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Abstract

In this paper, a method for approximating the probability distribution of sum of independent and identical Weibull
random variables is adopted to analyze the performance of equal gain combiner (EGC) receiver over non-identical
Weibull fading channel (WFC). Our main result is to derive a generalized expression of the probability density function
(PDF) of the signal-to-noise ratio (SNR) at the EGC output in the case of non-identical WFC. Based on this PDF, accurate
approximation of significant performance criteria, such as outage probability (OP), the amount of fading (AoF), and
average symbol/bit error probability (ASEP/ABEP), are derived. In addition, we derived the analytical expressions for
channel capacities under various adaptation policies such as optimal rate adaptation (ORA), optimal simultaneous
power and rate adaptation (OPRA), channel inversion with fixed rate (CIFR), and truncated channel inversion with fixed
rate (TCIFR). The proposed mathematical analysis is complemented by several numerical results and validated using
Monte Carlo simulation method.

Keywords: Equal gain combining (EGC), Cumulative distribution function (CDF), Probability density function (PDF),
Moment generating function (MGF), Average symbol/bit error probability (ASEP/ABEP), Adaptation policies, Fox
H-function, Meijer G-function

1 Introduction
Antenna diversity is one of the most practical, effective,
and widely employed technique in wireless communica-
tion receivers to reduce the effects of fading and to provide
increased signal strength at the receiver. Different tech-
niques are known to combine the signals received from
multiple diversity branches. The most popular diversity
techniques are equal-gain combining (EGC), maximal-
ratio combining (MRC), selection combining (SC), and a
combination of MRC and SC, called generalized-selection
combining (GSC). The SC receiver chooses the branch
with the strongest instantaneous signal-to-noise ratio
(SNR), while MRC provides optimal performance, at the
expense of implementation complexity, since it requires
knowledge of all channel parameters. In EGC receiver,
the signals in all branches are weighted with the same
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factor, irrespective of the signal amplitude. Moreover, co-
phasing of all input signals is needed to avoid output signal
cancellation. The performance of EGC and MRC diver-
sity receivers has been extensively conducted in many
previous works for several well-known fading statistical
models, such as Rayleigh, Rice, and Nakagami—assuming
independent or correlative fading [1–6]. The Weibull dis-
tribution is a well-known model for describing multipath
fading channels in both indoor and outdoor radio prop-
agation environments. In [7], novel analytical expressions
for the joint probability density function (PDF), moment
generating function (MGF), and cumulative distribution
function (CDF) are derived for the multivariate Weibull
distribution. The presented theoretical results are applied
to analyze the performance of several diversity receivers
such as SC, EGC, and MRC techniques operating under
correlated Weibull fading channels (WFC). For these
diversity receivers, several useful performance criteria
such as moments of output SNR, including the amount of
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fading (AoF), and outage probability (OP) are analytically
derived. Moreover, the average symbol error probability
(ASEP) for several coherent and noncoherent modula-
tion schemes is studied usingmoment generating function
(MGF) approach. In [8], capitalizing on the general α-μ
fading model simple and precise closed-form approxima-
tions to the PDF and CDF of the sum of independent and
identically distributed (i.i.d) Weibull variates are derived.
These approximations find applicability in several wire-
less communications issues such as signal detection and
combining, linear equalizers, intersymbol interference,
and phase jitter [8]. Considering related works, C. Sagias
et al. [9, 10], have presented a moments-based approach
to analyzing the performance of dual-branch EGC and
MRC receivers, operating under either independent or
correlated, but not necessary identically distributedWFC.
In this respect, significant performance criteria, such as
average output SNR, AoF, and spectral efficiency at low
power regime, are extracted in closed-forms, using the
moments of the output SNR for both independent and
correlative fading cases. Using the same approach of the
moment, El Bouanani [11–14] has generalized this idea
to L-branches over independent and not necessary identi-
cally distributed (i.n.i.d) Weibull fading channels for both
MRC and EGC receivers. Consequently, he has derived
some performance criteria such as AoF, MGF, average
capacity (AC), and ASEP in closed forms. In [15], we
have generalized the same idea to derive the approximate
expressions of MRC performance criteria over correlated
WFC.
In this paper, we propose a tight approximate expression

