estimation. Thus, the compressive sampling can be
employed for CFO estimation.

(b) A novel FAWC optimization method is proposed by
exploiting the features of EMV. Compared with
WCM, the proposed FAWC can obtain a suitable
measurement matrix for CFO estimation to improve
the reconstruction accuracy with comparative
computational complexity. Also, the proposed
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method is robust to the designed parameters, and
can easily to reach its convergence.

(c) An MFB-CoSaMP algorithm is proposed to
reconstruct EMV by exploiting its features.
Compared with the classic CoSaMP algorithm, the
proposed method improves the recovery accuracy
and reduces the computational complexity.
Furthermore, the improvement of recovery-accuracy
is robust against to the varying of parameters.

(d) We implement the CFO estimation (including coarse
and fine estimation) with compressive sampling.
Furthermore, the MSE performance can reach to its
CRLB when reasonable system parameters are
obtained.

The rest of this paper is organized as follows. In
Section 2, we formulate the method of compressive
sampling for CFO estimation, where the expression of
sampling is derived from the ML-based approach in a
conventional system model of Nyquist rate. Section 3
deals with the optimization of measurement matrix by
exploiting EMV features. In Section 4, the CFO esti-
mation method is proposed, where we present the
MEFB-CoSaMP recovery-method, coarse CFO estimation,
and fine CFO estimation. Performance evaluations are
shown in Section 5. Finally, Section 6 concludes this
paper.

Notation: We use boldface letters to denote matrices and
column vectors; 0 denotes the zero vector of arbitrary size;
OT, O, ()7L, ()T, and [-], denote the transpose, con-
jugate transpose, matrix inversion, Moore-Penrose matrix
inversion, and floor operation, respectively; Ip is P x
P identity matrix; G(i,j) is the (i,j)th element of the
matrix of G; we write ||| » for the usual £, vector norm:
Ixll, = (fo)l/p; supp (x) = {i:x; # 0} is the sup-
port set that denotes the index set of nonzero elements
in x; @7 denotes the column sub-matrix comprising the
T columns of ®; x|t denotes the entries of the vector x
in the set T; the complementary set of set T is denoted
by T¢, @ denotes empty set, and E{-} is the expectation
operator.

2 Compressive sampling for CFO estimation
According to the conventional ML-based CFO estima-
tion, we verify the feasibility of compressive sampling for
CFO estimation in this section. In Subsection 2.1, We
briefly describe the method of conventional ML-based
CFO estimation. Then, in Subsection 2.2, we raise the
compressible EMV, and summarize its features. Based on
the compressibility of EMV, the feasibility of compressive
sampling for CFO-estimation is verified in Subsection 2.3,
according to the derivation result that the received
signals (not EMV) can directly conduct compressive
sampling.
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2.1 Conventional ML-based CFO estimation
From [15], without compressive sampling, the observation
of the sampled signal can be expressed as

re = dTMNKTAO) ) ] <k <N, 1)

where Af is the frequency offset to be estimated, Ty <
1/(2 - Af) is the sampling interval, 6 is an unknown ran-
dom phase with uniform probability density in [0, 27),
and vi is a sample of the complex AWGN with zero
mean and variance o2. The carrier-to-noise ratio (CNR)
p, which is the ratio of the signal to noise powers in (1), is
defined as [15]
A1
2 _— 2
ey )
In the conventional estimation method [15], the prob-
lem of ML estimation of the frequency Af is to seek the
maximum of the equivalent likelihood function
N ~
S rie /2T A T

A (Af) N 3

N N L
— Z Z rkr;knefﬂﬂAfTs(kfm)’
k=1m=1

where Af is a tentative value for Af.

2.2 Sparsity of CFO EMV

~ N .
Assume W <Af) =Y r;e /27T then the vector form
i=1

of W (Af) can be expressed as

v (Af) 7T (Af) , (4)
where r and ¥ (Af) are, respectively,

r=[r,r, ', (5)
and

r (MZ) _ [e—jZNAj?TS’ o ’e—jZnAfNTS]T‘ ©)

In this paper, we name W <Af) as CFO estimation met-
ric (EM). From (3), the equivalent likelihood function
A (Af ) can be rewritten as

~ A ~ |2 T ~ (2
A (a7) 2w ()] = |s"-r (a7)]- g
For grid search, P (P > N) tentative values of Af,
denoted as Afi, Afa, - - -, Afp, are considered. For simplic-
ity, we consider P = N in this paper due to the same

conclusions. AccordinAg to the P tentative values, we form
an EMV (denoted by W) as

wfo (5) v (7). 9 (R
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Substituting W (Aﬁ) =r’T (A};,), p=12,---Pinto

(8), then we have

& = [0 (87). 67T (83), 7T (5]
[ (7)o (4) - ()]
=T, )
where
F= [r (a7, (57) 1 (5]
e PRTANTS g2 Af2T, || =2 ARNT
e 2T ATy g2 AR2Ts .| =21 AfNT,
e—jZn’A}}»TS e—j271.A;‘})~2Ts e—j2nA'}}»NTS
(10)

In (8), the EMV is approximately sparse. That is,
V()

), only a few amplitudes are significant and the

for the element-amplitudes of EMV (i.e.,

v (55)
rest are nearly zero or negligible.

The examples are given in Fig. 1 to illustrate the com-
pressibility of EMV, where N = 64, P = 64, Ty = 107 %,
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Af.T; € (—0.5,0.5) is the normalized CFO. Note that
we just consider the noise-free case in order to reveal the
CFO features obviously. Four cases of normalized CFO,
ie, Af.Ts = —0.4976 (near to —0.5), Af.T; = —0.2441
(between —0.5 and 0), Af.Ts = 0.3241 (between 0 and
0.5),and Af.T; = 0.4757 (near to 0.5), are given in (a)—(d),
respectively. From (a)—(d) in Fig. 1, and a large number of
other experiments, the intrinsic features of EMV could be
summarized as follows.

(a) Only a few element-amplitudes in EMV are
significant.

The significant amplitudes only gather in one cluster
when the normalized CFOs connect to a circle from
—0.5 to 0.5. In this paper, this cluster in a circle is
denominated as circle cluster (i.e., significant
amplitudes form a cluster in a circle).

(b)

Note that the CFO estimation metrics are not in a clus-
ter in a strict sense for the special case that the normalized
CFOs are located near to —0.5 (or 0.5). When the nor-
malized CFOs are located near to —0.5 (or 0.5), some
significant amplitudes appear near to 0.5 (or —0.5). Thus,
we still describe this feature as cluster due to its cycle
periodicity when the normalized CFOs are connected
from —0.5 to 0.5 to a circle. For convenience, we call this

—

a2 9 » @

D W B

-

Normalized amplitudes of CFO estimation metric
= = = = = = = = =

Q
oL

05 04 03 02 01 0 01 02 03 04

Normalized CFO

(a)

metric

des of CFO

S | om
Z 005 04 03 02 01 0 01 02
Normalized CFO

(¢

0.5);and d Af.T; = 04757 (normalized CFO is near to 0.5)

—

2 9 » e
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=

Normalized amplitudes of CFO estimation metric

01 0 0.1
Normalized CFO

(b)

0.2

> 9 %

D W B i

-

Normalized amplitudes of CFO estimation metric
= = = = = = = = =

\
04 03 02 -01 0 01 02
Normalized CFO

(d)

Fig. 1 Examples of the compressibility of CFO estimation metrics for noise-free cases. Where N = 64, P = 64, T, = 10~ %s.a Af.T, = —0.4976
(normalized CFO is near to —0.5); b Af.T; = —0.2441 (normalized CFO is between —0.5 and 0); € Af.T; = 0.3241 (normalized CFO is between 0 and
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cluster in this paper as circle cluster, i.e., a cluster in a
circle.

