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Abstract

Femtocell technology addresses the severe problems of poor network capacity and indoor coverage. Meanwhile, the
emergence of high-capacity air interfaces and dense deployment of small cells result in increasingly high backhaul
cost in cellular wireless networks. Purchasing on leased lines can guarantee the service provision during busy hours,
however, purchased capacity goes to waste in off-peak time. Hybrid mode is the most promising one among all
femtocell access modes which allows macro users to associate with adjacent femtocells with idle bandwidth
resources. Femto holder (FH) is egoistic and unwilling to share bandwidth with transferred users from macrocells
without any compensation, thus the successful implementation of hybrid access becomes a challenging problem. In
this paper, we present an economic refunding framework to motivate hybrid access in femtocells. Macro users can
opportunistically associate with adjacent femtocells with excess backhaul capacity. FH can receive certain refunding
from wireless service provider (WSP) in exchange for traffic offloading. FH employs congestion pricing policy so as to
control the cell load in the femtocell. Within this framework, we design a general utility maximization problem for user
association that enables macro users to associate with femtocells based on traffic status, cell load, and access price.
Dual decomposition is used to obtain an approximate solution. The impact of congestion pricing on the aggregate
throughput and load balancing is also analyzed. Extensive simulations show the proposed scheme achieves a
remarkable throughput gain compared with that with no compensation and compensation with usage-based pricing
policy. Load balancing is substantially improved as well.

Keywords: Heterogeneous network, Backhaul, User association, Congestion pricing, Utility maximization

1 Introduction
In recent years, there has been a dramatically increase in
the number of mobile users and high-speed data services,
which places a greater pressure on the conventional cel-
lular network infrastructures. In spite of the necessity for
small cells deployed to meet the enormous requirements
for traffic data, there are still many technical challenges to
be settled. One of the key challenges is to provide exten-
sive backhaul connectivity economically [1]. Backhaul is
a term commonly used to describe wired or wireless
connectivity between base stations (BSs) and associated
mobile switching nodes in a cellular system, as illustrated
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in Fig. 1.Wired and wireless technologies have been inves-
tigated as backhaul solutions for small cells [2]. For wired
backhaul, copper lines and optical fibers are the major
mediums, which provide suitable support for voice and
other services with low latency and delay. Wireless back-
haul solutions incorporate millimeter wave technologies
of 60 and 70–80 GHz, microwave technologies between 6
and 60 GHz, and sub 6-GHz radio wave technologies in
both licensed and unlicensed bands. The backhaul con-
struction significantly depends on the locations of small
cells, the cost of implementing backhaul connections, traf-
fic load intensity of small cells, latency, and target QoS
requirement of small cell users and hardwares. Accord-
ing to the recent statistics, the number of small cells now
deployed has reached up to 13.3 million reported in Small
Cell Forum survey [3] and this number is forecasted to
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Fig. 1 Backhaul network framework. The eNBs are interconnected
with each other by means of the X2 interface. Assume that there is an
X2 interface between the eNBs that need to communicate with each
other. The eNBs are also connected by means of the S1 interface to
the service gateway (SGW). The S1 interface support a many-to-many
relation between SGWs and eNBs. Some capacity constraints always
exit in the backhaul network

reach nearly 40 million by 2018 [4]. Such a large backhaul-
ing demand is bound to increase the cost substantially.
Cost-effective strategies are necessary to relieve the back-
hauling burden. Therefore, the considerations of backhaul
construction and operating costs become extremely cru-
cial in modern communication systems.
Fortunately, various network access modes provide the

possibility to relieve the pressure of backhaul cost. Indeed,
how to make each user access the appropriate net-
work substantially affects the network performance [5].
Femtocell hybrid access is a promising choice to con-
trol user association between macrocells and femtocells
[6, 7], rather than the closed access and open access
mode which render femtocells fully closed and open
to macro users. Hybrid access permits macro users to
exploit remaining femtocell resources after each femto
user reserves its own capacity. Usually, macrocells and
femtocells are controlled by wireless service providers
(WSPs) and femto holders (FHs), respectively. FHs are
egoistic to share bandwidth with transferred macro users.
Incentive mechanisms should be designed from the per-
spective of economic compensation. Otherwise, FHs do
not accept hybrid accessmode if they have no benefit from
offering own resources to transferred macro users. With
the compensation, FHs are willing to share the remain-
ing resources with macro users. Meanwhile, macro users
should pay for the used bandwidth from FHs.