of the output SNR PDF by generalizing the approximate
CDF convolution derived in [16] to non-identical Weibull
random variates (RVs). The tightness of this approximate
CDF is proved and validated by using the Kolmogorov–
Smirnov statistical method. Based on this approxima-
tion, closed expressions of statistical characteristic, of an
EGC receiver, given in terms of well-known hypergeomet-
ric function, related to PDF, OP, and MGF are derived.
Other performance criteria such as AoF, ASEP, average
bit error probability (ABEP) , average capacity (AC) under
optimal rate adaptation with constant transmit power
(ORA), capacity under optimal simultaneous power and
rate adaptation (OPRA), channel inversion with fixed
rate (CIFR), and truncated channel inversion with fixed
rate (TCIFR) schemes are presented in tight closed-form
approximation. After this introduction, Section 2 deals
with the communication system model with EGC com-
biner over Weibull fading channels. Section 3 shows
the statistical characteristics of EGC over WFC such as
PDF and MGF. Section 4 presents several novel closed-
expressions in terms of well-known hypergeometric func-
tions such as that AoF, OP, AC, OPRA capacity, CIFR
capacity, TCIFR capacity, and ABEP and ASEP for M-PSK

and M-FSK modulation schemes. In Section 5, all results
are illustrated and verified by computer simulations using
Mathematica software. Finally, Section 6 contains a brief
conclusion.

2 Channel model
We consider EGC receiver operating over slow frequency-
nonselective WFC. The received channel gain R is
expressed as

R =
∑L

i=1 Ri√
L

(1)

Where L is the number of the receiver antenna and Ri
be the fading amplitude corresponding to the received sig-
nals on the ith EGC-branch, assumed being i.n.i.dWeibull
(β ,ωi) RV with PDF:

fRi (x) = βxβ−1

ω
β
i

e−
(

x
ωi

)β

,x ≥ 0 (2)

where β and ωi are the shape and scale parameters of Ri
linked with its second moment by the following expres-
sion

ωi =
⎡

⎣
E
[
R2
i
]

�
(
1 + 2

β

)

⎤

⎦

1
2

(3)

Let Es and N0 denote the average symbol energy and
the thermal noise power spectral density, respectively. The
instantaneous EGC output SNR is expressed in terms of
instantaneous SNR γi at the ith input branch as [13]

γ = 1
L

( L∑

i=1

√
γi

)2

(4)

with

γi = Es
N0

R2
i (5)

Let αi = ωi

√
Es
N0

. Substituting (5) in (3), we obtain

αi =
√
√
√
√

γ i

�
(
1 + 2

β

)

3 Statistical characteristics
In this section, we begin by recalling the main result of
Johnson [16] regarding the derivation of a tight approxi-
mate CDF of the sum of i.i.d Weibull RVs. Furthermore,
we derive the approximate PDF of output SNR at EGC
receiver operating under i.i.d WFC. Our main result is to
generalize this approximation to be also valid in the case
of i.n.i.d WFC.



Bessate and El Bouanani EURASIP Journal onWireless Communications and Networking  (2017) 2017:3 Page 3 of 12

3.1 PDF of the sum of i.i.d Weibull RVs
Let us bear in mind that the sum PDF ofWeibull RVs is till
now difficult, if not impossible, to be derived analytically.
Among several works tried to approximate it, [16] is one
of the most important. The author has derived a very tight
approximate CDF for sum of identical (ω = ωi) Weibull
RVs

FT (t) ≈ 1 − exp
[

−
(

σ t
ω

)β
] L−1∑

i=0

(
σ t
ω

)βi

i!
(6)

with T = ∑L
i=1 Ti,Ti is a Weibull(ω,β) RV, and σ =

�(L+1/β)
L!�(1+1/β)

.
Hence, its PDF can be approximated by deriving the

expression (6)

fT (t) ≈ β

t
exp

[

−
(

σ t
ω

)β
]

×
⎛

⎜
⎝

L−1∑

i=0

[(
σ t
ω

)β
]i+1

i!
−

L−1∑

i=1

(
σ t
ω

)βi

(i − 1) !

⎞

⎟
⎠

(7)

By using the change of variable j = i+1 in the first sum,
we obtain

fT (t) � σβ

ω (L − 1) !

(
σ t
ω

)βL−1
exp

[

−
(

σ t
ω

)β
]

(8)

which represents the PDF of generalized Gamma (GG) RV
[17] with parameters ω

σ
,βL, and β .

3.2 PDF of output SNR at EGC receiver
3.2.1 Case of i.i.dWFC
Lemma 1 Let us assume that the scale parameter of γi

is constant (αi = α = ω
√
Es/N0). The square root of

instantaneous SNR γi is a Weibull(α,β).

