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Abstract

A decision fusion rule using the total number of detections reported by the local sensors for hypothesis testing and
the total number of detections that report “1” to the fusion center (FC) is studied for a wireless sensor network
(WSN) with distributed sensors. A logistic regression fusion rule (LRFR) is formulated. We propose the logistic
regression fusion algorithm (LRFA), in which we train the coefficients of the LRFR, and then use the LRFR to make a
global decision about the presence/absence of the target. Both the fixed and variable numbers of decisions
received by the FC are examined. The fusion rule of K out of N and the counting rule are compared with the LRFR.
The LRFA does not depend on the signal model and the priori knowledge of the local sensors’ detection
probabilities and false alarm rate. The numerical simulations are conducted, and the results show that the LRFR
improves the performance of the system with low computational complexity.
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1 Introduction
A wireless sensor network (WSN) has attracted consider-
able attention, because of its great potential in various ap-
plications such as battlefield surveillance, traffic, security,
weather forecasts [1–3], health care, and home automa-
tion. Each sensor makes a local binary decision in a WSN
that has N distributed sensors and a fusion center (FC).
Then, the sensors’ decisions are sent to the FC to make a
global decision that decides whether the target is present.
Each sensor has a local threshold to make a decision about
the target’s presence or absence with or without the help
of their neighbors’ sensors.
Numerous papers have studied the conventional distrib-

uted detection problem. In [3, 4], the optimal fusion rule is
derived under the conditional independence assumption. In
[5], the authors develop a new and optimal algorithm for
distributed detection in sensor networks over fading chan-
nels with multiple receiving antennas at the FC. It derives
the optimal decision rules and the associated probabilities
of detection and false alarm for three scenarios of channel

state information availability. In [6], the authors propose a
binary decision fusion scheme that reaches a global deci-
sion by integrating local decisions made by fusion mem-
bers. Based on the minimax criterion, the optimal local
thresholds and global threshold are derived without a pre-
estimated target appearance probability. In [7], the authors
develop a distributed detection approach based on recent
development of the false discovery rate and the associated
procedure by using the scalar test statistics. The local vote
decision fusion algorithm, where sensors correct their
decisions about the target’s presence or absence using
decisions of neighboring sensors, and then makes a collect-
ive decision, is proposed in [3]. An improved threshold
approximation for local vote decision fusion is studied in
[8]. The fusion threshold bounds derived in [9] using
Chebyshev’s inequality ensure a higher hit rate and lower
false alarm rate without requiring a prior probability of tar-
get presence. In [10–14], the scan statistics is introduced to
improve the detected performances. The performances of
different approaches, the Chair-Varshney rule, generalized
likelihood ratio test, and Bayesian view, are compared
through simulations in [11]. Decision fusion with fading
channels which are non-ideal channels is studied in [5, 15].
The optimal power allocation between training and data at
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each sensor over orthogonal channels that are subject to
path loss, Rayleigh fading, and Gaussian noise is derived in
[16]. The authors design a computationally efficient fusion
rule which involves injecting a deliberate random disturb-
ance to the local sensor decisions before fusion in [17].
However, the traditional target detection can be seen

as a binary classification problem which decides whether
the target is present. The classification problem is widely
studied in the field of machine learning (ML), pattern
recognition, and statistical learning [18, 19]. The learn-
ing problem can be classified into two classifications:
supervised learning and unsupervised learning. In this
paper, one is one standing for the target’s presence, the
other is zero standing for the target’s absence. They have
been known to us when we select training examples.
Obviously, ML is used to solve the classical target detec-
tion which belongs to the field of supervised learning
whose labels can be known.
In this paper, we first give the general formula of the K

out of N (K/N) fusion rule, where N is a variable. K/N
fusion rule is that the FC collects data from the local
sensors which monitor the region of interest (ROI) and
decides a target’s presence when k out of the data report
“1.” Then, the logistic regression fusion rule (LRFR) model
derived to serve as the FC’s fusion rule is introduced, and
the logistic regression fusion algorithm (LRFA) is pro-
posed. The counting rule and K/N fusion rule are com-
pared with the LRFR. Some numerical simulations are
conducted and show their performances.

