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Abstract

In this paper, we address the problem of joint power allocation in a two-hop MIMO-OFDM network, where two
full-duplex users communicate with each other via an amplify-and-forward relay. We consider a general model in
which the full-duplex relay can forward the received message in either one-way or two-way mode. Our aim is to
maximize the instantaneous end-to-end total throughput, subject to (i) the separate sum-power constraints at
individual nodes or (ii) the joint sum-power constraint of the whole network. The formulated problems are large-scale
nonconvex optimization problems, for which efficient and optimal solutions are currently not available. Using the
successive convex approximation approach, we develop novel iterative algorithms of extremely low complexity
which are especially suitable for large-scale computation. In each iteration, a simple closed-form solution is derived for
the approximated convex program. The proposed algorithms guarantee to converge to at least a local optimum of
the nonconvex problems. Numerical results verify that the devised solutions converge quickly, and that our optimal
power allocation schemes significantly improve the throughput of MIMO-OFDM full-duplex one-way/two-way
relaying over the conventional half-duplex relaying strategy.
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1 Introduction
The fifth-generation (5G) wireless networks target a
1,000-fold increase in the network capacity to meet the
ever growing user demands for high-speed and ubiq-
uitous network access. To support such an ambitious
goal, multiple-input multiple-output (MIMO) communi-
cations and cooperative orthogonal frequency division
multiplexing (OFDM) relaying techniques play a key role
in enhancing spectral efficiency and improving link reli-
ability. MIMO transmission and reception increase the
channel capacity through spatial multiplexing, modula-
tion and coding. Cooperative OFDM relaying provides
greater coverage areas without having to deploy costly
additional base stations.
OFDM relays are traditionally designed for the half-

duplexing (HD) mode, where signal transmission and
reception take place in different time slots or frequency
bands [1]. Only after fully receiving a data packet, the HD
relay nodes forward it to the destination. Full-duplexing
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(FD) has recently been proposed as one of the key 5G
transceiver techniques with the hope of doubling the spec-
tral efficiency [2, 3]. With simultaneous signal transmis-
sion and reception in the same time slot and on the same
frequency band, an FD relay node transmits a packet while
receiving another packet, thereby significantly reducing
the end-to-end delay. Such bidirectional communication
on the same radio resource block was assumed technically
impossible, due to the huge self-interference (SI) intro-
duced by the transmit antenna to the receive antenna
on the same device. Only recently, advances in hardware
design have suppressed the SI to a level potentially suitable
for practical FD applications [4–6].
Two-way relaying strategies [7] have attracted consider-

able research attention, due to their potential to provide
substantially higher spectral efficiency than the conven-
tional one-way relaying counterpart [8–15]. Under the FD
two-way relaying, the overall network throughput could
further be enhanced by exchanging data in only one time
slot as opposed to four in the HD one-way relaying. How-
ever, the tradeoff is that an FD two-way relaying scheme
suffers even more severe interferences than the FD one-
way relaying. It is the direct result of allowing concurrent
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transmissions at both communication ends. Importantly,
the rise in the interference level may null out any through-
put gain achieved by using fewer time slots.
Efficient power allocation to realize the potential gains

of the MIMO-OFDM FD two-way relaying strategy
remains an open research topic. Such an allocation is still
underdeveloped even for the conventional MIMO-OFDM
HD one-way relaying networks. In [16], the problem of
power allocation for amplify-and-forward (AF) HD one-
way relays is investigated with the aim of maximizing the
instantaneous sum throughput. Since the objective func-
tion is not jointly but separately concave in the source
and relay power variables, [16] proposes alternating opti-
mization at the source and at the relay with individual
per-node transmit power constraints. For the joint sum-
power constraint at both the source and the relay, [16]
resorts to a high signal-to-noise ratio (SNR) approxi-
mation for the throughput to become a jointly concave
function in the source and relay power variables ([17],
Prop. 1 and Appendix B). Although a closed-form optimal
solution is available for the convex reformulation, such an
approximation at high SNR regions does not always hold
in practice. OFDM subchannels tend to be assigned with
very different transmit power levels. Good subchannels
are typically allocated more power to achieve high SNRs
while the bad subchannels may even get zero SNRs. With
the high SNR approximation of [16], the original non-
convex program is transformed to an inequivalent opti-
mization problem. Indeed, [16, 17] provide upper bound
maximization for the original nonconvex maximization,
where lower bound maximization should always be pre-
ferred. Moreover, the solutions found by either alternating
optimization or convex relaxation, in general, may not
even satisfy the Karush-Kuhn-Tucker (KKT) necessary
conditions for optimality.
The power allocation in a MIMO OFDM two-hop net-