Proof using the references (2) and (5), and proceeding
by Jacobian transform, the PDF of the square root of γi can
be expressed as

f√γi (x) = βxβ−1

αβ
exp

[

−
( x

α

)β
]

(9)

which concludes the Lemma proof.

Proposition 2 The output SNR at the EGC receiver over

i.i.d WFC can be approximated by a GG
([

α

σ
√
L

]2
, βL

2 , β
2

)

RV

fγ (γ ) ≈
(σ

α

)2 Lβ

2(L − 1)!

(σ

α

√
Lγ

)βL−2

exp
[

−
(σ

α

√
Lγ

)β
] (10)

Proof Let us denote T = ∑L
i=1

√
γi. Adopting the

expression in (8), and considering the Lemma above, the
equation in (8) can be rewritten as

fT (t) ≈ β

t(L − 1)!

(σ

α
t
)βL

exp
[

−
(σ

α
t
)β
]

(11)

Using the expressions (4) and (11), and proceeding by
Jacobian transform, we get (10) which concludes the proof
of the proposition.

3.2.2 Case of i.n.i.dWeibull RV
It is known that two RVs are equal or very close, respec-
tively if and only if their moments are equal or very close,
respectively. Let us begin by computing both exact and
approximate nth moment of output SNR.

a. Exact nth moment of γ

Let’s define E [γ n] = 1
Ln U

(n)
L the exact nth

moment of output SNR at EGC combiner. Using
multinomial theorem, it can be seen thatU(n)

L can be
computed easily by the recurrence relation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E [γ n] = 1
Ln U

(n)
L

U(n)
L = E

[(∑L
i=1

√
γi
)2n

]

= ∑2n
i=0 Ci

2nU
(i)
L−1E

[

γ
n− i

2
L

]

U(0)
i = 1,U(n)

1 = E
[
γ n
1
]

(12)

where the nth moment of γi is given by [14] as

E
[
γ n
i
] = �

(

1 + 2n
β

)
⎛

⎝ γ i

�
(
1 + 2

β

)

⎞

⎠

n

(13)

b. Approximate nth moment of GG RV
Let μ be a real positive and Z be a GG

(
μ, βL

2 , β
2

)

RV. The nth moment of Z can be computed as

E
[
Zn] =

∫ +∞

0
xnfZ(x)dx (14)

Substituting the PDF (10) into (14), and taking the

change of variable y =
(
x
μ

) β
2 , the nth moment of Z

can be expressed briefly as

E
[
Zn] = μn

�
(
L + 2n

β

)

(L − 1)!
(15)

Proposition 3 The output SNR at the EGC receiver over
i.n.i.dWFC can be also approximated by a GG

(
θ2, βL

2 , β
2

)

RV

fγ (γ ) ≈ λ exp
[

−
( γ

θ2

) β
2

]
( γ

θ2

) β
2

(
L− 2

β

)

(16)
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where

θ = ρ

σ
√
L

(17)

with

ρ =
∑L

i=1 αi
L

=
∑

i=1
√

γ i

L�
1
2
(
1 + 2

β

) (18)

and

λ = β

2θ2(L − 1)!
(19)

Proof To compare the exact and approximate nth
moment, we will proceed by two approaches. When β is
sufficiently large, an analytical approach, based on approx-
imation at infinity of both exact and approximate nth
moments, is used to prove equality between them. Other-
wise, plotting the two moment curves, for several values
of ϕ and β , will be useful to show the closeness between
the two expressions.

a. Analytical approach
Let γA denote the GG RV that approximates output
SNR γ at EGC receiver. Substituting (18) in (17) and
substituting (17) in (15) by taking μ = θ2, the nth
exact moment of γA can be rewritten as

E
[
γ n
A
] =

(L! )2n �2n
(
1 + 1

β

)
�
(
L + 2n

β

)

(L − 1)! L3n�2n
(
L + 1

β

)
�n

(
1 + 2

β

)

×
( L∑

i=1

√
γ i

)2n

(20)

Now, using the identity ([21],/06.05.06.0021.01)
for great values of β , we obtain the following approx-
imation:

�

(

L + 2n
β

)

∼ (L − 1)!
(

1 + �(L)
2n
β

)

(21)

�2n
(

L + 1
β

)

∼
(

(L − 1)!
(

1 + �(L)
1
β

))2n
(22)

∼ [(L − 1)! ]2n
(

1 + �(L)
2n
β

)

�2n
(

1 + 1
β

)

∼
(

1 + �(1)
2n
β

)

(23)

�n
(

1 + 2
β

)

∼
(

1 + �(1)
2n
β

)

(24)

where �(.) is the digamma function that represents
the first derivation of Gamma function.