The rest of the paper is organized as follows. In
Section 2, we introduce the signal decay model and basic
assumptions. The local sensors’ detection model is intro-
duced with a WSN with distributed sensors and ideal
communication channels between sensors and the fusion
center. In Section 3, the fusion rules are given including
the K/N rule, the counting rule, and the LRFR. In Sec-
tion 4, considering that the total number of sensors is
fixed and is known to the FC, the LRFR is simulated.
Then, when the variable number of sensors which send
data to the FC is more than half of the total initially
sensors, some simulations are conducted including LRFR
and we compare the LRFR with the counting rule and the
K/N fusion rule. In Section 5, we summarize this paper.

2 Sensor model
Considering that a WSN with N distributed sensors and a
target, we assume that noise exists among the target and
the sensors. The noise is independent and identically
distributed (i.i.d) and follows the standard Gaussian distri-
bution with zero mean and unit variance. As Fig. 1 shows,
N distributed sensors are uniformly deployed in the ROI
which is a square with area A2, and a target randomly
appears in the ROI. The locations of the local sensors are
unknown to the FC, and every local sensor first monitors
the ROI, makes a local decision about the target’s presence
or absence, and then sends its decision to the FC to make
a global decision which decides whether the target exists.

Fig. 1 A sensor deployment example. Area of the square region: A2; circle: the local sensors; star: the target
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For a local sensor i, the binary hypothesis testing problem
is denoted as follows:

H1 : ri ¼ si þ ni
H0 : ri ¼ ni

ð1Þ

where H1 represents the hypothesis of the target’s pres-
ence and H0 represents the hypothesis of the target’s ab-
sence. As discussed above, ni represents the noise and
follows the standard Gaussian distribution

ni∼N 0; 1ð Þ ð2Þ
In Eq. (1), ri denotes the signal received by the local

sensor i, and si denotes the target’s signal detected by
the local sensor i. The signal power emitted by the target
decays as the distance from the target increases. The
signal power attenuation model is as follows:

si ¼ g dið Þ ð3Þ
where di represents the distance between the target and
the local sensor i is denoted as

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−xtð Þ2 þ yi−ytð Þ2

q
ð4Þ

and the function g(.) denotes the attenuation function
with the distance from the target. In Eq. (4), (xi, yi) rep-
resents the coordinate of the local sensor i and (xt, yt)
represents the coordinate of the target. The function g(.)
has many different forms. One example for g(.) is de-
noted in Eq. (21) as follows:

g xð Þ ¼ P0 x < d0
P0
�
xβ x ≥ d0

�
ð5Þ

where p0 denotes the signal power emitted by the target
at a reference distance d0, and β is the signal decay
exponent. In Eq. (22), the function g(.) which is used in
this paper is given as follows:

g dið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P0

1þ λdβ
i

s
ð6Þ

where λ is an adjustable constant and β often takes values
between 2 and 3. Assuming that the local sensor i uses the
threshold τi to make the local binary decision Ii, in which
I denotes that the target is present and 0 denotes that the
target is absent, then all decisions denoted by I = (I1, I2,
…, IN) are sent to the FC to make a global decision that 1
represents the target’s presence and 0 presents the target’s
absence. According to the Neyman-Pearson (NP) lemma,
the local sensor-level false alarm rate and probability of
detection are given by

Pf i ¼ P IijH0ð Þ ¼ Q τið Þ ð7Þ

Pdi ¼ P IijH1ð Þ ¼ Q τi−sið Þ ð8Þ

where Q xð Þ ¼
Z ∞

x

1ffiffiffiffiffiffi
2π

p e−
y2

2 dy , which is the complemen-

tary distribution function of the standard Gaussian.
In WSNs for distribution detection, the local observa-

tion has to be quantized before being transmitted to the
FC which is demanded to make the final decision about
the target’s presence.

3 Fusion rules
In this paper, we assume that all the local sensors have
the same false alarm rate, that is, they have the same
local threshold to make a local decision (Eqs. (21) and
(22)). The local false alarm rate satisfies Eq. (7). We also
assume that the wireless channels between the sensors
and the fusion center are perfect, with negligible error
rates. Three fusion rules will be shown in this section.