work with FD one-way/two-way relaying is an even more
challenging problem. To the best of our knowledge, there
currently exists no efficient computational solution that
guarantees optimality for this problem. It is unlikely that
such a highly nonconvex problem can be solved via just
one relaxed convex optimization as in [16, 17]. In this
paper, we develop new iterative algorithms of extremely
low complexity to jointly allocate the transmit power at
the sources and the relay. The key contributions of our
work are summarized as follows.

• Novel algorithmic development. We address the
nonconvex optimization problem formulations via
solving a sequence of convex programs in the
complete set of source and relay power variables. The
proposed approach applies equally well to both
separate and joint sum-power constraints. Our
convex approximations are far from trivial even in

the simplest scenario of MIMO-OFDM HD one-way
relaying considered in [16]. With a new bounding
technique, the devised algorithms are novel even
from an optimization-theoretic perspective.

• Low-complexity locally optimal algorithms for large-
scale computation. As each iteration of the algorithms
yields an improved solution, they always guarantee to
converge to at least a local optimum of the original
nonconvex problems. Importantly, unlike [18, 19] we
derive simple closed-form suboptimal solutions for
the convex program in each iteration, which require
extremely low computational complexity. Numerical
experiments demonstrate that the number of
iterations required for our algorithms to converge is
small. These two features make our algorithms
particularly suitable for large-scale computation.

• Throughput performance improvement. The
efficient power allocation schemes markedly enhance
the throughput of the MIMO-OFDM FD
one-way/two-way relaying over the HD relaying
strategies.

The rest of this paper is organized as follows.
Section 2 presents the nonconvex problem formulations
for power allocation in a MIMO-OFDM relaying net-
work. Sections 3 and 4 propose the optimal power
allocation algorithms for two-way and one-way relaying
cases, respectively. Section 5 verifies the performance of
our proposed algorithms via numerical examples. Finally,
Section 6 concludes the paper.
Notation. Boldfaced symbols are used for optimization

variables whereas non-boldfaced symbols are for deter-
ministic terms, regardless of whether they are matrix,
vector or scalar. The dimensions of these symbols are
interpreted from context, and they will be explicitly spec-
ified if there is any ambiguity.

2 SystemModel and Problem Formulations
2.1 MIMO-OFDM FD Two-Way Relaying
Consider a two-way relaying network in Fig. 1. Two
user terminals 1 and 2 (each equipped with N anten-
nas) exchange information with the help of a relay (also
equipped with N antennas) using FD transmissions over
K OFDM subcarriers. Denote the index set of the OFDM
subcarriers as K � {1, . . . ,K}. We assume there is no
direct link between the two users, e.g., building struc-
tures prevent signal penetration. The channel impulse
response is assumed to be time-invariant during the time
for exchanging information. Furthermore, full channel
state information is made available at the nodes by some
high-performing channel estimation mechanism in place.
A central processing unit is employed to collect all the
channel state information from the nodes (via either wire-
line or wireless links), perform the network optimization
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Fig. 1 Two-way MIMO-OFDM relaying with two FD users and one FD relay

and disseminate the computational solution back to the
nodes.
Data symbol s(�)k ∈ C

N from user � ∈ {1, 2} is lin-
early precoded before transmitting on subcarrier k ∈ K
as s̃(�)k = �

(�)

k s(�)k , where �
(�)

k ∈ C
N×N is the transmit

precoding matrix on subcarrier k by user �. In the mul-
tiple access (MA) phase, the received vector symbol on
subcarrier k at the relay is

yR,k = H(1)
S,k s̃

(1)
k + H(2)

S,k s̃
(2)
k + eLI,k + w̃R,k , (1)

whereH(�)

S,k ∈ C
N×N is theMIMOchannelmatrix between

user � and the relay on subcarrier k; eLI,k ∈ C
N is the

relay FD loop interference on subcarrier k; and w̃R,k ∈
C
N is the additive zero-mean Gaussian noise with covari-

ance RR encompassing all OFDM impairments such as
intercarrier power leakage, narrow band interferences,
channel estimation error and baseband noise [20–22]. The
reader is referred to [23–25] and references therein for the
suppression techniques of these impairments.
In the broadcast (BC) phase, the relay multiplies the

received signal vector on subcarrier k by a matrix Fk and
broadcasts the processed signal vector to both users 1 and
2. The received signal vector at user � ∈ {1, 2} is expressed
as:

ỹ(�)

D,k = H(�)

R,kFk
(
H(1)
S,k s̃

(1)
k + H(2)

S,k s̃
(2)
k + eLI,k + w̃R,k

)
+ e(�)LI,k + w̃(�)

D,k

= H(�)

R,kFkH
(3−�)

S,k �(3−�)s(3−�)

k︸ ︷︷ ︸
desired signal

+ H(�)

R,kFkH
(�)

S,k�
(�)s(�)k︸ ︷︷ ︸

back-propagating self-interference

+ H(�)

R,kFkeLI,k︸ ︷︷ ︸
amplified relay loop interference

+ H(�)

R,kFkw̃R,k︸ ︷︷ ︸
amplified noise

+ e(�)LI,k︸︷︷︸
terminal’s loop interference

+w̃(�)

D,k ,

(2)

where H(�)

R,k ∈ C
N×N is the MIMO channel matrix

between the relay and user � on subcarrier k; e(�)LI,k ∈ C
N

is the self-loop interference at user � due to FD transmis-
sions; and w̃(�)

D,k is the zero-mean Gaussian noise at user �

with covariance R(�)
D encompassing all impairments such

as intercarrier power leakage, narrow band interferences,
channel estimation error and baseband noise [20–22].
Without loss of generality, we assume thatH(�)

S,k andH
(�)

R,k
are nonsingular for both � ∈ {1, 2}. Accordingly, they can
be represented by the singular value decomposition (SVD)
as: [

H(1)
S,k H(2)

S,k

]
= VS,k�S,k

[
Q(1)
S,k Q

(2)
S,k

]
,[

H(1)
R,k

H(2)
R,k

]
=
[
Q(1)
R,k

Q(2)
R,k

]
�R,kVR,k ,

�t,k = diag
{√

ht,k,n
}N
n=1

, t ∈ {S,R},

(3)

where VS,k and VR,k are unitary matrices of dimen-
sion N × N ; hS,k,n and hR,k,n are the eigenvalues of

H(1)
S,k

(
H(1)
S,k

)H + H(2)
S,k

(
H(2)
S,k

)H
and

(
H(1)
R,k

)H
H(1)
R,k +(

H(2)
R,k

)H
H(2)
R,k , respectively. Matrices QS,k �

[
Q(1)
S,k Q

(2)
S,k

]
and QR,k �

[
Q(1)
R,k

Q(2)
R,k

]
have orthonormal rows and

orthonormal columns, respectively:

Q(1)
S,k

(
Q(1)
S,k

)H + Q(2)
S,k

(
Q(2)
S,k

)H = IN ,(
Q(1)
R,k

)H
Q(1)
R,k +

(
Q(2)
R,k

)H
Q(2)
R,k = IN .