According to the intrinsic features, EMV can be com-
pressed according to the compressed sensing theory
[6, 7]. For expression convenience, we also call the intrin-
sic features of EMV as EMV features in this paper.

2.3 Feasibility of compressive sampling for CFO
estimation

As verified in Subsection 2.1, the CFO EMV, i.e., ¥, can be
compressed. However, the compressibility of CFO EMV
W dose not mean that the received signal r can conduct
compressive sampling, for the reason that the sparsity lies
in CFO EMV W rather than the received signal r. Thus, we
need to further analyze the compressibility of CFO EMV
W and whether it could be mapped to the compressive
sampling of the receive-signal r.

Based on the compressed sensing theory [6, 7], an M x P
(M < N < P) measurement matrix ® can be employed to
compress the EMV ¥ due to its sparsity. Then, an M x 1
measurements, denoted as vy, is given by

y = ®W. (11)

Substituting ¥ =Tr (see (9)) into(11), we can derive

y= ®Tr = Or, (12)

where the M x N matrix ® = ®T is defined as sensing
matrix, and can be expressed as

0=[01,0,,---,0,]7, (13)

where ©,, = [01, 02, -+ Omn]? , m=1,2,-- , M.

Fortunately, the derived expression in (12) can be
directly employed to perform the compressive sampling
of received signal r due to its form y = r. Note that,
since M is significantly smaller than N, y = Or infers that
r (not EMV) can be compressed by the M x N matrix
O, i.e., the compressive sampling of received signal r can
be directly conducted. With the sensing matrix ®, we
can adopt the generic circuit architecture of analog-to-
information converter (AIC) [25] or modulated wideband
converter (MWC) model [26] to implement compressive
sampling. Due to M < N, the sampling rate can be nat-
urally reduced, i.e., the ADCs at sub-Nyquist rate can be
employed for CFO estimation.

After conducting the compressive sampling according
to (12), we will use reconstruction-approach to recon-
struct the EMV and then perform the CFO estimation
based on the reconstructed EMV. Especially, the recon-
struction accuracy is mainly decided by the measure-
ment matrix and reconstruction algorithms [6, 7]. Thus,
we optimize the measurement-matrix in Section 3 and
improve the reconstruction-algorithm in Section 4 for a
better reconstruction-accuracy of EMV.
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3 Optimization of measurement matrix
In CS theory, the measurement matrix plays an impor-
tant role to determine the performance of reconstruction
[6, 7], because a more efficient measurement matrix for
the compressive sampling leads to the higher probabil-
ity of reconstruction. In [16], Baraniuk et al. have been
proved that many random matrices are good measure-
ment matrices. The optimized methods can be found
in [17-22]. However, these existing methods are not
specially designed for CFO estimation. Thus, the EMV
features (see Subsection 2.2) are not exploited for the
optimizing of measurement matrices. Usually, the CFO
EMV appears as intrinsic features that only a few element-
amplitudes in EMV are significant, and the significant
amplitudes gather together to form a circle cluster, as
depicted in Fig. 1. To optimize measurement matrix ®, we
exploit the EMV features and propose a FAWC optimiza-
tion method in this paper.

In [22], the optimization-method, i.e., the WCM, is pro-
posed for a block sparse case. According to the EMV
features, we can also see that the sparsity of EMV is typi-
cally block-sparse case, i.e., nonzero entries in EMV gather
in some clusters. Furthermore, when circle cluster is intro-
duced, EMV is its special case that the block-sparsity is
one. That is, the nonzero entries in EMV occur only in one
cluster. Therefore, WCM optimization-method in [22] is
mainly referenced herein by the proposed FAWC. The
main differences between the proposed FAWC and WCM
are given as following:

(a) The circle cluster is introduced to reduce the
block-sparsity to one with the sub-block-length K
(ie., the sparsity level), while WCM has its sub-block
uncertainty. See Fig. 1a, an example that the
normalized CFOs are located near to —0.5 is
considered. Assuming K = 7 (i.e., the amplitudes
which are less than 0.05 are treated as ignorable), our
FAWC with circle cluster has only one subblock with
non-ignorable amplitudes and exact number of
non-ignorable amplitudes in that subblock (i.e.,
subblock-length is K = 7), while the method in [22]
has to consider two subblocks (i.e., the block-sparsity
is 2) with non-ignorable amplitudes and the numbers
of non-ignorable amplitudes in that two sub-blocks
are uncertain. In fact, the actual numbers of non-
ignorable amplitudes in Fig. 1a are, respectively, 3 and
4 in the two sub-blocks of non-ignorable amplitudes
according to the method in [22]. However, the two
sub-blocks have to be considered as owning seven
non-ignorable amplitudes to cover all possibility (i.e.,
the actual numbers of non-ignorable amplitudes
maybe 1,2,...,7 in the two sub-blocks).

(b) The concerned patterns of Gram matrix G (defined
in Eq. (15)) are different. For example, the concerned
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(c)

patterns of WCM and FAWC are given in Fig. 2a and
Fig. 2b, respectively. In Fig. 2a, WCM considers three
blocks of size 7, and its concerned patterns are based
on sub-block coherence. Unlike WCM, the
concerned patterns in the proposed FAWC are
mainly based on the significant amplitudes.
Furthermore, minimizing the sub-block coherence is
the main task of WCM in [22], while we minimize
the coherence close to the maximum of the
significant amplitudes in CFO-estimation metric.
The more appropriate minimization of coherence is
exploited according to EMV features, which will be
verified in the later section.

The measurement matrix is optimized on the basis of
complex matrix, rather than optimizing real
measurement matrix.

A summary of the proposed FAWC is exhibited in
Table 1. Some details of the proposed FAWC are explained
as follows.

1).

Objective of optimization .
According to Eq. (9), the sparse vector ¥ = TI'r.
Then, we have

r=T ¥ =DV, (14)

where D = T'' is just for expression convenience.
Equation (14) indicates that D can be viewed as a
dictionary under the CS framework. Then the Gram
matrix of E = ®D with normalized columns can be
expressed as

G = EE = D" ¢"®D. (15)

Similar to [22], the optimization objective in this
paper, which minimizes the total coherence of the
concerned pattern (the red entries in Fig. 2b, denoted

DDDDDDXIXXPDIIXIXI
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by 11%), non-concerned pattern (the green entries in
Fig. 2b, denoted by 114;-) and the normalization
penalty (denoted by ) of Gram matrix G, is given by

1
® = arg min [En + 1 - ,ufvc —i—autc} , (16)
Lid

where 0 < @ < 1 is a weighting parameter between
the total coherence of the concerned pattern and the
total coherence of non-concerned pattern. The
normalization penalty 7, the total coherence of
non-concerned pattern pyc and the total coherence
of concerned pattern ¢ are defined as

, 2 L ., 2
n= Y |G@) -1 =X 160 1]
(i) e j=1
pe= ¥ 166
(i,j)eﬂNc )
ne= Y |GGEH
(i,j)EﬂN

(17)

Wherei=1,2,---,Pandj=1,2,---,P; @, @ncC
and ¢ are the index sets of diagonal entries,
non-concerned pattern and concerned pattern of
Gram matrix, respectively, (i.e., the index set of the
yellow entries, the green entries and the red entries
in Fig. 2b). By defining a complete set

€ ={@()|1 <i<P,1<j< P}, then we have

@ ={()]i=/}

2c = {@)|li-i=|5] i#i]
of) |li=i = P=] 5.1 %)

Qe =2 — 2 — 2.