Substituting (21), (22), (23), and (24) into (20), we
deduce that

E
[
γ n
A
] ≈ 1

Ln

( L∑

i=1

√
γ i

)2n

, (25)

On the other hand, the nth exact moment of the
output SNR can be expressed by using (12) as

E
[
γ n] = 1

Ln
∑

k1+..+kL=2n

2n!
k1! . . . kL!

L∏

i=1
�

(

1 + ki
β

)

×
⎛

⎝ γ i

�
(
1 + 2

β

)

⎞

⎠

ki
2

(26)

Based on the same approximation used previously,
we can note that

�

(

1 + ki
β

)

∼
(

1 + �(1)
ki
β

)

(27)

�
ki
2

(

1 + 2
β

)

∼
(

1 + �(1)
ki
β

)

(28)

By replacing (28) and (27) into (26), it follows that
the nth exact moment can be approximated, for great
values of β , by

E
[
γ n] ≈ 1

Ln

( L∑

i=1

√
γ i

)2n

(29)

Consequently, for each natural integer n, the exact
and approximate nth moments can be approximated
by the same expression as given by (25) and (29).
Thereby, the two RV γ and γA are very close.

b. Curve-based approach
Taking into account that it is very difficult to

upper bound the error between exact and approxi-
mate moment, we will opt for a graphical approach
by plotting the curves of the moments versus the
power delay profile ϕ and the shape parameter β . See
the evaluation section.

From the results depicted in these figures, we
deduct that the fifth first exact and approximate
moments are very close, which concludes the proof
of the proposition.

E
[
γ n]

A � E
[
γ n] , 1 ≤ n ≤ 5
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3.3 MGF of the output SNR γ

Proposition 4 The moment generating function of γ for
EGC receiver over i.n.i.d Weibull fading channels can be
tightly approximated for any positive real t by

Mγ (t) � λ

t
H1,1
1,1

⎛

⎝
(

1
θ2t

)β/2
∣
∣
∣
∣
∣
∣

(
0, β

2

)

(
L − 2

β
, 1
)

⎞

⎠ (30)

Proof The moment generating function (MGF) of γ is
by definition Mγ (t) = ∫∞

0 exp [−tγ ] fγ (γ )dγ , replacing
the PDF in reference (16) by its term, we obtain

Mγ (t) = λ

∫ ∞

0
exp [−tγ ] exp

[

−
( γ

θ2

) β
2

]

×
( γ

θ2

) β
2

(
L− 2

β

)

dγ

Now, rewriting the PDF in (16) and the exponential
function as a Meijer G-function ([21], /07.34.03.0228.01)
we obtain the following expression

Mγ (t) = λ

∫ ∞

0
G1,0
0,1

(

tγ
∣
∣
∣
∣
−
0

)

G1,0
0,1

(
( γ

θ2

) β
2
∣
∣
∣
∣

−
L − 2/β

)

dγ

Using the equality ([21], /07.34.21.0012.01) the MGF
can be written as mentioned in (30).

4 Performance criteria
4.1 Outage probability of the output SNR γ

Let γth be the minimum SNR threshold that guarantees
the reliable communication and having the correspond-
ing channel not in outage. Regarding the CDF and PDF
of GG RV given by (6) and (8), respectively, and consider-
ing the expression PDF (16), the outage probability can be
expressed as

Pout = Fγ (γth) = 1 − exp
[

−
(γth

θ2

) β
2

] L−1∑

i=0

(
γth
θ2

) βi
2

i!

(31)

with θ is expressed in (17).

4.2 Amount of fading (AoF)
The amount of fading (AoF) is a simple measure for the
performance of a diversity system which is defined as

ηγ = μ2

μ2
1

− 1 (32)

with μ2 and μ1 are respectively the first and second
moment of the output SNR γ .

Let’s compute the first and second approximatemoment
of γ from (15) and substituting it into (32). The AoF for
an EGC combiner operating under i.n.i.d WFC can be
approximated by

ηγ �
�
(
L + 4

β

)
(L − 1)!