Several refunding mechanisms between WSP and FHs
are investigated in the past few years. Chen et al. early
propose a framework of utility-aware refunding [8], where
WSP provides the certain refunding to motivate FHs to
open their resource for macro users then FHs decide
the resource allocation among femto and macro users. A
Stackelberg game is formulated to maximize the utilities
for both WSP and FHs. Shih et al. present an economic
framework based on the game theoretical analysis [9],
where the FHs determine the proportion of femtocell
resources they will share with public users, while WSP
maximizes its benefit by setting the ratio of the rev-
enue distributed to FHs. Yang et al. show the refunding
mechanism for small cell networks with limited-capacity
backhaul [10], in which small cell holders receive refund-
ing as incentives to serve guest users with their remaining
backhaul capacity. WSP decides individualized refunding
and interference constraints to different small cell hold-
ers; meanwhile, each small cell holder serves guest users
in a best-effort manner while maximizing its own util-
ity. Li et al. show a rate-based pricing framework within
which the macro BS provides profit to motivate femto
BSs to adopt hybrid access policy and guarantee trans-
mission rates of associated users [11]. Ford et al. study a
model where third parties provide backhaul connections
and lease out excess capacity to WSP when available [12],
presumably at significantly lower costs than guaranteed
connections. Multi-leader multi-follower data offloading
game is investigated in [13], where macro BSs propose
market prices and accordingly small cells determine the
traffic volumes they are willing to offload. Shen et al. pro-
pose an auction mechanism to establish the hybrid access
[14], where femto access points (FAPs) decide their bids
independently by maximizing their own utilities. After
receiving the bids, the macro BS searches the winner FAP
and optimizes the number of offloaded macro users. The
compensation is paid by the macro BS to the winner FAP
for serving the additional macro users. A price discount
strategy for WSP to promote the hybrid access mode of
femtocell is developed in which WSP provides a price
discount in exchange for the FHs to share part of their
resource with macro users [15]. An interference man-
agement scheme for the two-tier femtocell networks is
studied [16], where the macro BS protects itself by pricing
the interference from the femtocell users. Price bargain-
ing between femtocell users and macrocell exists so as
to maximize the revenues and protect the QoS require-
ments. Zhu et al. design an incentive mechanism in which
WSP pays the small cell service providers for the shared
radio resource [17]. A hierarchical dynamic game frame-
work is proposed in which an evolutionary game is used
to model and analyze the service selection of users in the
lower lever while a Stackelberg differential game is for-
mulated where WSP and small cell service providers act
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as the leader and followers, respectively. A utility gain
framework where each femtocell reserves a fraction of
resource to macro users and gets a gain fromWSP is pro-
posed [18]. A learning mechanism allows both WSP and
FH to choose the best strategy to reach a win-win situ-
ation. Iosifidis et al. present a market where WSPs lease
multiple FAPs and each FAP can concurrently serve traf-
fic from multiple WSPs [19]. An iterative double-auction
mechanism is designed to ensure the maximization of
differences between offloading benefits of operators and
offloading costs of FAPs. Zhang et al. propose an incentive
method where macro BS allocates a portion of subchan-
nels to FAP for spurring the FAP to servemacro users [20].
The FAP allocates the subchannels and power to maxi-
mize the femtocell network utility and the throughput of
the served macro users. Yang et al. propose a bargain-
ing cooperative game where spectrum leasing is used as
the incentive mechanism to motivate small cell working
as the relays [21]. Macrocell leases some of its dedicated
spectrum to the selected relay small cell, and then cooper-
ative bargaining strategy between the relay small cell and
the macrocell is formulated to enhance the system spec-
tral efficiency and balance the capacity. In [22], Liu et al.
propose an opportunistic user association inmulti-service
HetNets, where the opportunistic user association is for-
mulated as an optimization problem which can be solved
by Nash bargaining solution (NBS).
However, cell load congestion problem in networks will

also affect the achieved network performance. Congestion
can severely degrade the QoS performance, user’s satis-
faction, and obtained revenues. Congestion pricing, early
proposed in [23], is a promising solution that can help alle-
viate the problem of congestion. Al-Manthari et al. survey
recent congestion pricing techniques for wireless cellu-
lar networks [24], which verifies that congestion pricing
can reduce congestion and generate higher revenues for
network operators. Niu et al. present a congestion pric-
ing model to charge media streaming operators based on
the bandwidth-delay product on each overlay link [25].
Khabazian et al. study a mechanism by which the femto
and macro capacity resources are jointly priced accord-
ing to a dynamic pricing-based call admission mechanism
[26]. Cheung et al. consider the network selection and data
offloading problem in an integrated cellular WiFi system
by incorporating the practical considerations [27]. Inter-
actions of the users’ congestion-aware network selection
decisions across multiple time slots as a non-cooperative
network selection game is formulated. When the players
repeatedly perform better response updates, the system is
guaranteed to converge to a pure Nash equilibrium.Wang
et al. solve the optimization problem under the stochastic
decision framework and propose a distributed heuris-
tic algorithm to independently and dynamically associate
each user with the best BS [28]. By posing a price factor to

the BS evaluation update, users dynamically associate the
best BS based on the congestion state.
As a matter of fact, the high fluctuation of traffic load

and rate requirement can lead to a waste of provided
capacity in some circumstances. For instance, the number
of users decreases or users merely need voice service with
low-rate requirement in idle hours. Excessively establish-
ing and maintaining small cells will result in the expensive
backhaul cost, which can hardly conform to the case of
fluctuant traffic. Rather than providing the excessively
abundant backhaul capacity to guarantee the peak data
rates, WSP should be able to dynamically leverage excess
capacity on existing backhaul provided by FHs. The prob-
lem is to offload traffic opportunistically when FHs have
excess backhaul capacity with the appropriate compen-
sation. Since the capacity will only be purchased when
used, the opportunistic capacity can presumably be pur-
chased at a much lower cost than the guaranteed backhaul
capacity. Thus, the opportunistic user association can be
regarded as a promising method to reduce cost effec-
tively. Meanwhile, FHs will consider the cell load factor
to reduce congestion. This observation motivates us to
research the performance improvement through dynamic
pricing policy. In this paper, we propose an economic
compensation framework. Under this framework, FHs
provide femtocell and backhaul connections. Traffic can
be offloaded opportunistically from macrocells to femto-
cells. Once the association is implemented, WSP should
reimburse FHs for use of backhual resources. FHs adjust
the cell load by congestion pricing policy to guarantee
the QoS. The main contributions of the paper are listed
as follows:

1) We formulate an optimal opportunistic user associ-
ation problem, in which macro users associate with
macrocells or adjacent femtocells with limited back-
haul capacity, cell load, and access price. We present
a general net utility maximization problem, where the
utility is represented by logarithmic utility of through-
put minus cost. Cost is measured by price per unit
bit rate. Then, we show a dual decomposition method
that enables fast computation of global optimal solu-
tion in an efficient, distributed manner via augmented
Lagrangian techniques.

2) We adopt congestion pricing policy to control each
cell load. When macro users intend to associate with
femtocells, each user will get its own bandwidth to
maximize the aggregate utility. Here, the price is not
fixed but changes according to the number of users
associated with the same femtocell. The more macro
users associate with the same femtocell, the higher
price per unit bandwidth is. Then, users in congested
cells will be impelled to associate with uncrowded
femtocells.
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3) We conduct numerical simulations to evaluate this
framework and verify the influence of dynamic
price for user association. Results show that when
FHs adopt congestion pricing policy, the remark-
able throughput gain can be achieved under different
congestion levels. Due to dynamic cell load control,
the effect of load balancing can also be substantially
improved.

The remainder of this paper is organized as follows.
We describe the system model in Section 2. The opti-
mal user association problem and the dual decomposition
to solve a net utility maximization problem are proposed
in Section 3. In Section 4, extensive simulations are pre-
sented along with related discussions, and finally, our
work and the outlook are summarized in Section 5.

2 Systemmodel
In this section, we describe the system model including
the system architecture, interference model, and neces-
sary network constraints. Then, we propose a cell load-
based congestion pricing policy where price per bit rate
can be adjusted as the cell load changes.

2.1 System architecture
Consider a traditional macrocellular OFDMA network
with overlays of several femtocells, as shown in Fig. 2.
All subcarriers are orthogonal. There are M BSs includ-
ing macro BSs (MBSs) and femto BSs (FBSs). We let BS
i denote the ith base station, i = 1, · · · ,M. N mobile
users (MUs) uniformly distribute in this area. We let MU
j denote the jth mobile user, j = 1, · · · ,N . �BS(i) is the

Fig. 2 Heterogeneous network architecture. The tower-like macro
base station is controlled by wireless service provider, and the
adjacent femto base stations are deployed by femto holders. Mobile
users attempt to access one cell based on available capacity and
access price

set of MUs associated with BS i. �BS represents the set
of all BSs. Here, we suppose that all the antennas trans-
mit with full power. Thus, the interference suffered by
an MU is approximately measured from all BSs except
the serving BS. The throughput of one MU is the band-
width times spectrum efficiency provided by the serving
BS wij log(1 + γij), where wij is the bandwidth MU j gets
from BS i and γij is the SINR of MU j on BS i. The SINR of
MU j on BS i is

γij = PiHij
∑

s∈�BS,s�=i PsHsj + σ 2 , (1)

where Pi is transmission power from BS i, �BS is the
set of BSs, Hij is the channel attenuation coefficient
between BS i and MU j, and σ 2 is the thermal noise
power.

∑
s∈�BS,s�=i PsHsj is the received aggregate interfer-

ence from all the BSs except the serving BS. In this model,
the intra-cell interference can be avoided since there are
no overlapped subcarriers for all users served by one cell.
Before the bandwidth allocation process, the amount of
the subcarriers allocated to one user is uncertain, thus the
inter-cell interference is approximately evaluated by the
worst case that all BSs generate aggregate interference
to the users. Here, we rewrite seij for short instead of
log(1 + γij). Assume that the attenuation model is slow
fading so the channel conditions are fixed through frames.

2.2 Congestion pricing model
We propose a congestion pricing policy in this subsec-
tion. The guideline for the definition of this policy is
that price changes slowly when the backhaul resource is
abundant enough and increases drastically when the back-
haul resource becomes scarce. With this pricing policy,
resource can be utilized efficiently to benefit load bal-
ancing. Three aspects of this pricing policy should be
considered:

1) The wasted backhaul resource is null regardless of
whether the cell is congested or not, whichmeans that
bandwidth resource should be fully utilized

2) When no congestion occurs, the change of price
should be as small as possible to ensure user’s fair
association

3) In case of congestion, the change rate of price should
increase faster than that during no congestion period.
This faster increasing rate of price can be used to
discourage users in associating with heavy-load cell.