In Eq. (18), @nc is expressed by the difference set of
Q?, 2; and L¢.

(a)

(b)

Fig. 2 The difference of the patterns in Gram matrix, where a is the patterns in [22] with three blocks of size 7, b is the patterns proposed in this
paper. The the diagonal entries are in yellow, the off-diagonal entries belonging to the non-concerned patterns are in green, and the off-diagonal
entries belonging to the concerned patterns are in red
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Table 1 FAWC optimization

Objective: Measurement matrix optimization with

given dictionary D, i.e,,

¢ = argq)min {30+ —a) i +oant}.

Initialization: Set n = 0, and calculate the

eigenvalue decomposition of DD ie,

DD = UAU".
Then, we calculate the initial value of ®
according to
0 = [|M 0 } A-2UM,

Repeat:

a). Update G according to ®:

G" = (q)(ﬂ)D)H@(ﬂ)D'
b). Calculate h; (G™) according to the
forthcoming Eq. (24), and form the matrix
Y =A~2U"Dh, (G™)UD"A "7,
¢). Calculate the eigenvalue decomposition of Y,
and find its M top eigenvalues Ay and the
corresponding eigenvectors Vs of Y.
d). Update measurement matrix according to
B0+) = AZVIA U,
e.n=n+1.

Until: Convergence criterion is satisfied.

2). Initialization of optimization
Duarte-Carvajalino and Sapiro [27] proposed
designing ® by minimizing ||DT<I>T<I>D — Ip| 12:,
which is used to initialize @ in [22] for the algorithm
of WCM.

Different from the real dictionary in [22] and [27],

the dictionary D = Iisa complex matrix due to the
complex value of CFO EM. Thus, we initialize ® by

minimizing [D” @4 ®D — 1|2, ie,
®© = min |[DHo"®D — 1. (19)
)
The objective (19) can be solved by using the
eigenvalue decomposition (EVD) of DD”  ie.,
DD = UAU”, (20)

where U is a unitary matrix, and A is a real diagonal
matrix in which the diagonal entries are the
eigenvalues of DD*’. Then, the initial value of ®,
denoted by @@, can be determined by

@0 =[1y 0] A 2U". (1)
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3). The nth Iteration of optimization
According to [22], the value of @ in the nth iteration,
i.e., ®"*D is given by

1
o) = A2 VH AU, (22)

where U and A can be obtained from eigenvalue
decomposition of DD (see (20)); A,y are the top

eigenvalues and Vyy are the corresponding
eigenvectors of

Y = A~3U"Dh, (G(”)) DHUA"3. (23)
In (23), h; (G(")) is defined as
(6) 2 1y (G7) + Bal (6) (o

FHAS @l (6).

Where the entries of /1, (G™), h,. (G™) and
Hyune (G™) are defined as

L () e
hy (G™) (i) = { G» ((i,]]-)) ise
o [GY (i), (i) € R
hue (G™) (i.j) = {0, els(e )l € 8
o [GP (), () € @
hune (6 1) = { & 57 () < e

(25)

For measurement-matrix optimizing, the proposed
FAWC satisfies the conditions of surrogate objective
of the bound-optimization method. Moreover, its
iterative minimization can guarantee the
convergence to a local solution. The proofs are
abbreviated here for the reasons that the similar
proofs can be obtained from Appendix B and
Appendix A in [22] for the conditions of
bound-optimization method and the convergence,
respectively. Similar to [22], the computation
complexity of the proposed optimization algorithm is
also O(N'®) (same as WCM), due to the application
of EVD (the complexity of EVD is N3). Therefore,
the proposed FAWC maintains a comparative
computation-complexity with WCM.

4 CFO estimation method

Based on the compressive sampling (see Section 2) and
the optimized measurement-matrix (see Section 3), the
proposed CFO estimation method first reconstructs EMV.
Then, we estimate the coarse CFO by seeking the max-
imum of the equivalent likelihood function according to
the reconstructed EMV. Finally, for the fine CFO estima-
tion, the received signal of Nyquist rate is recovered from
the reconstructed EMYV, and the likelihood function inter-
polation locates the local maximum from the result of
coarse CFO estimation.
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4.1 Sparse reconstruction of EMV

In this subsection, we will present the proposed MFB-
CoSaMP reconstruction-method for EMV (i.e., ¥ recov-
ery. The proposed reconstruction-method mainly exploits
EMYV features as priori information, and thus improves
its reconstruction-accuracy. We denote the reconstructed

EMV as ¥ and implement the CFO estimations (includ-
ing coarse and fine CFO estimation) on the basis of the
reconstructed EMV.

Among these currently available CS signal recovery
algorithms, our proposed MFB-CoSaMP mainly refer-
ences the CoSaMP algorithm due to its high reconstruc-
tion accuracy and excellent robustness to noise [23, 24].
By further referencing the methodology of model-based
CoSaMP [28], an excellent method of support-set identi-
fication is developed. The objective of MFB-CoSaMP is

to recovery the EMYV, i.e,, the algorithm output is ¥. We
describe some critical points of MFB-CoSaMP in detail as
follows.

A.1 Initialization of MFB-CoSaMP

The input parameters and initialization of MFB-
CoSaMP are similar to the CoSaMP algorithm. As for the
input parameters, we also need the measurement matrix

®, the noisy measurements y and the sparsity level K. In
—(0)
the initialization step, the initial target vector ¥  and ini-

tial residual v are, respectively, set as a zero vector and vy,
for the reason that no priori can be obtained.

A.2 Identification based on EMV proxy
Similar to classical CoSaMP algorithm in [23, 24], we
form an EMYV proxy u for CFO estimation, i.e,
u = oy, (26)
where @ is the measurement matrix optimized in
Section 3, and v is the residual of each iteration. For
description convenience, the P x 1 vector u is expressed as
u =[uy, U, ..., up]T. Unlike CoSaMP algorithm in which
2K largest components of the proxy u are located, the
MEFB-CoSaMP firstly locates the maximal amplitude in u,
ie.,
Wi = {i: luil = max{lm]|, lual, -, lupl}}. 27)
According to the W7, we then locate the other 2K — 1
indexes to form support-set Wj. In CoSaMP, the signal
components that carry a lot of energy locate in the iden-
tification process whereas the EMYV features indicate that
the significant amplitudes only gather in one circle cluster.
Thus, the maximal amplitude is of the special impor-
tance to determine the location of circle cluster due to its

usual high reliability. Starting from W3, we then search
2K — 1 indexes nearest W7 to form a circle cluster. The
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identification-result, i.e., the support set Wy, is given by

Wi =W W, 08
where W is defined as
{fi(wn =10},
R T

if |ugon—10| < |uponio] -

Where f; (X) is an index-indication function defined as

P+X, ifX<O0
X =1X, f0<X<P. (30)
X — P, other

In (28), \,’2/12 is determined by the different values of W7i:

{1, . W1+ K -1}
Uwi—K+1,---,P},W; >P—K+1;
{,---, W1 +K—1}
U{rwi—K+1),---,P}, W1 < K;
(Wi —K+1,---,W; +K — 1}, other.