3.1 K/N fusion rule
K/N, which is short for K out of N, is that the FC selects
the data from the local sensors and makes a positive deci-
sion when more than k data values are “1”s. The formula of
K/N fusion rule is given by

Α1 ¼
XN
i¼1

Ii ≥
H1

H0

K ð9Þ

where N is the total number of the sensors. When the
FC receives the variable number of sensors, Eq. (9) can
be written as

Α2 ¼
PN

i¼1 Ii
m

≥
H1

H0

k ð10Þ

where m denotes that the total number of sensors which
send data to the FC at the moment and k ∈ (0, 1),m ≤N.

3.2 Counting rule
The counting rule, which is widely used as the fusion rule
of the FC in Eqs. (6), (10), (22), and (23), is an intuitive
choice that is to use the total number of “1” as a statistic.
The counting rule makes a global decision by first count-
ing the number of detections made by the local sensors
and then comparing it with a threshold T. The counting
rule can be written as

Α3 ¼
XN
i¼1

Ii ≥
H1

H0

T ð11Þ

where N is the total number of the sensors which send
data to the FC and T is a threshold. The K/Nis the unit-
ing rule when T is a constant. The global false alarm rate
can be given as
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PFa ¼ Pr Λ3≥T jH0f g ð12Þ
where PFa is the global false alarm rate. When every local
sensor has the same false alarm rate, the global false
alarm rate can be written as

PFa ¼
XN
i¼T

N
i

� �
pif i 1−pf i

� �N
ð13Þ

When N is large enough, Eq. (13) can be obtained by
using the Laplace-DeMoivre approximation

PFa ¼ Q
T−Npf iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Npf i 1−pf i
� �r

0
BB@

1
CCA ð14Þ

The threshold can be calculated as Eq. (22):

T ¼ Q−1 PFað Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Npf i 1−pf i

� �r
þ Npf i ð15Þ

From Eq. (15), it is clear that T is a function of the global
false alarm rate, the local sensors’ false alarm rate, and the
total number of the sensors which send data to the FC.

3.3 LRFR
The LRFR uses the logistic regression to train the weights to
make a decision. The logistic regression can be expressed as

h xð Þ ¼ 1

1þ exp −WTX
	 
 ð16Þ

where W is the weight vector, and x is the feature. x can
include the total number of the sensors which send data to
the FC, the number of “1” reported by the sensors to the

FC, and the local sensors’ performances (such as false alarm
rate, detection probabilities), and the constant “1,” etc.
N denotes the total number of the sensors which send

data to the FC. The equation m ¼ N
Xm

i¼1
Ii denotes the

number of “1” reported by the local sensors. The red star
means the target is present, and the black cross means
the target is absent. A = 50, P0 = 1500, τ = 1.6449, λ =
1, β = 2,N = 100.
As shown in Fig. 2, 10,000 simulations are conducted.

The total number of the local sensors is 100 and fixed,
that is, the FC selects data from the local sensors and
makes a decision about the target’s presence when the
data are equal to 100 at that moment. Some important
parameters are set as follows: the area of ROI is 50, the
power of the target is 1500, and the local sensors’ thresh-
old is 1.6449. The red star denotes that the real circum-
stance has the target. The black cross in Fig. 2 denotes
that the real circumstance does not have the target. From
Fig. 2, we can see that it has a clearly separable region
between the target’s presence and the target’s absence.
Ten thousand simulations are conducted in Fig. 3, where

m is a variable that denotes the sensors’ sent data to the FC
at the moment. We assume that the FC makes a decision
when m is equal to or more than half of the initially total
number of the local sensors at that moment. Some import-
ant parameters are set as follows: the area of ROI is 50, the
power of the target is 1500, and the local sensors threshold
is 1.6449. The red star in Fig. 3 represents the target’s
presence and the black cross represents the target’s
absence. As shown in Fig. 3, it also has a clearly
separable region between the target’s presence and the
target’s absence.
So, when N is known to the FC and m =N, the param-

eters of the logistic regression can be set as follows:

Fig. 2 The FC selects data from the local sensors
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w ¼ w1 w0½ �
x ¼

Xm

i¼l
I i 1

h i ð17Þ

where m is a variable and more than or equal to half of
N.