In this policy, we let the price be measured by price
per bit rate. In Fig. 3, we define lshift as the turning point
for the network pricing. When the load is lower than the
lshift, the price increases slowly. When the load is higher
than the lshift, the price changes rapidly and even dramat-
ically when backhaul resource approaches maximum. We
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Fig. 3 Congestion pricing function. The congestion pricing is similar
to the form of an exponential function. When the cell load is lower
than the lshift , the price gradually increases while when the cell load
exceed the lshift , the price goes up dramatically

adopt this variation tendency to describe our pricing pol-
icy. When cell load is in a saturated state, the price can be
raised to make some users associate with lightly load cell
instead.
We show a load-based pricing function that price

changes with cell load, which refers to [29].

pi(k) = p0
(
1 − lshift
1 − li(k)

)n
, (2)

where the pi(k) is the price at time k in cell i, p0 is the
initial access price, and li(k) is cell load at time k for cell
i. Here, li(k) is the ratio of actual cell load to cell tolera-
ble maximal load Lmax. We use parameter n to control the
steepness of this function and n ≥ 1.

3 User association optimization
As mentioned above, an important issue is that how MUs
associate withmacrocells controlled byWSP or femtocells
deployed by FHs when they acquire services within the
cellular coverage. We generalize this issue into a net util-
ity maximization problem including network constraints,
interference condition, access price, and cell load.

3.1 Optimization formulation
To model the bandwidth constraints, we suppose that the
available bandwidth of each BS i is Wi. Let wij represent
the bandwidth BS i allocated to MU j. Thus, the aggregate
allocated bandwidth should satisfy the constraint:

0 ≤
∑

j∈�BS(i)
wij ≤ Wi. (3)

We let Ci denote the capacity of BS i. The capacity of
FBS is the remaining backhaul resource after each femto

user reserves its own capacity. Thus, the aggregate rate
should be less than the capacity upper limit in each cell:

0 ≤
∑

j∈�BS(i)
seijwij ≤ Ci. (4)

One MU is commonly served by one BS at a time. Thus,
a single association constraint should be supplemented.

wij �= 0 for only one i. (5)

We adopt logarithmic function as user utility function.
Different from linear utility function, logarithmic func-
tion can truly reflect the user’s satisfaction. Logarithm is
concave and has the diminishing growth tendency. This
property does not enable to allocate excessive resource to
users with excellent channel condition while poor users
starve. Therefore, logarithmic function is considered as
utility function in particular. In the remainder of this
paper, we adopt the natural logarithmic utility function.
The aggregate utility can be represented by

U (rMU) =
M∑

i=1

N∑

j=1
ln

(
seijwij

)
. (6)

To clarify the backhaul cost that WSP should pay to
the FHs, we assume the cost function is represented as
follows:

C (rBS) =
M∑

i=1
C(ri) =

M∑

i=1

N∑

j=1
piseijwij, (7)

where C(ri) is the cost that WSP should pay. Once macro
users associate with the adjacent femtocells, a positive
cost is generated since backhaul resources in femtocell
are utilized. Suppose that if macro users associate with
macrocells, C(ri) = 0, while C(ri) = pi

∑
j∈�BS(i) wijseij

when macro users associate with adjacent femtocells,
where pi represents price per unit backhaul capacity of
each femtocell and this price changes with cell load.
Our goal is to maximize the net utility, which incor-

porates the MUs’ utility and the cost that WSP should
pay, with constraints of bandwidth resource and backhaul
capacity. Now, we write the user association problem as
the optimization:

max
wij

U (rMU) − C (rBS) (8)

s.t. 0 ≤ ∑
j∈�BS(i) wij ≤ Wi, (9)

0 ≤ ∑
j∈�BS(i) seijwij ≤ Ci, (10)

wij �= 0 for only one i. (11)

Then, we will provide the analysis and algorithms for
solving optimization problem (8)–(11).We propose a low-
complexity distributed algorithm for a large-scale net-
work.
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3.2 Dual decomposition algorithm
The optimization (8)–(11) is not convex due to constraint
(11). It is unpractical to solve this problem by Karush-
Kuhn-Tucker condition. An alternative algorithm is nec-
essary, especially for a large scale network. Fortunately,
following [30], we can obtain an approximate solution
by dual decomposition method. Traditionally, centralized
solution for this convex optimization problem is usually
achieved on a central server in the core network. The
long computational time and coordination requirement
among different tiers result in excessive computational
complexity and low reliability. The computational com-
plexity exponentially increases when the network scale is
large. An distributed algorithm based on dual decomposi-
tion method can overcome this difficulty. First, we neglect
the constraint (11), thus the results are the allocated band-
width from all BSs. Then, among these candidates, the one
which offers the largest rate is retained. This truncation
method is well-known in network theory and results in
few errors [31].

3.2.1 Dual problem
The primal problem in (8)–(11) can be expressed in a
Lagrangian formula. Two dual variables are introduced,
which are λbw and λrate.

P
(
wij, λbwi , λratei

)
= −

M∑

i=1

N∑

j=1
ln

(
wijseij

) +
M∑

i=1

N∑

j=1
piwijseij

+
M∑

i=1
λbwi

⎛

⎝
∑

j∈�BS(i)
wij − Wi

⎞

⎠

+
M∑

i=1
λratei

⎛

⎝
∑

j∈�BS(i)
wijseij − Ci

⎞

⎠ .