31)

Wip =

A.3 Support-set merger and metric-vector estimation

After obtaining the identified support-set Wi, we unite
— (k—1)
the support-set of current approximation W to con-

struct a merger support-set T in the kth iteration, i.e.,

—(k=1)

T <« supp <'Il (32)

) Uw

Based on the merged support-set T, a least-square esti-
mation is employed. Denoting basb =[ by, by, ..., bp] and
the estimated metric-vector as b |1, we have

blr < (&1)y. (33)

Besides the estimated components b |1, the other com-
ponents of b are set as zeros, i.e.,

b < 0. (34)

Compared with CoSaMP algorithm, the procedures of
support-set merger and metric-vector estimation in the
proposed MFB-CoSaMP are similar, just with different
support-set T.

A.4 Identification based on EMV
In CoSaMP algorithm, K largest components of the
estimated b are located. By contrast, the MFB-CoSaMP

locates the maximal amplitude in b, i.e.,
Wo = {i: |b;j| = max{|b1|,|bal,---,|bpl}}. (35)

On the basis of Wy and the EMV features, K — 1 indexes
nearest to W5 in the circle cluster are searched. The



Qing et al. EURASIP Journal on Wireless Communications and Networking

identification-result, i.e., the support set Wy, is given by

| w, if K is odd

W - b
’ W(zi) U Wé?, if K is even

(36)

where W(Zo), Wgel), and Wgez) are, respectively, given by

(- [5]).

U{L"',Wz-l—LL(J , Wo < L%J,
K
2

2
et h)) 2
o[ [ o[ 5]
{Wz— [%(J, ,Wo + Igj},other.
ﬁ.(Wz— LK/2]),
R P G
if [ug w120 | < |t warixcsan | -
and
P (wa 5] +1). )
oo | K] <afow < €],
Wi {1,...,ﬁ<W2+LI§< —1)} (39)

ufwa— | 5] +1 2],
W2 > P —
fwo =[5 |+1 0w+
In (37)—(39), the index-indication function f; (X) is
defined in Eq. (30).
With the novel support-set Wy, the components of b

which indexes lie in W are reserved, while the others are
set as zeros, i.e.,

Nk

J+1;
J — 1},0ther.

walx

A.5) Update of EMV
—
In the kth iteration, the metric vector ¥  should be

updated according to b in (33), (34), and (40). Then, we
have

— (k)

¥ <« b (41)
— (k)
With current samples y and updated metric-vector ¥
the residual v (i.e., the part of the metric-vector that has
not been approximated) is replaced by

— (k)

V<—y— OoV¥ (42)

After K iterations from A.2 to A.5, the halting criterion
of MFB-CoSaMP is satisfied. Therefore, the reconstructed

— <K

VisW¥ ie,
- <K
v=v . (43)

A summary of MFB-CoSaMP algorithm is exhibited in
Table 2. Compared with the classic CoSaMP, the proposed
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Table 2 MFB-CoSaMP algorithm
Input: Measurement matrix ®, noisy measurements y, and sparsity level K.

Output: CFO EMV W

— 0
Initial: ¥ < 0, v <y k < 0.

Repeat:
aLk=k+1.
b). Form the metric-vector proxy: u = oy,
¢). Identify the circle-cluster location according to u
Wy = {i:|uil = max{lul,luzl,-- - lupl}};
W« the 2K indexes nearest toW; in index set{l, 2,- - -, P}including W;.

d). Merge the support set:

—(k=1)
)Uw1.

T <« supp (\Il
e). Least square estimation: b |1 <« (d)T)TyA
fl.b|c < 0.
). ldentify circle-cluster location according to b
Wo = {i:16il = max{lb1],1b2l,- -, 1bpl}};
W, <«the K indexes nearest toW,in index set {1, 2,- - - P} including W5.
h).b

P

i). Prune to obtain the next approximation:
()

¥ <« b
()
j). Update current samples v «<— y — @
Until: k = K
(3]
¥ «— ¥

MFB-CoSaMP can improve the reconstruction accuracy
due to its priori information exploited from the EMV fea-
tures. In CoSaMP algorithm, the support set W locates
2K largest components of {|u1], |u2|, ..., |up|}. Based on the
EMV features that the significant amplitudes gather in a
circle cluster, the MFB-CoSaMP first locates the index of
maximal amplitude in u in the W identification and then
search the 2K — 1 indexes nearest to it. The method of W
identification is also adopted for W identification, except
for the K largest components of {|b1], |b2], ..., |bp|} with the
support set Ws. In MFB-CoSaMP, the maximum of ampli-
tudes is of special importance to determine the location of
circle cluster due to its usual highest reliability.

In addition to the accuracy improvement, MFB-
CoSaMP can also reduce the computational complexity.
The comparison of computational complexity between
CoSaMP and MFB-CoSaMP is assessed as follows. Due
to the same processing for initialization, support set
merger, metric-vector estimating and updating, CoSaMP,
and MFB-CoSaMP have the same computational com-
plexity in these procedures. The main differences lie in
the procedure of support-set identification, which is pre-
sented in A.2 and A.4.In A.2 (or A.4), the CoSaMP locates
2K (or K) largest components of the proxy u (or b) from
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the total P x 1 space. Thus, the classic CoSaMP requires
21251 P—-i + ZlK:1 (P — i) real additions in each iter-
ation. In comparison to CoSaMP, MFB-CoSaMP only
locates the maximum of u (or b ) in the total P x 1 space
in A.2 (or A.4 ), and directly chooses the locations of the
other 2K — 1 (or K — 1 ) components whose locations
are located nearest to the location of the maximum. Then,
MFB-CoSaMP requires 2P real additions in each iteration.
Obviously, 2P < Y2 (P —i) + Y X, (P—i) for rea-
sonable K > 1. Therefore, the proposed MFB-CoSaMP
reduces the computational complexity compared to the
classic CoSaMP.

4.2 Coarse CFO estimation
Represented by the coarse CFO estimation, denoted as

Aﬁoarse, the reconstructed EMYV, i.e., ¥ in (43), could be
obtained as
_ ., AT

=0 (7). (8) ¥ (3F))
then, Afcoarse can be derived as

2 }

4.3 Fine CFO estimation
To implement the fine CFO estimation, we first utilize the
reconstructed EMV to recover the received signal r with
Nyquist rate. Then, an interpolation method is employed
to construct the equivalent likelihood-function. Finally,
we seek the local maximum by using the constructed

likelihood-function to estlmate the fine CFO.
From (9), we have r = T'W. With the reconstructed

(44)

Aﬁoarse = arg max [ ‘\IJ (AE,)

Afp

wherep =1,2,..., P.

EMV (i.e., ¥), the received signal r (sampled with Nyquist
rate) can be expressed as

r=T' (‘Yl + n) = IN“I\; + f-‘-n, (45)
where n is the N x 1 noise vector, which is caused by the

inaccurate reconstruction and approximate sparsity of v
Then, an approximation of r, denoted as ;, can be given
by

r=Tw=r— I'n (46)
In (46), if the dominant element-amplitudes in EMV (i.e.,
W) can be reconstructed accurately and its well sparse-
representation can be obtained, the effect of the noise
vector n will be insignificant. Fortunately, with a good
recovery-algorithm (e.g., MFB-CoSaMP) and sufficient
observations (i.e., relatively large N) at a relatively high
CNR, it is feasible to ignore the effect of noise vector n.