(4)

As such, for

Fk = VH
R,k�kVH

S,k , �k = diag
{√

βk,n
√pR,k,n

}N
n=1

;

�
(�)

k =
(
Q(�)

S,k

)−1
�

(�)

k , �
(�)

k = diag
{√

p(�)

S,k,n

}N
n=1

, � ∈ {1, 2}
(5)

one can rewrite (2) as:

ỹ(�)

D,k = Q(�)

R,k�R,k�k�S,k�
(3−�)

k s(3−�)

k︸ ︷︷ ︸
desired signal

+ Q(�)

R,k�R,k�k�S,k�
(�)

k s(�)k︸ ︷︷ ︸
back-propagating self-interference

+ Q(�)

R,k�R,k�kVH
S,keLI,k + e(�)LI,k︸ ︷︷ ︸

FD loop interferences

+Q(�)

R,k�R,k�kVH
S,kw̃R,k︸ ︷︷ ︸

amplified noise

+w̃(�)

D,k ,

(6)
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or equivalently,

y(�)

D,k = �R,k�k�S,k�
(3−�)

k s(3−�)

k︸ ︷︷ ︸
desired signal

+ �R,k�k�S,k�
(�)

k s(�)k︸ ︷︷ ︸
back-propagating self-interference

+ �R,k�ktLI,k + t(�)LI,k︸ ︷︷ ︸
FD loop interferences

+ �R,k�kwR,k︸ ︷︷ ︸
amplified noise

+w(�)

D,k ,

(7)

where

y(�)

D,k =
(
Q(�)

R,k

)−1
ỹ(�)

D,k , tLI,k = VH
S,keLI,k , t(�)LI,k =

(
Q(�)

R,k

)−1
e(�)LI,k ,

wR,k = VH
S,kw̃R,k , w(�)

D,k =
(
Q(�)

R,k

)−1
w̃(�)

D,k , � ∈ {1, 2}.
(8)

The noises wR,k and w(�)

D,k are still zero-mean Gaussian
with covariances1

RR,k = VH
S,kRRVS,k and

R(�)

D,k =
(
Q(�)

R,k

)−1
R(�)

D

(
Q(�)

R,k

)−H
, � ∈ {1, 2}

(9)

respectively. Denoting q(�)

k,n as the diagonal entries of(
Q(�)

S,k

)−H (
Q(�)

S,k

)−1
, the transmit power from user � ∈

{1, 2} over subcarrier k is then∑N
n=1 q

(�)

k,np
(�)

S,k,n.
With (7), we have shown that the two-way relay MIMO

channel in each OFDM subcarrier can be diagonalized
into N parallel channels, where the substraction of the
known signals can also be performed on each spatial chan-
nel in each OFDM subcarrier. In (5), pR,k,n and p(�)

S,k,n are
respectively the equivalent transmit power of the relay
to the users and of the user � ∈ {1, 2} to the relay on
spatial channel n in subcarrier k. Note that the relaying
power in Fk is not amplified. In regard to the self-loop
interferences in (8), it follows from [5, 26] that prac-
tically E{||tLI,k||2} ≤ hLI

∑N
n=1 pR,k,n and E{||t(�)LI,k||2} ≤

h(�)
LI
∑N

n=1 p
(�)

S,k,n for some instantaneous residual self-loop
interference powers hLI and h(�)

LI . To have mathematically
tractable formulations for power allocation, we make the
following simplified assumption [17]:

E
{|tLI,k(n)|2} ≤ hLI,k,npR,k,n;

E
{
|t(�)LI,k(n)|2

}
≤ hSLI,k,np

(�)

S,k,n, � ∈ {1, 2} (10)

where hLI,k,n and hSLI,k,n represent the instantaneous resid-
ual self-loop interference powers of spatial channel n on
subcarrier k at the relay and at the users, respectively.