(12)

The dual problem of (8)–(11) is in regard to a function
of variables λbw and λrate:

D
(
λbwi , λratei

)
=

M∑

i=1

⎛

⎝
∑

j∈�BS(i)
wij − Wi

⎞

⎠ λbwi

+
M∑

i=1

⎛

⎝
∑

j∈�BS(i)
wijseij − Ci

⎞

⎠ λratei

−
M∑

i=1

N∑

j=1
ln

(
wijseij

) +
M∑

i=1

N∑

j=1
piwijseij

s.t. λbwi > 0, λratei > 0.

(13)

In a primal problem, both the objective function and
all constraints are convex, this satisfies Slater’s condition
[32]. The well-known weak duality property states that an
upper bound to the maximum of the utility is given by

max
wij

P
(
wij, λbwi , λratei

)
≤ min

λbwi ,λratei

D
(
λbwi , λratei

)
. (14)

This bound applies even when the objective function is
non-convex. Moreover, D(λbwi , λratei ) is always convex in
λbwi , λratei . Strong duality holds that the maximum value of
primal problem equals to the minimum value of its dual
problem. Therefore, the primal problem can be solved by
its dual problem. By solving the dual optimal λbw∗

i and
λrate∗i , the optimal solution w∗

ij of the primal problem can
be achieved.

3.2.2 Distributed algorithm implementation
The dual problem is solved by the gradient descent
method, where lagrange multiplier λ is updated along the
opposite direction of the gradient ∇D(λ). The primal and
dual problems can be solved in a distributed manner. The
iterative process is illustrated in Fig. 4. The kth iteration of
gradient descent method is given as follows:

1) MU’s side: MUs receive pilot signals from all BSs. Each
signal includes the values of λbw and λrate which
are broadcasted by each BS. The optimal bandwidth
which one MU can get from one BS is derived from
the first-order partial derivative of wij at the kth
iteration.

∂P
(
wij(k), λbwi (k), λratei (k)

)

∂wij(k)
= − 1

wij(k)
+ pi(k)seij

+ λbwi (k) + λratei (k)seij = 0,
(15)

wij(k) = 1
λbwi (k) + λratei (k)seij + pi(k)seij

. (16)

Each MU chooses the optimal serving BS at the
kth iteration which satisfies the follows:

i∗(k) = argmax
i

seij
λbwi (k) + λratei (k)seij + pi(k)seij

,

(17)

w∗
ij(k) = 1

λbwi (k) + λratei (k)seij + pi(k)seij
,when i(k)=i*(k),

(18)

where pi(k) is the congestion price which is deter-
mined by the cell load of BS i at the kth iteration as
shown below:

pi(k) = p0
(

1 − lshift
1 − |�BS(i)|(k)

)n
, (19)

where |�BS(i)|(k) is the number of MUs associated
with BS i at the kth iteration. In each iteration, a MU
may select the different optimal BS which provides
maximal rate so cell load may change as the increase
of iteration times.
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Fig. 4 Iterative procedure of distributed algorithm

2) BS’s side: After each BS receives the demand informa-
tion from MU’s side, the values of λbwi and λratei are
updated then these twomultipliers are announced to
MUs in return.

λbwi (k + 1) = λbwi (k) − α
∂D

(
λbwi (k), λratei (k)

)

∂λbwi (k)

= λbwi (k) − α

⎛

⎝
∑

j∈�BS(i)
wij(k) − Wi

⎞

⎠ ,

(20)

λratei (k + 1) = λratei (k) − α
∂D

(
λbwi (k), λratei (k)

)

∂λratei (k)

= λratei (k) − α

⎛

⎝
∑

j∈�BS(i)
seijwij(k) − Ci

⎞

⎠ ,

(21)

where α > 0 is a step size and we assume that α

remains constant in the process of iterations. After
iterations following the above steps, the algorithm
can be converged to a sub-optimal solution. In fact,
λbwi and λratei can be interpreted as the shadow
price in economics. If the demand

∑
j∈�BS(i) wij(k)

and
∑

j∈�BS(i) seijwij(k) for BS i exceeds the maxi-
mum value, the shadow price will go up. Otherwise,
the shadow price will decrease. Thus, when BS i
is the congested state, its price will increase and
fewer MUs will associate with it, while other lightly
load BSs attract more MUs to associate with due
to the lower price. In addition, the complexity is

reduced to O(M + N). In comparison to the com-
plexity O(M ∗ N) of the centralized method, the
distributed method guarantees the convergence fast
and effective, especially for a large-scale network.

Since the derivative of D(λ) is bounded and this prop-
erty satisfies the condition of Proposition 6.3.6 in [32],
we can confirm that the dual decomposition algorithm
converges to a sub-optimal solution.

4 Performance analysis
As the adoption of congestion pricing policy, each cell will
change its price according to the load at each iteration,
thus MUs select the best serving BSs to associate with.
WhenmostMUs associate with the same cell, price will go
up even more dramatically when cells are in highly con-
gested state. Due to the lower price, MUs who originally
reside in highly load cells are attracted to associate with
other lightly load cells. Here, we show some benefits due
to the introduction of dynamic pricing policy and related
mathematical proofs.