�2
(
L + 2

β

) − 1 (33)

4.3 Capacity under ORA policy
The channel capacity under ORA policy 〈C〉ORA can be
obtained, in the case of flat-fading channel, by averaging
over the distribution of the received SNR γ that of AWGN
channel

〈C〉ORA = E
[
log2 (1 + γ )

]
(34)

=
∫ +∞

0
log2 (1 + γ ) fγ (γ )dγ

The capacity under the ORA scheme is also called
ergodic capacity. Rewriting the expression of the approx-
imate PDF given by (16) by Meijer G-function and sub-
stituting it with ([21], /07.34.03.0456.01) into (34), and
using the equality ([21], /07.34.21.0012.01), the 〈C〉ORA
under EGC diversity over i.n.i.d Weibull fading channels
is tightly approximated by a Fox H-function

〈C〉ORA � λ

ln 2
H3,1
2,3

⎛

⎝θ−β

∣
∣
∣
∣
∣
∣

(
−1, β

2

)
,
(
0, β

2

)

(
L − 2

β
, 1
)
,
(
−1, β

2

)
,
(
−1, β

2

)

⎞

⎠

(35)

4.4 Capacity under OPRA policy
The capacity under OPRA policy can improve the ergodic
capacity, By varying the rate and power. Let γ0 denotes
the optimal threshold SNR below which no data is trans-
mitted. Under this scheme, the capacity is known as [18]

〈C〉OPRA =
∫ +∞

γ0
log2

(
γ

γ0

)

fγ (γ )dγ (36)

Proposition 5 The capacity under OPRA policy of EGC
receiver operating under i.n.i.d WFC is approximated by

〈C〉OPRA � 2
β ln 2

L−1∑

i=0

� (i, x0)
i!

(37)

where x0 =
(

γ0
θ2

) β
2 and � (., .) denote the upper incom-

plete gamma function.
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Proof Performing some algebraic operations and using
the integration by parts, the integral in (36) can be rewrit-
ten as

〈C〉OPRA = 1
ln (2)

[
ln (γ )

(
Fγ (γ ) − 1

)]∞
γ0

− 1
ln (2)

∫ ∞

γ0

1
γ

(
Fγ (γ ) − 1

)
dγ

− log2 (γ0)

∫ ∞

γ0
fγ (γ )dγ

(38)

Substituting the expression (31) into the first term of

the above equation, and seeing that lim
γ→∞

ln(γ )
γ

(
γ

θ2

) β
2 i+1

e−
(

γ

θ2

) β
2

= 0 for all natural integer, i ≤ L − 1, the first
expression in (38) can be reduced to

1
ln (2)

[
ln (γ )

(
Fγ (γ ) − 1

)]∞
γ0

= − log2 (γ0)
(
Fγ0 (γ0) − 1

)
(39)

Now, replacing (31) into the second term of Eq. (38), and

using the change of variable t =
(

γ

θ2

) β
2 , this term can be

expressed as

−1
ln (2)

∫ ∞

γ0

1
γ

(
Fγ (γ ) − 1

)
dγ

=
L−1∑

i=0

2
β ln (2) i!

∫ ∞

u0
ti−1 exp(−t)dt (40)

= 2
β ln (2)

L−1∑

i=0

� (i,u0)
i!

On the other hand, the last term of (38) can be easily
expressed as

− log2 (γ0)

∫ ∞

γ0
fγ (γ )dγ = log2 (γ0)

(
Fγ0 (γ0) − 1

)

(41)

Now, substituting (39), (40), and (41) into (38), we obtain
the expression (37) which concludes the proposition’s
proof.

4.4.1 Optimal cutoff SNR γ0

The optimal cutoff SNR γ0 level, below which data trans-
mission is suspended, must satisfy [23]

∫ +∞

γ0

(
1
γ0

− 1
γ

)

fγ (γ )dγ = 1 (42)

Since no data is sent when γ < γ0, the optimal policy
suffers a probability of outage Pout, equal to the probability
of no transmission, given by

Pout = 1 −
∫ +∞

γ0
fγ (γ )dγ

Substituting (16) in (42), and using the same change of
variable given above, we find that γ0must satisfy

2λ
βθ2γ0

∫ +∞

x0
xL−1 exp [−x] dx − 2λ

β

∫ +∞

x0
xL− 2

β
−1

exp [−x] dx = 1
(43)

Now, replacing (19) into (43), x0must satisfy

f (x0) = 0 (44)

where the function f is defined by

f (y) = � (L, y) y−2/β

θ2
−

�
(
L − 2

β
, y
)

θ2
− � (L) (45)

Using the derivative of the upper incomplete gamma
function, we obtain ∂ f (y)

∂y = − 2
βθ2

� (L, y) y
−2
β

−1
< 0 for

all y ≥ 0. Moreover, lim
y→0+f (y) = +∞ and lim

y→+∞f (y) =
−� (L) < 0. Thus, we conclude that there is a unique x0,
consequently a unique γ0, for which f (x0) = 0. Besides,
the value of γ0 can be calculated, using any calculation
software, by solving (44).