Therefore, the amplify gain βk,n in (5) to guarantee the
transmit power pR,k,n of each channel n on subcarrier k is

βk,n = 1
/√

hS,k,n
(
p(1)
S,k,n + p(2)

S,k,n

)
+ hLI,k,npR,k,n + RR,k(n, n)

=
√√√√ 1/RR,k(n, n)

(
γLI,k,npR,k,n + 1

)
h̄S,k,nγk,n(p(1)

S,k,n + p(2)
S,k,n,pR,k,n) + 1

,

(11)

where we define h̄S,k,n � hS,k,n/RR,k(n, n), � ∈ {1, 2};
γLI,k,n � hLI,k,n/RR,k(n, n) and

γk,n
(
p(1)
S,k,n + p(2)

S,k,n,pR,k,n
)
�

p(1)
S,k,n + p(1)

S,k,n
γLI,k,npR,k,n + 1

, � ∈ {1, 2}.
(12)

After subtracting the back-propagating signal in (7), the
instantaneous SNR at user � over spatial channel n of
subcarrier k is

SNR(�)

k,n

=
h̄S,k,nγk,n

(
p(3−�)

S,k,n ,pR,k,n)h̄(�)

R,k,nξ
(�)

k,n (pR,k,n,p(�)

S,k,n

)
1 + h̄S,k,nγk,n

(
p(1)
S,k,n + p(2)

S,k,n,pR,k,n) + h̄(�)

R,k,nξ
(�)

k,n (pR,k,n,p(�)

S,k,n

)
(13)

where we define γk,n
(
p(3−�)

S,k,n ,pR,k,n
)

� p(3−�)

S,k,n /(
γLI,k,npR,k,n + 1

)
, h̄(�)

R,k,n � hR,k,n/R(�)

D,k(n, n), and
ξ

(�)

k,n

(
pR,k,n,p(�)

S,k,n

)
� pR,k,n/

(
γ

(�)

LI,k,np
(�)

S,k,n + 1
)

with

γ
(�)

LI,k,n � hSLI,k,n/R
(�)

D,k(n, n).
Upon defining

a(k−1)N+n � h̄S,k,n; b(�)

(k−1)N+n � h̄(�)

R,k,n, � ∈ {1, 2};
γLI,(k−1)N+n � γLI,k,n; γ

(�)

LI,(k−1)N+n � γ
(�)

LI,k,n,

q(�)

(k−1)N+n � q(�)

k,n, x(�)

(k−1)N+n � p(�)

S,k,n, � ∈ {1, 2};
y(k−1)N+n � pR,k,n; γ(k−1)N+n

(
x(�)

(k−1)N+n, y(k−1)N+n
)

� γk,n
(
p(�)

S,k,n,pR,k,n
)
,

ξ
(�)

(k−1)N+n(y(k−1)N+n, x(�)

(k−1)N+n) � ξ
(�)

k,n(pR,k,n,p(�)

S,k,n),

x(�) �
(
x(�)
1 , . . . , x(�)

KN

)T
, � ∈ {1, 2}; y � (y1, . . . , yKN )T ;

x �
(
x(1), x(2)

)
;

and M � KN , we are concerned with the problem of
maximizing the network instantaneous throughput under
transmit power constraints. The optimization problem is
formulated as2:

max
(x,y)

M∑
i=1

2∑
�=1

ln
(
1 + aiγi(x(3−�)

i , yi)b(�)
i ξ

(�)
i (yi, x(�)

i )

1 + aiγi(x(1)
i + x(2)

i , yi) + b(�)
i ξ

(�)
i (yi, x(�)

i )

)

(14)
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subject to the joint sum-power constraint

M∑
i=1

(
q(1)
i x(1)

i + q(2)
i x(2)

i + yi
)

≤ P, (15)

or to the separate sum-power constraints at each node

M∑
i=1

q(�)
i x(�)

i ≤ P(�)
1 , � ∈ {1, 2};

M∑
i=1

yi ≤ P2. (16)

Here, P ≥ 0,P(�)
1 ≥ 0,P2 ≥ 0 are the predefined power

budgets. In practice, the users and the relay have separate
power supplies constrained by (16) and the power alloca-
tion is performed at individual nodes. However, it is also
important to consider the joint power allocation with the
total power constraint (15) to gain meaningful insights
into the power utilization of the whole system, and thereby
realizing its full capacity.
In the HD two-way relaying strategy, the MA and BC

phases are consecutively processed. There is no self-
loop interference at the relay and users in this case (i.e.,
γLI,k,n = γ S