Proposition 1 The scheme under congestion pricing pol-
icy achieves throughput gain in comparison to that under
usage-based pricing policy, especially when actual cell load
is less than the load threshold.

Proof Here, we discuss two kinds of cases to prove the
throughput gain due to the introduction of congestion
pricing policy and then figure out approximate gain value.

Case 1: We consider the single cell case, where all MUs
select the same BS to associate with. wij, seij, Wi, Ci, and
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pi can be rewritten as wj, sej, W, C, and p for short,
respectively. Our goal is to explore the relation between
bandwidth allocation for each MU and the price that MU
is charged.
When the bandwidth and capacity limit are very large,

the two constraint conditions in previous optimization
problem can be neglected. Then, the optimal bandwidth
allocation w∗

j is obtained through the derivation of wj.

∂P(wj)

∂wj
= 1

wj
− psej = 0 =⇒ rj = wjsej = 1

p
. (22)

From (22), we see that the allocated bandwidth of MU
j is inversely proportional to the price. In other words,
when cell load becomes lower, this will make MUs get
more bandwidth because of the lower price. However,
bandwidth and backhaul resource are not infinite, and
therefore, the optimal wj is about the derivation of wj, λbw
and λrate.

∂P
(
wj, λbw, λrate

)

∂wj
= 1

wj + λbw + λratesej
= 0, (23)

∂P
(
wj, λbw, λrate

)

∂λbw
=

N∑

j=1
wj − W = 0, (24)

∂P
(
wj, λbw, λrate

)

∂λrate
=

N∑

j=1
wjsej − C = 0. (25)

From (23)–(25) the optimal resource allocation w∗
j

can be obtained. However, the equations are difficult to
solve because a large number of MUs result in higher
order equations, even if the solution exists. In view
of this difficulty, we try to find out the approximate
solution to describe the performance improvement. The
approximate solution w∗

j is given as iterative recurrence
formulas:

wj(k) = 1
sejp + λbw(k) + λrate(k)sej

, (26)

where λbw(k) = λbw(k − 1) − α(
∑N

j=1 wj(k − 1) − W )

and λrate(k) = λrate(k − 1) − α(
∑N

j=1 wj(k − 1)sej − C)

and k is the number of iterations. Initial value λbw(0)
and λrate(0) are predefined before the iteration begins.
From (26), we can see when actual cell load becomes
lower than the cell load threshold, namely the actual
cell price decreasing due to lower cell load, the λbw and
λrate decrease consequently at the (k − 1)th iteration
and then wj will go up at the kth iteration. Here, we
let an increment of throughput 	thr(k) be a difference
value at the kth iteration between two pricing policies
as below:

	thr(k)

= throughputcon(k) − throughputuse(k)

=
N∑

j=1
sej

(
wjcon(k) − wjuse(k)

)

=
N∑

j=1
sej

(
1
λ

bw

con
(k) + λratecon (k)sej + pconsej − 1

λbwuse(k) + λrateuse (k)sej + pusesej

)

=
N∑

j=1
sej

( pusesej − pconsej
(λbwcon(k) + λratecon (k)sej + pconsej)(λbwuse(k) + λrateuse (k)sej + pusesej)

)

+
∑k−1

m=1

(∑
j wjcon(m) − ∑

j wjuse(m)
)

(
λbwcon(k) + λratecon (k)sej + pconsej

) (
λbwuse(k) + λrateuse (k)sej + pusesej

)

+
sej

∑k−1
m=1

(∑
j wijcon(m) − ∑

j wjuse(m)
)

(
λbwcon(k) + λratecon (k)sej + pconsej

) (
λbwuse(k) + λrateuse (k)sej + pusesej

)

⎞

⎠ ,

(27)

where pcon = p0( 1−lshift
1−|�BS|(k) )

n and puse = p0. All the
formulas on the nominator are greater than zero when
pcon < puse, namely |�BS| < lshiftLmax, the throughput
under congestion pricing policy is more than that under
usage-based pricing policy. The lower the cell load is, the
more the gain is achieved. However, when the optimal
solution is reached, the summation of bandwidth or rate
allocation approaches the bandwidth or backhaul limit.
OneMUwill reassociate with other lightly load cells if suf-
ficient bandwidth resources are provided for the sake of
this throughput increment, which leads to multiple cells
case analysis.

Case 2: We consider the multiple cells case, where
each MU selects a certain BS to associate with among
all MBSs and FBSs. Unlike the single cell case, one MU
has many choices because of different positions and spec-
trum efficiency which makes this case more complicated.
According to [31], the multiple cell solution tends to con-
centrate on dominant single cell.We only need to compare
the bandwidth allocation in a certain BS. Then, the total
throughput of all MUs is approximately equal to our sin-
gle cell association problem. The throughput increment is
given as below:

	thr(k) = thoughputcon(k) − thoughputuse(k)

=
N∑

j=1
seij

(
wijcon(k) − wijuse(k)

)

=
N∑

j=1
seij

(
1

λbwicon(k) + λrateicon(k)seij + pconseij
− 1

λbwiuse(k) + λrateiuse(k)seij + puseseij

)