4.5 Capacity under CIFR policy
Proposition 6 The capacity under CIFR policy for EGC

combiner operating under i.n.i.d WFC is approximated by

〈C〉CIFR � log2

⎡

⎣1 + θ2 (L − 1) !

�
(
L − 2

β

)

⎤

⎦ (46)

Proof The channel capacity under CIFR policy is given
by

〈C〉CIFR = log2

[

1 + 1
E
[
γ −1]

]

(47)

= log2

[

1 + 1
∫ +∞
0 γ −1fγ (γ )dγ

]

Using (16) and the same change of variable used above, we
obtain

∫ +∞

0
γ −1fγ (γ )dγ = 1

θ2(L − 1)!

∫ +∞

0
uL− 2

β
−1 (48)

exp(−u)du� =
(

L − 2
β

)

Thus, by substituting (48) into (47), the expression in (46)
can be easily derived.
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Table 1 Values of � and δ for some signaling constellations

Modulation M � δ

BPSK 2 1/2 1

BFSK 2 1/2 1/2

M-PSK ≥ 4 1 sin2(π/M)

M-FSK ≥ 4 (M − 1)/2 1/2

4.6 Capacity under TCIFR policy
Proposition 7 The capacity under TCIFR policy of EGC

receiver over i.n.i.d WFC is approximated by

〈C〉TCIFR � log2

⎡

⎣1 + θ2 (L − 1) !

�
(
L − 2

β

)

⎤

⎦

× e−
(

γ ∗
θ2

) β
2 L−1∑

i=0

(
γ ∗
θ2

) β
2 i

i!

(49)

where γ ∗ is a fixed cutoff fade depth.

Proof The capacity with truncated channel inversion
and fixed rate policy is given by [18] as

〈C〉TCIFR = log2

[

1 + 1
∫ +∞
0 γ −1fγ (γ )dγ

]

× (
1 − Pout

(
γ ∗))

(50)

From (50), it is obvious that 〈C〉TCIFR =
〈C〉CIFR (1 − Pout (γ ∗)). Then by substituting (31) and
(46) into (50), we easily obtain (49).

4.7 Average symbol error probability (ASEP)
Proposition 8 The ASEP of various M-ary modula-

tion with EGC receiver over flat i.n.i.d Weibull multipath
fading channels is closely approximated by

Ps � λ�√
πδ

H1,2
2,2

⎛

⎝
(
θ2δ

)−β/2

∣
∣
∣
∣
∣
∣

(
0, β

2

)
,
(
− 1

2 ,
β
2

)

(
L − 2

β
, 1
)
,
(
−1, β

2

)

⎞

⎠

(51)

where � and δ are summarized in Table 1.

Proof The ASEP for M-ary modulation schemes over
fading channel is expressed by its definition as

Ps =
∫ +∞

0
Pse (γ ) fγ (γ )dγ (52)

where the instantaneous ASEP Pse (γ ) is given in terms of
the complementary error function as

Pse (γ ) = �.erfc
(√

δγ
)

(53)

then, by rewriting the PDF in (16) and the equation in
(53) by Meijer G-function the ASEP in (52) can be tightly
approximated by

Ps � λ�√
πδ

∫ ∞

0
G2,0
1,2

(

δγ

∣
∣
∣
∣

1
0, 12

)

G1,0
0,1

(
( γ

θ2

) β
2
∣
∣
∣
∣

0
L − 2/β

)

dγ

(54)

Now, using the identity ([21], /07.34.21.0012.01) we
obtain (51) which concludes the proof of the proposition.