IXIXDXXIXDXXIXEXXIXIXIXIXI]
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With the recovered r and the coarse CFO estimation
Afcoarse, we estimate the fine CFO (denoted as Affme) near
to Afcoarse, where the frequency range for searching Affme
g, Afmarse + ;] with ¢ > 0.
Without loss of generality, ¢ is chosen as the half search-
step of the coarse CFO estimation.

is assumed to be Afmarse

According to Eq. (6) we use the tentative frequency A f
in [Afcoarse Z, Afcoarse + {] to construct N x 1 vector

r(af)as

r (A?) _ |:e—j27rAjvf~T5’e—j27rAjvf~2Ts, o ’e—jZNAF-NTS]T.
(47)

After replacing r and T (A}) with r (in (46)) and
r Af (in (47)), respectively, we express the equivalent

likelihood function as

- Ao/ AP

A <Af) - (f*w) r <Af>
Thus, the fine CFO estimation Aﬁine can be obtained
by seeking the maximum of the equivalent likelihood

function A <Af>, ie.,

(48)

A};ine =argmax (49)

T BN
(%) ()
Af
In (49), the pseudo-inverse T" can be computed and
stored in advance to save the processing resources during
the fine CFO estimation.

5 Performance evaluation

In this section, we will evaluate the performance of pro-
posed methods. For the proposed FAWC, we will evaluate
its cost function, recovery performance, and robustness.
To evaluate the proposed MFB-CoSaMP, we will con-
sider the reconstruction accuracy and robustness. For
their combines, the coarse and fine CFO-estimations are
evaluated, respectively.

5.1 Performance of optimized measurement-matrix

To verify the effectiveness of the proposed optimization-
method FAWC in Section 3, comparisons against the
WCM method in [22] are given in this subsection.

Firstly, we give the evolution of the cost function in (16)
(ie, 31 + (1 — &) ul- + aul) in Fig. 3 to observe its
convergence behavior, where, N = 128, P = N = 128,
K =5 and M = N/2 = 64. Three cases, i.e.,, « = 0.1,
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Fig. 3 The cost functions of different construction methods, i.e., the
proposed FAWC method and WCM method, where N = 128,

P =128 K =75,and M = 64. Three cases, i.e,a = 0.1, = 0.9, and
a = 0.99 are considered

a = 0.9, and o = 0.99 are, respectively, considered. For
both FAWC and WCM with a relatively large number of
iterations, the increasing o decreases the value of cost
function of FAWC. After around 20 iterations, the pro-
posed FAWC has a stable value of cost function, while
jumping occurs in WCM. Furthermore, for the given dic-

tionary D = I according to the tentative CFOs, FAWC
has a smaller value of cost function to capture small coher-
ence of concerned patterns and non-concerned patterns.

Similar to the WCM, « =~ 1 is also a good value for the
proposed FAWC method. To avoid completely ignoring
the coherence of non-concerned patterns, setting o = 1
is not considered in the following simulations of this sub-
section. At the same time, for the sake of fairness, both
WCM and proposed FAWC method employ the classic
CoSaMP method to reconstruct EMV. Note that we do not
adopt the proposed MFB-CoSaMP for the EMV recov-
ery in this subsection. We just expect to actually reveal
the improvement from the optimization of measurement
matrix, rather than our reconstruction method. We will
evaluate the MSE performance, and the MSE in this paper
is defined as

S12
|x -]

MSE =E 5
X115

, (50)

where E{-} denotes the expectation operator, X is the
estimation of X.

The MSE performance of EMYV recovery is given in Figs.
4 and 5, where N = 128, P = N = 128, o = 0.9,
and the reconstruction method is classic CoSaMP. Note
that the main purpose of introducing the circle-cluster in
Section 3 is to solve the uncertainty of sub-block when the

MSE

Proposed FAWC (K=7)

WCM (K=7)

=—HB— Proposed FAWC (K=9)

= B - WCM (K=9)

—— Proposed FAWC (K=13)

- # - WMC (K=13) i

10" L L L L J
8 12 16 20 24 28

CNR(dB)

Fig. 4 MSE vs. CNR with different measurement-matrices (optimized
by WCM and proposed FAWC, respectively) and sparsity K, where
N=128P =128 a = 0.9, and M = 64 are considered

normalized CFO is near to +0.5 or —0.5. For other cases
with the same CoSaMP recovery algorithm, similar MSE
performance can be obtained from the two optimization
methods. Thus, in this simulation, the unknown normal-
ized CFO randomly generated is near to +0.5 or —0.5. We
employ the interval [0.45,0.5) | J(—0.5, —0.45] to repre-
sent the space near to +0.5 or —0.5. The K-sparsity EMV
is formed in each simulation by the following procedure:
(a) generate a noise-free EMV with a normalized-CFO
near to +0.5 or —0.5 randomly; (b) find the maximum
among EMV element-amplitudes; (c) set the elements in
EMV to zeros except the maximum-amplitude element
and the other K — 1 elements which indexes are the

MSE

Proposed FAWC (M=64)
WCM (M=64)
—P— Proposed FAWC (M=80)
- P> = WCM (M=80)
—HB— Proposed FAWC (M=96)
- B - WCM (M=96)
107 —©— Proposed FAWC (M=112)
- © = WMC (M=112)
. . . .
8 12 16 20 24 28
CNR(dB)

Fig. 5 MSE vs. CNR with different measurement-matrices (optimized
by WCM and FAWC, respectively) and M, where N = 128, P = 128,
o =09,and K = 13 are considered
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nearest to the maximum-amplitude element (similar to
form the W5 in A.4 of Section 4). The formed EMV passes
through the noise channel and then generates measure-
ments according to the different measurement matrices
optimize by WCM and proposed optimization-method,
respectively. Different K's are adopted while M is kept as
N/2 = 64 unchanged in Fig. 4. From Fig. 4, the pro-
posed FAWC optimization-method slightly reduces the
MSE, compared with WCM. With the increasing K, a
much easier distinguishment of MSE improvement can
be observed, due to the increasing significance of suitable
concerned-patterns with a larger K. The similar conclu-
sions can also be seen in Fig. 5, where different M are
adopted while K is kept as 13. From Fig. 5, the proposed
FAWC optimization-method slightly improves the MSE
performance.

In Fig. 6, M, P, and K vary according to the varying N is
simulated, where M = N/2,P = N,K = [N/10],« = 0.9,
and three cases of CNR (i.e.,, p = 30 dB, p = 40 dB,
and p = 50 dB) are considered. From Fig. 6, with the
increasing CNR, the improvement of MSE is observed
apparently.

Besides coping with the uncertainty of sub-block, the
proposed optimization-method can also help to improve
the proposed reconstruction method, which can be seen
in the later simulations.

5.2 Effectiveness of MFB-CoSaMP

In this subsection, we compare the reconstruction per-
formance of EMV when CoSaMP and MFB-CoSaMP
are, respectively, adopted. To really present the merits
of MFB-CoSaMP, a Gaussian random matrix [16], which
is generated with each entry independently drawn from
a Gaussian distribution with zero mean and unit vari-
ance, is employed as the measurement matrix for both

WCM CNR=30dB~—_, ,

/ \
1

1

10 F \Proposed FAWC q

Proposed FAWC

. . .
128 160 192 224 256
P (or N)