LI,k,n ≡ 0); and thus, γi(x(3−�)
i , yi) = x(3−�)

i and
ξ

(�)
i

(
yi, x(�)

i

)
= yi. The instantaneous total throughput

maximization in (14) reduces to:

max
(x,y)

1
2

M∑
i=1

2∑
�=1

ln

⎛
⎝1 + aix(3−�)

i b(�)
i yi

1 + ai
(
x(1)
i + x(2)

i

)
+ b(�)

i yi

⎞
⎠

(17)

subject to either (15) or (16). In (17), the pre-log factor
of 1/2 accounts for the two time slots needed to trans-
mit one data packet. Note that joint power allocation
in nonregenerative MIMO two-way relaying has previ-
ously been considered, e.g., in [27], under the reciprocity
assumption H(�)

R,k =
(
H(�)

S,k

)H
, � ∈ {1, 2}, in which the

corresponding channel (2) (with no amplified self-loop
interference) is parallelized by precoding the data symbol
s(�)k for subchannel alignment.

2.2 MIMO-OFDM FD One-Way Relaying
The above two-way relaying communications allow two
data packets to be transmitted in opposite directions
between user � ∈ {1, 2} and user 3 − � in either one time
slot (i.e., using FD mode) or two time slots (i.e., using
HD mode). In one-way relaying communications, there
are no MA and BC phases. In the FD one-way relaying
strategy, user � ∈ {1, 2} sends one data packet to user
3 − � through the relay in one time slot. There is no
self-loop interference at user 3 − �, i.e., γ (3−�)

LI,k,n ≡ 0. Con-
sidering user �, instead of SVD (3), one uses the SVDs
H(�)

S,k = V (�)

S,k�
(�)

S,kU
(�)

S,k and H(3−�)

R,k = U(�)

R,k�
(�)

R,kV
(�)

R,k with

unitary matrices U(�)

t,k and V (�)

t,k , t ∈ {S,R} and diagonal

matrices �
(�)

t,k = diag
{√

h(�)

t,k,n

}N
n=1

, t ∈ {S,R}. Accord-

ingly, F(�)

k =
(
V (�)

R,k

)H
�(�)

(
V (�)

S,k

)H
while the covariance

RR,k are the same as that in (9) and Q(3−�)

R,k = U(�)

R,k for
defining the covarianceR(3−�)

D,k in (9). Now, let us set

a(�)

(k−1)N+n � h(�)

S,k,n, b(�)

(k−1)N+n � h(�)

R,k,n,

x(�) �
(
x(�)
1 , . . . , x(�)

KN

)T
,

y(�) �
(
y(�)
1 , . . . , y(�)

KN

)T
, � ∈ {1, 2}.

Then instead of (14), the one-way instantaneous sum
throughput maximization is

max
(x(�) ,y(�)), �∈{1,2}

1
2

M∑
i=1

2∑
�=1

ln

⎛
⎝1 +

a(�)
i γi

(
x(�)
i , y(�)

i

)
b(�)
i y(�)

i

1 + a(�)
i γi

(
x(�)
i , y(�)

i

)
+ b(�)

i y(�)
i

⎞
⎠

(18)

subject to the joint sum-power constraint

M∑
i=1

(
x(�)
i + y(�)

i

)
≤ P/2, � ∈ {1, 2} (19)

or to the separate sum-power constraints

M∑
i=1

x(�)
i ≤ P(�)

1 ,
M∑
i=1

y(�)
i ≤ P2/2, � ∈ {1, 2}. (20)

In (18), the pre-log factor of 1/2 accounts for the two
time slots needed to transmit one data packet from user
� to user 3 − � and then another data packet from user
3 − � to user �. In (19) and (20), the power budgets P/2
and P2/2 are used to facilitate a fair performance com-
parison between one-way relaying and two-way relaying.
Note that the problem (18) s.t. (19) was previously con-
sidered in [17] under the additional assumption that both
the noises w̃R,k and w̃(�)

D are white. Note also that (18) can
be decomposed into two independent sum throughput
maximization problems as:

max
(x(�),y(�))