=
N∑

j=1
seij

(
puseseij − pconseij

(
λbwicon(k) + λrateicon(k)seij + pconseij

) (
λbwiuse(k) + λrateiuse(k)seij + puseseij

)

)

+
∑k−1

m=1

(∑
j wijcon(m) − ∑

j wijuse(m)
)

(
λbwicon(k) + λrateicon(k)seij + pconseij

) (
λbwiuse(k) + λrateiuse(k)seij + puseseij

)

+
seij

∑k−1
m=1

(∑
j wijcon(m) − ∑

j wijuse(m)
)

(
λbwicon(k) + λrateicon(k)seij + pconseij

) (
λbwiuse(k) + λrateiuse(k)seij + puseseij

)

⎞

⎠ ,

(28)
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where pcon = p0( 1−lshift
1−|�BS(i)|(k) )

n and puse = p0. All formu-
las on the nominator are greater than zero when pcon <

puse, namely max(|�BS(1)|, |�BS(2)|, . . . , |�BS(M)|) <

lshiftLmax. Therefore, the total throughput under conges-
tion pricing policy is more than that under usage-based
pricing policy.

Proposition 2 The throughput increases monotonously
as the parameter n increases (n≥1).

Proof As the same analysis method in the proof of
Proposition 1, the throughput increment can be given
in the form of difference under two different prices. As
parameter n increases, the price decreases consequently
under the same cell load. Following the proof of Propo-
sition 1, lower price results in higher throughput, and
thus the throughput under the congestion pricing policy is
more than that under the usage-based pricing policy.

Proposition 3 Under the congestion pricing policy, the
cell load tends to be more balancing in comparison to that
under the usage-based pricing policy.

Proof Load balancing is another important criterion in
heterogeneous network. Jain fairness index can be used
to measure the balance degree of the system [33]. The
formula of Jain fairness index is described as follows:

JFI =
(∑M

m=1 li
)2

M
∑M

m=1 l2i
, (29)

where M is the number of cells and li is the load of cell
i. The balance index is 1 when each cell has the same
load and tends to reach 1/M when the cell load is severely
unbalanced. As shown in the proof of Proposition 1, lower
cell load makes bandwidth allocation rise. However, due
to bandwidth and backhaul limit, the bandwidth alloca-
tion can not increase any more. If sufficient bandwidth
resources are provided, a MU will reassociate with other
lightly load cells for a larger rate. This switch occurs when
seijwij(k) < sekjwkj(k), which means that the rate of MU
j from BS k is greater than that from BS i. This flexible
control property outperforms that of usage-based pric-
ing policy. From Jain fairness index formula, we show the
increasing tendency of load balancing as below: if oneMU
transfers from BS i to BS k, here assuming that cell load in
BS k is greater than that in BS i due to lower price, the new
cell loads for these two BSs are:

l
′
i = li − 1, l

′
k = lk + 1. (30)

The new fairness index value is

JFI
′ =

(∑M
m=1 lm

)2

M
(
(li − 1)2 + (lk + 1)2 + ∑

m�=i,k l2m
))

=
(∑M

m=1 lm
)2

M
∑M

m=1 +2M (1 − (li − lk))
.

(31)

JFI and JFI′ differ only in denominators, if and only if li −
lk > 1, JFI′ > JFI. Since cell load li exceeds lk , the Jain
fairness increases which means cell load tends to be more
balancing due to dynamic pricing control.

5 Simulation results
We consider a two-tier heterogeneous network with wrap
around [34]. Let transmit power of MBS and FBS be
46 and 20 dBm, respectively. Suppose the locations of
MBS to be fixed with FBSs uniformly independently dis-
tributed around. The density of FBS is 8 per macrocell.
MUs locate in space uniformly with the density 10, 30,
and 50 per macrocell. In the propagation environment, we
use the path loss model 15.3 + 37.6 log10(d) and 35.3 +
37.6 log10(d) for macrocell and femtocell, respectively. We
set the lognormal shadowing with a standard deviation to
8 dB. The thermal noise power is −104 dBm. The band-
width in each cell is 10 MHz, and the backhaul capacity
is 50 Mbps. We assume that the throughput is Shannon
capacity rate of each MU. All the parameters are shown in
Table 1.

Table 1 Simulation parameters

Parameter Value

Topology Uniform with wrap around

Total area 1000 m × 1000 m

Antenna pattern Omni antenna

MU distribution Uniform, 10, 30, and 50 per macrocell

FBS ditribution 8 per macrocell

MBS Tx power 46 dBm

FBS Tx power 20 dBm

Macrocell pathloss 15.3 + 37.6 log10(d)

Femtocell pathloss 35.3 + 37.6 log10(d)

Bandwidth 10 MHz

Backhaul capacity 50 Mbps

Shadowing 8-dB standard deviation

Thermal noise power −104 dBm

Carrier frequency 2.1 GHz

Mobile model Static

Fading None

Access price 8

lshift 0.8
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Fig. 5 Distribution of throughput under different scenarios when MU
density = 10/macrocell