Xm

i¼1
Ii denotes the number of “1” reported by the

local sensors. The red star means the target is present,
and the black cross means the target is absent. A = 50, P0
= 1500, τ = 1.6449, λ = 1, β = 2,N = 100.

Xm

i¼1
Ii denotes

the number of “1” reported to the FC by the local sensors
at that moment. When m is a variable, the parameters of
the logistic regression can be obtained by

w ¼ w1 w2 w0½ �
x ¼ m

Xm

i¼l
I i 1

h i ð18Þ

The LRFR can be obtained by

where sign(x) is the sign function, h(x) stands for Eq.
(16), and φ is a constant. The miss alarm rate rises with
increasing φ, and the false alarm rate rises with decreasing
φ. Let φ = 0.5, we have WTx = 0. So, Eq. (19) can be
simplified as

Λ5 ¼ sign xð Þ0H1
H0 ð20Þ

3.4 LRFA
One of the LRFR’s most important steps is to obtain the
parameters. To solve the problem, we can get the pa-
rameters by the maximum likelihood estimator. Let

P u ¼ 1jx;wð Þ ¼ h xð Þ ð21Þ
P u ¼ 0jx;wð Þ ¼ 1−h xð Þ ð22Þ

where u denotes the FC’s decision, x denotes the input

of the features, w is the weight of the LRFR, and h(x)
represents Eq. (16). Because of the fact that u can only
be 1 or 0, the likelihood function can be expressed by

P ujx;wð Þ ¼ h xð Þu 1−h xð Þð Þ1−u ð23Þ
With the independent training samples, the likelihood

function can be written as

L wð Þ ¼ P u x;wjð Þ ¼ Π
M

i
P ui xi;wjð Þ ¼ Π

M

i
h xið Þui 1−h xið Þð Þ1−ui

ð24Þ
where M is the number of the training samples. It will
be easier to maximize the log likelihood

l wð Þ ¼ log L wð Þf g

¼
XM
i

ui logh xið Þ þ 1−uið Þ log 1−h xið Þð Þf g

ð25Þ
To solve the parameters of the LRFR, penalized logis-

tic regression is often used in ML. The general formula
is as follows:

−l wð Þ þ p wð Þ ¼ −
XM
i

ui logh xið Þ þ 1 1−uið Þ log 1−h xið Þð Þf g þ p wð Þ

ð26Þ
where P(w) is the penalized function. To minimize Eq.
(26), we can use the gradient descent. In Eq. (24), as an
optimization problem, binary classification L2 penalized
logistic regression minimizes the following cost function

min
1
2
wTw−C

XM
i

ui logh xið Þ þ 1−uið Þ log 1−h xið Þð Þf g
( )

ð27Þ
where C controls the level of regularization.

Fig. 3 The FC selects data from the local sensors
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The LRFA is shown as pseudo-code in Algorithm 1.
Step 1 is only in numerical simulations, that is, the LRFR
does not need the knowledge of the performances of
local sensors. Steps 2 and 4 select Eq. (17) or Eq. (18)
with the dependence of whether the total number of the
sensors which send data to the FC is variable. Steps 3
and 4 train the LRFR with L1 and L2, respectively. The
performances of the LRFR with L1 and L2 are
computed, and a proper LRFR (step 4 in Algorithm 1) is
selected. Through the LRFA, a proper LRFR is selected
as the fusion rule of the FC.Xm

i¼1
Ii denotes the number of “1” reported by the

local sensors, where m =N. The red star means the tar-
get is present, and the black cross means the target is
absent. A = 50, P0 = 1500, τ = 1.6449, λ = 1, β = 2,N = 100.

The m is a variable and more than or equal to half of
N.

Xm

i¼1
Ii denotes the number of “1” reported by the

local sensors. The red star means the target is present,
and the black cross means the target is absent. A = 50,
P0 = 1500, τ = 1.6449, λ = 1, β = 2,N = 100.