1
2

M∑
i=1

ln

⎛
⎝1 +

a(�)
i γi

(
x(�)
i , y(�)

i

)
b(�)
i y(�)

i

1 + a(�)
i γi

(
x(�)
i , y(�)

i

)
+ b(�)

i y(�)
i

⎞
⎠

s.t. (19)/(20), (21)

for � ∈ {1, 2}.
With the HD one-way relaying strategy, two time slots

are used to send one data packet from one user to another
user via the relay. Since γ

(
x(�)
i , yi

)
= x(�)

i , we have the



Tuan et al. EURASIP Journal onWireless Communications and Networking  (2017) 2017:19 Page 6 of 17

following one-way instantaneous sum-rate maximization
per time slot [16]:

max
(x(�),y(�)), �∈{1,2}

1
4

M∑
i=1

2∑
�=1

ln
(
1 + a(�)

i x(�)
i b(�)

i y(�)
i

1 + a(�)
i x(�)

i + b(�)
i y(�)

i

)
(22)

subject to (19) or (20), which can be decomposed into two
independent sum throughput maximization problems as:

max
(x(�),y(�))

1
4

M∑
i=1

ln
(
1 + a(�)

i x(�)
i b(�)

i y(�)
i

1 + a(�)
i x(�)

i + b(�)
i y(�)

i

)
(23)

s.t. (19)/(20),

for � ∈ {1, 2}.
This paper focuses on solving the general FD two-

way/one-way relaying problems (14) s.t. (15)/(16) and (18)
s.t. (19)/(20). The solutions to the HD two-way/one-way
relaying problems (17) s.t. (15)/(16) and (22) s.t. (19)/(20)
follow directly by replacing γLI,i = 0, and will be used as
benchmarks for performance comparison between the FD
and HD relaying strategies.

3 Proposed Solutions for Two-Way Relaying
To the best of our knowledge, the FD two-way relaying
problems (14) s.t. (15)/(16) have never been considered
before. From the definition of the fractional function
γi(x(�)

i , yi) in (12), it is clear that the objective in (14)
is a very complex nonconcave function with many frac-
tional and cross terms in the source power variables x �(
x(1), x(2)) and the relay variable y. Moreover, this objec-
tive function is not individually concave in either x or
y. Even performing the power allocation either at source
node only or at the relay node only is already difficult.
Although the objective function in (17) is simpler than
(14), the same challenge remains in the HD two-way
relaying problems (17) s.t. (15)/(16).
For ease of reference, we present below the properties

that will be frequently used in our solution development.

• (P1): ln (x1 + x2) ≤ ln
(
x(0)
1 + x(0)

2

)
+

1
x(0)
1 +x(0)

2

[(
x1 − x(0)

1

)
+
(
x2 − x(0)

2

)]
for all

x1 > 0, x2 ≥ 0, x(0)
1 > 0, x(0)

2 ≥ 0.
• (P2): ln (x1 + x2) ≥ ln

(
x(0)
1 + x(0)

2

)
+

1
x(0)
1 +x(0)

2

[
x(0)
1

(
ln x1 − ln x(0)

1

)
+

x(0)
2

(
ln x2 − ln x(0)

2

)]
for all

x1 > 0, x2 > 0, x(0)
1 > 0, x(0)

2 > 0.

Property (P1) is the following well-known property of
the concave function h(x1, x2) � ln(x1 + x2) [28]:

h(x1, x2) ≤ h(x(0)
1 + x(0)

2 ) + 〈∇h
(
x(0)
1 , x(0)

2

)
, x1, x2) −

(
x(0)
1 , x(0)

2

)
〉,

∀x1 > 0, x2 ≥ 0, x(0)
1 > 0, x(0)

2 ≥ 0. On the other hand,
the function h̃(x̃1, x̃2) � ln

(
ex̃1 + ex̃2

)
is convex in (x̃1, x̃2)

and so [28]

h̃(x̃1, x̃2) ≥ h̃
(
x̃(0)
1 , x̃(0)