Figures 5, 6, and 7 compare the throughput CDF
under different scenarios with the different number of
MUs. Without compensation (labeled without refunding)
means there is no relationship between WSP-controlled
macrocell and FH-deployed femtocell. FHs are not will-
ing to share even though there are remaining backhaul
resource. Therefore, MUs only reside in macrocells with-
out any option. In comparison to the above strategy,
usage-based pricing compensation (labeled usage-based
pricing) implements the connection between macrocells
and adjacent femtocells. FHs receive certain refunding
from WSP to open its own backhaul resource for macro
users. However, usage-based pricing cannot achieve high
throughput due to the possible congestion problem. Our
proposed strategy (labeled congestion pricing) can reduce
the congestion and achieve high throughput. Table 2

Fig. 6 Distribution of throughput under different scenarios when MU
density = 30/macrocell

Fig. 7 Distribution of throughput under different scenarios when MU
density = 50/macrocell

shows the throughput under different number of MUs.
We can see that there is a remarkable gain when the
number of MUs changes. Cell-edge throughput gets 58.9
and 35.4% gain, respectively, compared with other two
scenarios when MU density is 10 per macrocell. The
medium rate also gets 44.7 and 34.1% gain. Even when the
MU density increases up to 50 per macrocell, cell-edge
throughput still gets 125 and 28.6% gain. Medium rate
increases significantly as well. The reason is that conges-
tion pricing policy impels macro users to select the best
BS which offers abundant bandwidth resource and lower

Table 2 The comparison of throughput under different number
of MUs (n = 2)

Scenario Without
compensation

Usage-based
pricing
compensation

Congestion
pricing
compensation

Cell-edge rate
(Mbps) (MUdensity
= 10/macrocell)

0.17 0.20 0.27

Cell-edge rate
(Mbps) (MUdensity
= 30/macrocell)

0.06 0.11 0.13

Cell-edge rate
(Mbps) (MUdensity
= 50/macrocell)

0.04 0.07 0.09

Medium rate
(Mbps) (MUdensity
= 10/macrocell)

0.76 0.82 1.10

Medium rate
(Mbps) (MUdensity
= 30/macrocell)

0.26 0.39 0.51

Medium rate
(Mbps) (MUdensity
= 50/macrocell)

0.17 0.31 0.38

The results of the proposed algorithm are marked in italics to highlight the
improvement
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Table 3 The comparison of load balancing under different
scenarios (n = 2)

Scenario Without
compensation

Usage-based
pricing
compensation

Congestion
pricing
compensation

JFI (MU density =
10/macrocell)

0.088 0.103 0.268

JFI (MU density =
30/macrocell)

0.098 0.189 0.393

JFI (MU density =
50/macrocell)

0.107 0.254 0.379

The results of the proposed algorithm are marked in italics to highlight the
improvement

access price. Comparing to the other two scenarios, our
proposed strategy can achieve better dynamic adjustment.
Table 3 shows the comparison of load balancing under

different scenarios. Through congestion pricing policy,
macro users are attracted to associate with adjacent fem-
tocells, and thus, load balancing is improved reason-
ably. When the MU density is 10 per macrocell, the JFI
increases from 0.088 to 0.268. With the increasing num-
ber of MUs, congestion degree becomes serious. When
the MU density turns to 50 per macrocell, the JFI is up to
0.379 compared with 0.107 in no compensation scenario
and 0.254 in compensation with the usage-based pricing
policy.
As shown in Fig. 8, throughput distribution under dif-

ferent n is compared. n = 0 represents usage-based
pricing compensation scenario because the access price in
each cell keeps constant. There is a significant gain when
n = 1. Indeed, throughput gets even larger as n increases.
Table 4 shows the comparison of throughput under dif-
ferent parameters n. We can see a 68.4% gain in cell-edge
rate and 60.3% gain in the medium rate when n = 0 and
n = 3, respectively. That larger n leads to much lower

Fig. 8 The comparison of throughput under different parameters n
(n = 0, 1, 2, 3)

Table 4 The comparison of throughput under different
parameters n (MU density = 10/macrocell)

Number 0 1 2 3

Cell-edge rate (Mbps) 0.19 0.22 0.28 0.32

Medium rate (Mbps) 0.78 0.94 1.14 1.25

access price which results in higher throughput than what
the smaller one does.

6 Conclusions
In this paper, we present an economic compensation
framework between WSP and FHs. Under this frame-
work, WSP pays certain refunding to FHs to implement
traffic offloading. Macro users can opportunistically asso-
ciate with FBS for transmission when there are remaining
backhaul resources. We generalize this user association
as an utility maximization problem. In the considera-
tion of congestion that occurred in femtocells, each FH
adopts the congestion pricing policy to control cell load.
To reduce the computation complexity in large-scale net-
works, a dual decomposition algorithm is presented which
incorporates bandwidth, backhaul capacity, and access
price. Simulation results show that as the number of MUs
increases, our optimization achieves remarkable through-
put gains. Load balancing measured by Jain fairness index
is also improved drastically. Actually, there are further
problems to be investigated. Our work focuses on the
interrelation between only one WSP and one type of
FH. As a matter of fact, the types of WSP and FH vary
widely. Therefore, the interrelation between WSP and
each FH becomes more complicated. Our future work
is to research multi-WSP-multi-FH problem and design
corresponding solutions.
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