Fig. 6 MSE vs. P (or N) with different measurement-matrices
(optimized by WCM and FAWC respectively), where M = N/2,P = N,
o =09,and K = [N/107 are, respectively, considered
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algorithms. We do not use the optimized measurement
matrices (e.g., the matrix optimized by WCM method or
proposed FAWC in this paper) to avoid any improvement
brought from the optimization of measurement matrix.
Similar to the MSE evaluation in Subsection 5.1 of
this section, the same procedure is adopted to generate
K-sparsity EMV and to pass through the noise chan-
nel. Then, we employ Gaussian random-matrix to com-
press EMV and obtain the measurements. To compare
the reconstruction performance of CoSaMP and MFB-
CoSaMP, Figs. 7, 8, and 9 give the MSE performance. In
Fig. 7, the MSE performance with different sparsity K's are
considered (i.e, K =7,K =9,and K = 13),and N = 128,
P =N = 128, M = N/2 = 64. It can be seen that
the proposed MFB-CoSaMP effectively reduces MSE rel-
ative to the classic CoSaMP. The similar conclusion can
also be derived from the cases of Figs. 8 and 9. In Fig. 8,
the MSE comparison with different numbers of measure-
ment, where N = 128, P = N = 128, K = 13, and four
cases of measurements (i.e., M = 64, M = 80, M = 96,
and M = 112) are considered. Particularly, in Fig. 9, the M,
P, and K are approximate linear-varying with the change
of N, i.e., N varies from 128 to 256, while M = N/2,
P = N, and K = [N/20]. Actually, K does not vary lin-
early with N, describing its as approximate linear-varying
for description convenience. Besides these basic param-
eters, three cases of CNR, i.e., p = 10 dB, p = 20 dB,
and p = 30 dB are considered. Compared with CoSaMP,
the MFB-CoSaMP obviously improve the MSE perfor-
mance in Figs. 8 and 9. Besides the MSE improvement,
Fig. 9 also illuminates that more significant improvement
can be obtained with the increase of CNR, due to more
remarkable EMV features in the higher CNR. The MSE

CoSaMP

MSE

—O— MFB-CoSaMP (K=7)
107'}| = © = CoSaMP (K=7)

=—f— MFB-CoSaMP (K=9) Proposed

= B = CoSaMP (K=9) MFB-CoSaMp
MFB-CoSaMP (K=13)
CoSaMP (K=13)
8 10 12 14 16 18 20 22 24 26 28

CNR(dB)

Fig. 7 MSE of EMV reconstruction with different reconstruction
algorithms (i.e., CoSaMP and the proposed MFB-CoSaMP) and
different sparsity K (i.e, K = 7,K = 9,and K = 13 are, respectively,
considered). Where N = 128, P = N = 128,and M = N/2 = 64 are
considered
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CoSaMP

MSE

MFB-CoSaMP (M=64)

CoSaMP (M=64)
—E— MFB-CoSaMP (M=80)
- B - CoSaMP (M=80)
107"} | =—©— MFB-CoSaMP (M=96)
- © - CoSaMP (M=96)
—pP— MFB-CoSaMP (M=112)
- Pp>= CoSaMP (M=112)

Proposed
MFB-CoSaMP

8 10 12 14 16 18 20 22 24 26 28
CNR(dB)

Fig. 8 MSE of EMV reconstruction with different reconstruction
algorithms (i.e,, CoSaMP and proposed MFB-CoSaMP) and different M
(ile,M =64 M=80M=96,andM = 112). Where N = 128,

P =N =128, and K = 13 are considered

performance improvements in Figs. 7, 8, and 9 are mainly
due to the prior-information developed from the EMV
features (see step c and g) in Table 2, or see A.2 and A.4 in
Subsection 4.1 for details).

5.3 Performance of CFO estimation

In this subsection, we discuss the influence of proposed
methods in the coarse and fine CFO estimation, respec-
tively. For the convenience of expression, some abbrevia-
tions are given as follows.

o “WCM + CoSaMP” denotes that the measurement
matrix is optimized by WCM method, and the
reconstruction algorithm is CoSaMP.

MFB-CoSaMP (CNR=10dB)
CoSaMP (CNR=10dB)
10' || =H— MFB-CoSaMP (CNR=20dB) ~
- B - CoSaMP (CNR=20dB)
—E— MFB-CoSaMP (CNR=30dB) CNR=10dB
- © - CoSaMP (CNR=30dB)
1
A
B 10° ’
L . il
="y .8 ----- H-=-===-- B
G----- o ri;
(:NF{:zoclB/"l 1 h
i = ~B—
’
A T P (0]
10y = mmm O o --® ]
4 | [<—CNR=30dB
D
L L ‘ , L
128 160 192 224 256
N

Fig. 9 MSE of EMV reconstruction with different reconstruction
algorithms (i.e,, CoSaMP and proposed MFB-CoSaMP) and different N.
Where M, P, and K vary with N, i.e, M = N/2,P = N,and K = [N/20],
three cases of CNR, i.e, p = 10dB, p = 20dB,and p = 30 dB are,
respectively, considered
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e “FAWC + CoSaMP” represents that the
measurement matrix is optimized by proposed
FAWC optimization method, and the reconstruction
algorithm is CoSaMP.

e “WCM + MFB-CoSaMP” denotes that the
measurement matrix is optimized by WCM method,
and the reconstruction algorithm is MFB-CoSaMP.

e “FAWC + MFB-CoSaMP” represents that the
measurement matrix is optimized by FAWC, and the
reconstruction algorithm is MFB-CoSaMP.

e “ML (Nyquist Rate)” denotes ML-based coarse CFO
estimation with the Nyquist-rate sampling.

Unlike the known sparsity in aforementioned simu-
lations, the sparsity K during the CFO estimation is
usually unknown in practical systems. Thus, a spar-
sity level (i.e., inexact sparsity) is employed in this
Section. To obtain a reasonable sparsity level, we use
the maximum-amplitude of EMV to set the thresh-
old. The maximum-amplitude can be expressed as
= [0 () o) (47
\\J (Aﬁ,) ,p = 1,2,---,Pis defined in (4). Three thresh-
olds,i.e., Thy = 0.1xy, Thy = 0.05xy,and Ths = 0.01 x
y, are considered. The amplitude larger than Th;,i =
1,2,3, is viewed as the significant amplitude under the
threshold T'4;, and the number of significant amplitudes is
counted as sparsity-K in each experiment. The 10° statis-
tical experiment results are given in Tables 3 and 4, where
the ceiling operator is employed to make the mean value
and variance be an integer.

From Tables 3 and 4, choosing the moderate threshold
Thy can commendably cover significant amplitudes and
holds a relatively small K for a good reconstruction accu-
racy, while Th3 keeps a better approximation at the cost
of a bigger K. In this paper, we always consider the case
P = N. Increasing P or N can make the significant ampli-
tudes of EMV more concentrated and easier to cover with
a smaller K. The sparsity levels are given as follows.

’

}, where

e For N = 128, we choose K = 10 as the sparsity-level
according to its mean with Thy. Because Th; is high
and only one element of EMV is reserved (according
to the mean), T3 results in a too big K to ensure the
measurements M < N.

e For N = 256, we would like to choose the sparsity
level as K = 23 according to the mean with Ths.

Table 3 Mean value of spasity-K with different thresholds

P(=N) 128 256 512 1024
Mean-value of K (Thy) 1 1 1 1
Mean-value of K (Thy) 10 6 4 3

Mean-value of K (Ths) 61 23 12 7
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Table 4 Variance of spasity-K with different thresholds

P(=N) 128 256 512 1024
Variance of K (Thy) 0 0 0 0
Variance of K (Thy) 35 36 23 13
Variance of K (Ths) 1792 828 503 278

e For N =512 and N = 1024, the threshold Ths is
usually employed, while the mean and variance with
Th3 are simultaneously considered, since N is large
enough to cover more significant-amplitudes of EMV.
Then, the sparsity levels are, respectively, chosen as

35 (12 + [ /503 |) and 37 (7 + [ V3 % 287]).

e For simulation convenience, we also choose
sparsity-level as K = [N /107 in some simulations.