4.8 Average bit error probability (ABEP)
Proposition 9 The ABEP for various modulation

schemes, which are cited in Table 1, can be approximated
by

Pe � λ�

2
√

πδ
H1,2
2,2

⎛

⎝
(
θ2δ

)−β/2

∣
∣
∣
∣
∣
∣

(
0, β

2

)
,
(
− 1

2 ,
β
2

)

(
L − 2

β
, 1
)
,
(
−1, β

2

)

⎞

⎠ (55)

(a) (b)

Fig. 1 Approximate and exact second and third moment of the output SNR versus ϕ
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(a) (b)

Fig. 2 Approximate and exact fourth and fifth moment of the output SNR versus ϕ

Proof By definition, the ABEP can be expressed in terms
of MGF as ([19], Eq. (19))

Pe = �

π

∫ π/2

0
Mγ

(
δ

sin2 (φ)

)

dφ (56)

By considering the expression of MGF given in (30), and
rewriting it in terms of Mellin-Barnes integral, we get

Pe � λ�

2π2jδ

∮

C
�

(

1 − β

2
s
)

�

(

L − 2
β

+ s
)

×
(

1
θ2δ

)− βs
2
∫ π/2

0
sin2−βs (φ) dφds

(57)

where C is a complex contour of integration and
∫ π/2
0 sin2−βs (φ) dφ can be expressed, when Re (βs) < 3,
in terms of Beta function as ([21], /06.18.07.0002.01)

Fig. 3 Approximate and exact third moment of the output SNR
versus β

∫ π/2

0
sin2−βs (φ) dφ = 1

2
B
(
3 − βs

2
,
1
2

)

(58)

=
√

π

2

�
(
3
2 − β

2 s
)

�
(
2 − β

2 s
)

Now, by substituting (58) into (57), we obtain the
expression (55)

5 Evaluation
In this section, all the analytical expressions are evaluated
usingMathematica software. In addition, our approximate
PDF and most of other results are validated using numer-
ical Monte Carlo simulations from (4) by generating L ×
107 Weibull-distributed random values. Without loss of
generality, we have supposed an exponentially decaying
power delay profile (PDP) γ i/γ 1 = exp [−ϕ (i − 1)] ,
where ϕ is the average fading power decay factor [22],
and γ 1 = 1 for all figures except Figs. 10 and 15. The
value of β is assumed to be the same for each receiver
branch.

Fig. 4 Approximate and simulated CDF of the SNR at the EGC receiver
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Fig. 5 Outage probability of L-branch EGC diversity

Fig. 6 Approximate and simulated PDF of the SNR at the EGC receiver

Fig. 7MGF of the output received SNR at the EGC receiver

Fig. 8 Analytical and simulated AoF for L-branch EGC receiver

Fig. 9 Shannon capacity of L-branch EGC diversity

Fig. 10 OPRA capacity of 3-branch EGC diversity versus γ0
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Fig. 11 OPRA capacity of 3-branch EGC combiner versus L

The two first figures depict the exact and approximate
nth moments of output SNR versus ϕ for β = 3 and var-
ious values of n. We notice from these curves that the
two moments are almost confused (Figs. 1 and 2). In addi-
tion, for ϕ tending towards 1, all curves will be confused
regardless of β and L.
Figure 3 shows the exact and approximate thirdmoment

of output SNR versus β for ϕ = −0.223. The main remark
is that the twomoments are nearly confused for L = 3 and
begin to separate when L becomes large.
Figure 4 shows the two curves, that of approximate CDF,

and that of the empirical distribution function (EDF).
The Kolmogorov–Smirnov statistic quantifies the dis-
tance between the EDF and the approximated CDF. From
this figure, we deduce that the distance between the two
curves is almost null, which proves the tightness of our
approximation.
Figure 5 shows the progression of the outage probabil-

ity Pout, computed analytically from (31), versus γth for
four branches EGC receiver, and various values of β . It can
be seen that the decrease in outage probability achieved
by increasing the shape parameter β and then the system

Fig. 12 OPRA capacity of 3-branch EGC combiner versus ϕ

Fig. 13 CIFR capacity of L-branch EGC receiver

becomes more reliable. Besides, as γth increases, Pout
reaches 1.
Figure 6 presents both the approximate and the sim-

ulated PDF of output SNR versus γ for double-branch
EGC receiver and triple one. The theoretical curves are
traced from (17). Furthermore, for simulated curves, the
SNR range [ 0, 7] is divided into 100 subintervals of equal
length. What is evident from both curves is that our new
analytical expression of PDF is very close to its simulation.
Figure 7 displays both the approximate and the sim-

ulated MGF of the output SNR. The approximate MGF
given by (30) is plotted versus t for many values of β(β =
2.8, β = 2, and β = 1.5), and L = 3. The curves show that
the greater is β , the smaller is the MGF, and its value at
t = 0 is equal to 1 for any parameter values. What is evi-
dent from both curves is that the analytical expression is
nearly similar to the simulation of the SNR MGF.
Figure 8 presents both simulated and approximate AoF

given by (33). The curves of AoF are plotted versus β for
several values of L. It can be seen that ηγ decreases as β

and L increases, which explains the usefulness of several
branches at the receiver.