4 Numerical simulations
In this section, we conduct numerical simulations. The
software of the numerical simulations used in this sec-
tion are Matlab and Python. One of the packages of the
Python is scikit-learn (Eq. (24)). Scikit-learn is on ML in
Python, which is a simple and efficient tool for data
mining and data analysis. It includes classification,
regression, clustering, dimensionality reduction, model
selection, and reprocessing.
As shown in Fig. 4, 1000 training samples are used to

train the weights of Eq. (17). Some important parameters

Fig. 4 Fixed number of the local sensors Fig. 5 The variable number of local sensors
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are set as follows: A = 50, P0 = 1500, τ = 1.6449, λ = 1, β =
2,N = 100. The number of the local sensors which send
their data to the FC is fixed, that is, the FC makes a de-
cision about the target’s presence when detections sent
to the FC are up to N. We get the weights of Eq. (17) by
the LRFA, and we generate 1000 random samples to
test. From Fig. 4, the two labels of test samples can be
clearly separated.
To show the influences of the variable total number of

the local sensors which send data to the FC at that mo-
ment, in Fig. 5, we assume that the FC makes decisions
when the number of detections sent to the FC at that mo-
ment is equal to or more than half of the initially total
number of sensors deployed in ROI. The weights of Eq.
(18) are trained by 1000 training samples. Some important
parameters are set: A = 50, P0 = 1500, τ = 1.6449, λ = 1, β =
2,N = 100. In this simulation, we can see the LRFR clearly
separate the two labels (in Fig. 5).
To see the influences of the different power of the target,

we conduct variable powered experiments. The power of
the target varies from 1500 to 100. The weights of Eq. (18)
are solved by 10,000 training samples. Some important
parameters are set: A = 50, τ = 1.6449, λ = 1, β = 2,N = 100,
L = L2. From Fig. 6, the region between the two labels
becomes small with the decrease of the target power. From

Eqs. (1) and (6), we know the received signal of the local
sensors decreases with the decreasing power. The weights
of Eq. (18) are solved by the 10,000 training samples. The
LRFR can classify the target’s presence and absence with
1000 random test samples. Table 1 shows the performances
of the FC change with the power of the target. The detected
probability of the FC becomes small, and the false alarm
rate of the FC becomes large with the power decreasing.
Figure 7 shows the comparison between LRFR and K/

N. Some important parameters are set: A = 50, P0 = 1500,
τ = 1.6449, λ = 1, β = 2, N = 100. The LRFR can have the
same ability of the k/N. However, there are no good

Fig. 6 The variable total local sensors. The m is a variable and more than or equal to half of N.
Xm

i
Ii denotes the number of “1” reported by the local

sensor. The red star means the target is present, and the black cross means the target is absent. A = 50, τ = 1.6449, λ = 1, β = 2,N = 100. a P0 = 1500.
b P0 = 900

Table 1 The performances of the system with varying power

P0 1500 1200 900 600 300 100

PD 99.96% 99.96% 99.94% 99.80% 99.10% 94.72%

PFa 0% 0% 0% 0.18% 0.92% 9.60%
Fig. 7 The comparison of the LRFR with the
K/N. A = 50, P0 = 1500, τ = 1.6449, λ = 1, β = 2, N = 100
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methods to solve the parameter k of the K/N fusion rule.
The LRFR can be easily solved by the ML method. To
study the difference between the LRFR and the counting
rule, in Fig. 8, the parameters are the same as Fig. 7. The
performances of counting rule become decreasing with
the global increasing false alarm rate. From Eq. (15), we
know that the performances of the counting rule have
the relation with the global false alarm rate.

5 Conclusions
In this paper, we give the general formula of the k/N fu-
sion rule based on the total number of detections made
by the local sensors. The LRFR and LRFA are proposed.
The fixed total number of detections and the variable
number of detections made by the local sensors are
considered. The numerical simulations are given as
above. From the numerical simulations, we see the LRFR
can be well used as the FC’s fusion rule because of the
outstanding performances and low computational com-
plexity. One of the drawbacks of the LRFR is that it re-
quires training samples to solve the weights of the LRFR.
In the future, different methods of the ML will be

studied to solve the problems of the target detection and
different features will be considered.

Authors’ information
Longgeng Liu (b. June 5, 1975) received his M.Sc. in Computer Science
(2000) from a university. Now, he is a director at China National Software
and Integrated Circuit Promotion Center of the Ministry of Industry and
Information Technology. He is a Ph.D. and studies at the University of
Electronic Science and Technology. His current research interests include
different aspects of artificial intelligence and distributed systems. He has
(co-)authored more than two books and ten papers.