C.1 Performance CFO
estimation

Compared with the WCM optimization, we firstly ver-
ify the correct probability of coarse CFO-estimation can
be improved by using the proposed FAWC. The correct

coarse CFO estimation is defined as

evaluation of coarse

A_}“ - Afcoarse TS E %) (51)
i.e., the offset between the estimated CFO and the real
CFO is no more than a half search-step A. In this paper,
the search-step for coarse CFO estimation is set as A =
1/P.

The correct probability of coarse CFO estimation is
given in Fig. 10, where N = 128, P = N = 128,
a = 09, M = N/2 = 64, and K = 10 (according
to Thy in Table 3). The measurement matrix is opti-
mized by FAWC and WCM, respectively. As for the
unknown normalized CFO, which is randomly generated
in [4.5,40.5) or (—0.5, —4.5] to illuminate the proposed
optimization method, can solve the uncertainty of sub-
block. Compared with “WCM + CoSaMP’, “FAWC +
CoSaMP” proves that the proposed measurement matrix
can improve the correct probability due to its same
recovery algorithm (i.e., CoSaMP). Similar to “WCM +
CoSaMP’, “WCM + MFB-CoSaMP” shows recovery effec-
tiveness of MFB-CoSaMP since the WCM is utilized in
both methods. Although MFB-CoSaMP presents a sig-
nificant improvement relative to “WCM + CoSaMP’,
the proposed measurement matrix (i.e., the measure-
ment matrix optimized by the FAWC) can arouse further
improvement. Thus, the correct probability of “FAWC
+ MFB-CoSaMP’, which is nearest to that of ML, can
obtain the best improvement of coarse CFO estimation.
Figure 10 manifests the effectiveness of the FAWC and
MEFB-CoSaMDP, i.e., FAWC and MFB-CoSaMP can inde-
pendently or jointly improve the correct probability of
coarse CFO estimation.
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’ 3% ML (Nyquist Rate)
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0.9

1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18
CNR (dB)

Fig. 10 Correct probability of coarse CFO estimation. Where different
measurement-matrices (i.e., constructed by the proposed FAWC
method and WCM method), N = 128, P =N = 128, = 0.9, K = 10,
and M = N/2 = 64 are considered

To elaborate the parameter influence, we, respectively,
investigate the influences of K, M, and N in Figs. 11, 12,
and 13, where normalized CFO is randomly generated
in [—0.5,+0.5). With different K (ie, K = 7, K = 9,
K = 13) and the same other parameters of the simu-
lation in Fig. 10, the correct probability of coarse CFO
estimation is given in Fig. 11. Again, we can see that the
proposed FAWC and MFB-CoSaMP can jointly improve
the correct-probability of coarse CFO estimation, com-
pared with “WCM + CoSaMP”. Besides the improvement

;s ML (Nyquist Rate)
—O— FAWC + MFB-CoSaMP(K=7)
;3 - © - WCM + CoSaMP(K=7)
: —&— FAWC+ MFB-CoSaMP(K=9)
~[ ' WCM + CoSaMP(K=9)
—+— FAWC + MFB-CoSaMP(K=13)
4 WCM + CoSaMP(K=13)

Correct Probability of Coarse CFO estimation

-8 -4 0 4 8 12 16
CNR (dB)

Fig. 11 Correct probability of coarse CFO estimation with different K.
Where N = 128,P = N =128, a = 0.9, M = N/2 = 64, different
measurement-matrices (i.e., constructed by the FAWC method and
WCM method), and different K (e, K = 7,K = 9,K = 13) are
considered
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ML (Nyquist Rate)
—O— FAWC + MFB-CoSaMP (M=80)
075h - Q' WCM + CoSaMP (M=80)

N —f— FAWC + MFB-CoSaMP (M=96)
- B = WCM + CoSaMP (M=96)
—+— FAWC + MFB-CoSaMP (M=112)
+ == WCM + CoSaMP (M=112)

Correct Probability of Coarse CFO estimation

-8 -4 0 4 8 12 16
CNR (dB)

Fig. 12 Correct probability of coarse CFO estimation with different M.
Where N = 128, P =N =128, a = 0.9, K = 13, different
measurement-matrices (i.e., constructed by FAWC method and WCM
method), and different M (i.e, M = 80, M = 96,and M = 112) are
considered

of correct probability, it looks like the smaller K (near the
sparsity-level K = 10) obtains better correct probabil-
ity when CNR is relatively low (e.g., p < —4 dB). When
p > —4 dB, the influence of K (near the sparsity-level) is
not clear.

During the simulation in Fig. 11, we fix sparsity K = 13
(near to 10, and [N/10] = [128/10] =13), change M, and
keep other parameters the same. The curves of correct
probability with different M are plotted in Fig. 12, where

-—-"

—7~— FAWC + MFB-CoSaMP (N=160)
V' WCM + CoSaMP (N=160,
—8— FAWC + MFB-CoSaMP

Correct Probability of Coarse CFO estimation
o
3
O g
~
~

N=192) | |
Ry - B = WCM + CoSaMP (N=192)
S —O6— FAWC + MFB-CoSaMP (N=224)
o7k J =0~ WCM + CoSaMP (N=224) ]

—4— FAWC + MFB-CoSaMP
“ 14 WCM + CoSaMP (N=256
06 = 14 L L L L L L L

-8 -6 -4 -2 0 2 4 6 8
CNR (dB)

N=256)

~

Fig. 13 Correct probability of coarse CFO estimation with different N.
Where P = N, M = N/2 ¢ =0.9, K =13, different measurement-matrices
(i.e,, constructed by FAWC method and WCM method), and different

N (e, N=160,N =192, N = 224 and N = 256) are considered
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N = 128, P = N = 128, = 0.9, K = 13, differ-
ent measurement-matrices (i.e., optimized by the FAWC
method and WCM method), and different Ms (i.e., M =
80, M = 96, and M = 112) are considered.With the
increase of M, higher correct probability can be obtained,
and the improvement is much easier to observe in lower
CNR. In Fig. 13, M, P, and K vary with the change of
N, where M = N/2,P = N,a = 09, K = [N/10].
Compared with “WCM + CoSaMP’, the “FAWC + MFB-
CoSaMP” improve the correct probability of coarse CFO
estimation. When CNR is relatively low, e.g., p < —4 dB,
the bigger N obtains a higher correct probability for both
“WCM + CoSaMP” and “FAWC + MFB-CoSaMP’, while
this rule is not certain for higher CNR. Even so, it is clear
that the improvement from “FAWC + MFB-CoSaMP”
obviously exists.

According to the aforementioned coarse CFO esti-
mation, our “FAWC + MFB-CoSaMP” can effectively
improve its correct probability compared with the con-
ventional “WCM + CoSaMP”.

C.2 Performance of fine CFO estimation

Under the compressive sampling scenario, our objec-
tive is to obtain a better MSE of fine CFO-estimation,
compared with the conventional CS-based method. Fur-
thermore, the MSE performance, which can reach the
Cramér-Rao lower Bound (CRLB) of Nyquist rate, is also
expected. From [15], the CRLB with Nyquist rate is given

by
3 1

RLB = : :
¢ 27272 pN (N? —1)

(52)

where the CNR p is defined in (2).