Fig. 14 TCIFR capacity of L-branch EGC combiner
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(a) (b)

Fig. 15 Average error probability of various modulations for 3-branch EGC receiver over i.n.i.d WFC

Figure 9 shows both analytical and simulated ORA
capacities versus L for EGC receiver, plotted respectively
from (34), and via Monte Carlo simulation from (35).
It can be seen from the two curves that the approx-
imate analytical expression of ORA capacity is nearly
similar to the simulation one. The capacity is plotted for
several values of β , assumed to be the same for each
receiver branch, and ϕ = 0.223. Besides, the greater is
β , the better is the maximal spectral efficiency of the
system.
In Fig. 10, the OPRA capacity, given in (37), versus opti-

mal threshold SNR γ0, computed numerically by solving
(44), is traced for several values of β , and ϕ = 0.227.
From these curves, we can obviously observe that below
γ0 = 0.2, no data can be transmitted. Moreover, the
greater is β , the higher is optimal simultaneous power and
rate adaptation capacity.
Figure 11 plots both the simulated and the analytical

OPRA capacity versus L for ϕ = −0.225 and several
values of β , expressed in (36) and (37), respectively. We
can notice that the greater is L, the higher is the capacity

under OPRA police. Furthermore, as the shape parameter
β increases, the capacity improves.
Figure 12 depicts the OPRA capacity, noted in (37), ver-

sus ϕ for L = 3, and many values of β . We can conclude
that the lower is ϕ, the higher is the capacity. In addi-
tion, when the parameter β increases, the OPRA capacity
becomes greater.
Figure 13 shows both analytical and simulated CIFR

capacity versus L underMRC receiver, plotted respectively
from (46), and via Monte Carlo simulation from (47), for
ϕ = 0.223 and several values of β . What is clear from
all curves is that the approximate analytical expression of
CIFR capacity is closed to the simulated one. It can be also
seen that the greater is β , the better is the capacity.
In Fig. 14, the capacity under TCIFR policy, given in

(49), is traced versus L for β = 2.8,ϕ = −0.223, and sev-
eral values of a fixed cutoff fade depth γ ∗. This capacity is
simulated via Monte Carlo statistical method using (50). It
is obvious that the smaller is γ ∗, the better is TCIFR capac-
ity. Moreover, the diversity order L increases gradually the
TCIFR capacity regardless of γ ∗.

(a) (b)

Fig. 16 Average symbol error probability of BPSK and QPSK modulations for 4-branch EGC receiver over i.n.i.d WFC
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Figure 15a, b depicts the simulated and the approxi-
mate ASEP and ABEP, given in (51) and (55), respectively.
The curves are plotted versus average output SNR (in dB)
using the values of parameters summarized in Table 1 of
both M-FSK and M-PSK (M = 2 and M = 4) modula-
tion schemes for 3-branch EGC receiver over i.n.i.d WFC.
What is clear from these figures is that QFSK improves the
system performance considerably compared to the rest
of schemes over entire range of γ . Additionally, average
error probability decreases as γ increases. Besides, the
analytical and the simulated curves are confounded.
Figure 16a, b shows the simulated and the approxi-

mate ASEP, given in (51), versus ϕ and β respectively.
The curves are plotted, using the parameter values sum-
marized in Table 1, for M-PSK (M = 2 and M = 4)
modulation schemes and 4-branch EGC receiver over
i.n.i.d WFC. We can notice that the smaller is ϕ, the
greater is the output SNR; therefore, the ASEP becomes
small. Moreover, the analytical curves match the simu-
lation ones, which proves the accuracy of the proposed
approximation.

6 Conclusions
In this paper, we have derived a new tight approxima-
tion for the PDF of output SNR at EGC receiver operat-
ing under uncorrelated but not identical Weibull fading
channels. Based on this approximate PDF, the analyti-
cal expressions of many performance criteria have been
derived. All results are illustrated usingMathematica soft-
ware and validated byMonte Carlo simulation. The results
that we have achieved are far better than all previous
works.
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