Competing interest
The authors declare that they have no competing interests.

Author details
1University of Electronic Science and Technology, Chengdu, Sichuan 611731,
China. 2Chongqing University of Posts and Telecommunications, Chongqing
400065, China.

Received: 23 May 2016 Accepted: 12 December 2016

References
1. C. Fonseca, H. Ferreira, Stability and contagion measures for spatial extreme

value analyses. arXiv. 1206-1228 (2012)

Fig. 8 The comparison of the LRFR with the counting rule. A = 50, P0 = 1500, τ = 1.6449, λ = 1, β = 2, N = 100

Liu et al. EURASIP Journal on Wireless Communications and Networking  (2017) 2017:10 Page 8 of 9



2. K Athanasios, Z Wang, A Rodrłguez, Spatial modeling for risk assessment of
extreme values from environmental time series: a Bayesian nonparametric
approach. Environmetrics 23(8), 649–662 (2012)

3. N Katenka, E Levina, G Michailidis, Local vote decision fusion for target
detection in wireless sensor networks. IEEE Trans. Signal. Process. ACM 56(1),
329–338 (2008)

4. P. K. Varshney, Distributed detection and data fusion. New York: Springer-
Verlag New York, Inc. 36-118 (1996)

5. I. Nevat, G. Peters, I. Collings, Distributed detection in sensor networks over
fading channels with multiple antennas at the fusion center. 1(3), 45-49 (2014)

6. SH Javadi, A Peiravi, Fusion of weighted decisions in wireless sensor
networks. Wireless Sens. Syst. IET 5(2), 97–105 (2015)

7. E Ermis, S Venkatesh, Distributed detection in sensor networks with limited
range multimodal sensors. Signal. Process. IEEE Trans. 58(2), 843–858 (2010)

8. Ridout, S Martin, An improved threshold approximation for local vote
decision fusion. Signal. Process. IEEE Trans. 61(5), 1104–1106 (2013)

9. M Zhu et al., Fusion of threshold rules for target detection in wireless
sensor networks. ACM Trans. Sens. Netw. (TOSN) 6(2), 18 (2010)

10. X Song et al., Active detection with a barrier sensor network using a scan
statistic. IEEE J. Ocean. Eng. 37(1), 66–74 (2012)

11. M Guerriero, S Lennart, W Peter, Bayesian data fusion for distributed target
detection in sensor networks. Signal. Process. IEEE Trans. 58(6), 3417–3421 (2010)

12. M Guerriero, W Peter, G Joseph, Distributed target detection in sensor networks
using scan statistics. Signal. Process. IEEE Trans. 57(7), 2629–2639 (2009)

13. J Glaz, Z Zhang, Multiple window discrete scan statistics. J. Appl. Stat. 31(8),
967–980 (2004)

14. J Glaz, NI Naus, Tight bounds and approximations for scan statistic
probabilities for discrete data. Ann. Appl. Probab. 1(2), 306 (1991)

15. B Chen et al., Channel aware decision fusion in wireless sensor networks.
Signal. Process. IEEE Trans. 52(12), 3454–3458 (2004)

16. R Hamid, V Azadeh, Optimal training and data power allocation in
distributed detection with inhomogeneous sensors. Signal Processing
Letters. IEEE. 20(4), 339–342 (2013)

17. G Satish, R Niu, K Pramod, Fusing dependent decisions for hypothesis testing
with heterogeneous sensors. Signal. Process. IEEE Trans. 60(9), 4888–4897 (2012)

18. T Hastie et al., The elements of statistical learning: data mining, inference, and
prediction. 2 (Springer, New York, 2009), pp. 65–104

19. C.M. Bishop, Pattern recognition and machine learning information science
and statistics Secaucus. 2(3), 045-108 (2006)

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Liu et al. EURASIP Journal on Wireless Communications and Networking  (2017) 2017:10 Page 9 of 9


	Abstract
	Introduction
	Sensor model
	Fusion rules
	K/N fusion rule
	Counting rule
	LRFR
	LRFA

	Numerical simulations
	Conclusions
	Authors’ information
	Competing interest
	Author details
	References