Firstly, we investigate the MSE performance of fine CFO
estimation with different numbers of measurement. The
performance evaluation is given in Fig. 14, where N = 128
P =N,a =09, K = 10, different measurement matrices
(i.e., constructed by the proposed optimization method
and WCM method), and different M (i.e, M = 64, M =
96, and M = 112) are considered. From Fig. 14, the pro-
posed method, i.e., “FAWC + MFB-CoSaMP’, improves
the MSE performance, compared with the conventional
“WCM + CoSaMP” It is obvious that the increasing M
makes a better MSE for both “FAWC + MFB-CoSaMP”
and “WCM + CoSaMP”. Regrettably, sustained increasing
of M cannot obtain significant MSE-improvement for the
relative large M (e.g., M > 96) and relative high CNR
(CNR p > —2 dB).

Based on the statistics of sparsity-K (listed in Tables 3
and 4), the MSE performance with different K is shown
in Fig. 15, where N = 128 P = N, M = 96, « = 0.9.
In addition to the sparsity level K = 10, three cases
of K, ie, K = 7, K = 9, and K = 13 are, respec-
tively, considered. From Fig. 15, the proposed method,
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. . . .
== WCM+CoSaMP(M=64)

S, —4— FAWC+MFB-CoSaMP(M=64)
‘N, WCM+CoSaMP(M=96) 1
N FAWC+MFB-CoSaMP(M=96)
1 O ' WCM+CoSaMP(M=112)
—©— FAWC+MFB-CoSaMP(M=112)
= # = ML (Nyquist Rate)
"""" CRLB(Nyquist Rate)

n

MSE

Fig. 14 MSE of fine CFO-estimation with different M. Where N = 128
P=N,a =09, K = 10 (according to Table 3), different
measurement-matrices (i.e., constructed by the proposed FAWC
method and WCM method), and different M (i.e, M = 64, M = 96,
and M = 112) are considered

i.e.,, “FAWC + MFB-CoSaMP’, has a better MSE perfor-
mance than conventional “WCM + CoSaMP”. For both
“FAWC + MFB-CoSaMP” and “WCM + CoSaMP’, the
smallest MSE is reached at K = 7 under the low CNR
(e.g., p < —2 dB). When CNR is high (e.g., p > 2 dB) the
smallest MSE is obtained by K = 13. That is to say, the
higher CNR or the lower noise makes a larger K which is
chosen to cover enough significant amplitudes and get a

@' WCM + CoSaMP (K=7)
—O— FAWC + MFB-CoSaMP(K=7)
+ == WCM + CoSaMP (K=9)
=——— FAWC + MFB-CoSaMP(K=9)
WCM + CoSaMP (K=13)
FAWC + MFB-CoSaMP(K=13) | 3
= # = ML (Nyquist Rate)
"""" CRLB(Nyquist Rate)

MSE

Fig. 15 MSE of fine CFO-estimation with different K. Where N = 128
P=N,M=96,a = 009, different measurement-matrices (i.e.,
constructed by the FAWC method and WCM method), and different K
(e, K =7,K=9 and K = 13) are considered
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better EMV approximation. Actually, the influence of the
given sparsity-K in Fig. 15 is not significant.

Unlike coarse CFO-estimation that only EMV requires
to recover, the fine CFO-estimation usually need the
recovered signal r at Nyquist rate to construct the equiv-
alent likelihood function (see Subsection 4.1). An approx-
imation of received signal r is given in (46). In (46), we
require a good enough approximation of EMV, and thus
the enough “energy” of EMV could be covered. It looks
like a larger K is more effective for a relative high CNR
(e.g., in Fig. 15). However, larger K usually results in a
worse reconstruction accuracy. From Tables 3 and 4, a
larger N can make the “energy” more concentrated in
EMV. To balance K and covered “energy’, a larger N is a
good choice.

To verify the feasibility that the larger N can get the bet-
ter MSE performance, the simulation is given in Fig. 16,
where P = N, M = [0.85 x N],K = [0.1 x N], ¢ = 0.9,
N = 128, N = 192, and N = 256 are, respectively,
considered. As we expected, increasing N can reduce the
MSE for both “FAWC + MFB-CoSaMP” and “WCM +
CoSaMP’, and the proposed “FAWC + MFB-CoSaMP” can
obtain a smaller MSE than “WCM + CoSaMP” for each N.

Another phenomenon observed in Fig. 16 is that the
larger N, the closer MSE to its CRLB could be obtained.
To verify this, an extended simulation is given in Fig. 17,
where P = N, M = [0.85 x N|, K = [0.1 x N7,
o = 0.9, and three cases of N (i.e., N = 256, N = 512,
and N = 1024) are considered. It is obvious that the large
N can make MSE easily reach the CRLB in spite of the
insignificant discrepancy.

WCM + CoSaMP (N=128)
FAWC + MFB-CoSaMP(N=128)
+ B WCM + CoSaMP (N=192) E
—H— FAWC + MFB-CoSaMP(N=192)
O WCM + CoSaMP (N=256)
—6— FAWC + MFB-CoSaMP(N=256)|3
ML (Nyquist Rate, N=128)
CRLB (Nyquist Rate, N=128)
= ML (Nyquist Rate, N=192) E
= = = CRLB (Nyquist Rate, N=192)
= ML (Nyquist Rate, N=256)
= = = CRLB (Nyquist Rate, N=256) |3

MSE

Fig. 16 MSE of fine CFO-estimation with different N. Where P = N,

M = [085x N7, K = [0.1xN], « = 0.9, different measurement-matrices
(e, constructed by the proposed optimization method and WCM
method), and different Nie, N = 128, N = 192, and N = 256, are
considered
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10 T T T T T
- <4 WCM + CoSaMP (N=256)
=—+— FAWC + MFB-CoSaMP(N=256)
= = = CRLB(Nyquist Rate, N=256) E
WCM + CoSaMP (N=512)
FAWC + MFB-CoSaMP(N=512)
CRLB(Nyquist Rate, N=512) a
@' WCM + CoSaMP (N=1024)
—O— FAWC + MFB-CoSaMP(N=1024)
= = = CRLB(Nyquist Rate, N=1024)

MSE

Fig. 17 MSE of fine CFO-estimation with different N. Where P = N,
M= 10.85xN7],K = [0.1 x N1, = 0.9, different measurement-matrices
(i.e, constructed by the proposed FAWC method and WCM method),
and different Nie, N = 256, N = 512, and N = 1024, are considered

6 Conclusions

In this paper, a preliminary study for CFO estimation
based on compressed sensing has been exhibited. We first
confirmed that compressive sampling is feasible for ML-
based CFO estimation. To solve the number uncertainty
of sub-block in block-sparsity CS scenarios, we then intro-
duce the circle cluster, propose a new coherence-pattern,
and form an FAWC optimization-method by exploiting
the features of EMV. Compared with WMC, the proposed
FAWC shows improvements in full-performance evalua-
tions. FAWC can obtain smaller value of cost function to
capture small coherence, can obtain a better convergence.
Beside the properties of small coherence and good con-
vergence, FAWC effectively solves the uncertainty of sub-
block and thus improve the reconstruction accuracy and
robustness to sparsity level, receive signal length, and the
measurements. Furthermore, based on the EMV features,
the MFB-CoSaMP is proposed to boost the support set
mergence, improve the reconstruction accuracy, reduce
the computational complexity, and hold the improvement
robustness against the simulation parameters. Finally, the
jointed “FAWC + MFB-CoSaMP” has been verified by
the elaborate performance evaluations. For example, the
MSE performance which is close to the CRLB is better
than that of “WCM + CoSaMP’, “WCM + MFB-CoSaMP’,
or “FAWC + MFB-CoSaMP’, while the improvement is
robust to the simulation parameters (e.g., sparsity level,
number of measurement, and receive signal length).
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