2

)
+
〈
∇h̃
(
x̃(0)
1 , x̃(0)

2

)
,

(x̃1, x̃2) −
(
x̃(0)
1 , x̃(0)

2

)〉
,

(24)

∀x̃1, x̃2, x̃(0)
1 , x̃(0)

2 . Upon noting that

∇h̃
(
x̃(0)
1 , x̃(0)

2

)
= 1

ex̃
(0)
1 + ex̃

(0)
2

(
ex̃

(0)
1 , ex̃

(0)
2
)T

, (25)

property (P2) then follows after replacing xi = ex̃i , x(0)
i =

ex̃
(0)
i , i ∈ {1, 2} in (24) and (25). This property is the key

for the success of the SCALE algorithm in the multiuser
OFDM spectrum balancing problem [29].
All problems considered in this paper can be expressed

in the following form:

max
(x,y)

F(x, y) s.t. (x, y) ∈ S , (26)

where F(x, y) is not a concave function and S is a convex
set defined by either (15)/(16) or (19)/(20). By adopting
the inner approximationmethod (see, e.g., [30]), our strat-
egy is to iteratively approximate function F(·) by a concave
function F(κ)(·) that possesses the following two crucial
properties:

• It matches the nonconcave objective function F(·) at(
x(κ), y(κ)

)
, i.e.,

F(κ)
(
x(κ), y(κ)

)
= F

(
x(κ), y(κ)

)
. (27)

• It is a global lower bound of the nonconcave objective
function F(·), i.e.,

F(κ)(x, y) ≤ F(x, y), ∀(x, y). (28)

These properties guarantee that F(κ)(·) is both a local
and a global concave approximation of F(·) at (x(κ), y(κ)

)
.

A proximity control is therefore not necessary.
GENERIC ALGORITHM 1. Initialized by a feasible

solution
(
x(0), y(0)) to problem (26), generate a feasible

solution
(
x(κ+1), y(κ+1)) at κ-iteration for κ = 0, 1, . . . , as

the optimal solution of the following convex program:

max
(x,y)

F(κ)(x, y) s.t. (x, y) ∈ S . (29)

The convex program (29) provides an iterative mino-
rant maximization for nonconvex program (26). Since
(x(κ), y(κ)) is feasible to problem (29) itself, it follows that

F
(
x(κ), y(κ)

)
= F(κ)

(
x(κ), y(κ)

)
< F(κ)

(
x(κ+1), y(κ+1)

)
≤ F

(
x(κ+1), y(κ+1)

)
(30)
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as long as
(
x(κ+1), y(κ+1)) �= (

x(κ), y(κ)
)
. In other words,(

x(κ+1), y(κ+1)) is a better solution of the nonconvex
program (26) than

(
x(κ), y(κ)

)
. Moreover, the necessary

optimality condition for
(
x(κ), y(κ)

)
is
(
x(κ+1), y(κ+1)) =(

x(κ), y(κ)
)
. That is, for

(
x(κ), y(κ)

)
to be an optimal solu-

tion of the nonconvex program (26), it is necessary that(
x(κ), y(κ)

)
is a globally optimal solution of the convex pro-

gram (29). The efficiency is Algorithm 1 therefore hinges
upon the computational tractability of (29).

Proposition 1 ([30]) For any function F(κ)(·) satisfying
the matching condition (27) and the lower bounding con-
dition (28), the generic Algorithm 1 generates a sequence{(
x(κ), y(κ)

)}
of improved solutions, which converges to at

least a locally optimal solution of problem (26). Given a
tolerance ε > 0, Algorithm 1 therefore terminates after a
finite number of iterations under the stopping criterion

F
(
x(κ+1), y(κ+1)

)
− F

(
x(κ), y(κ)

)
< ε. (31)

In the two-way relaying problems (14) s.t. (15)/(16) and
(17) s.t. (15)/(16), the throughput expression is compli-
cated which in the end may only bring marginally higher
performance than that by a tractable approximation.
As such, we propose replacing the term b(�)

i ξ
(�)
i (yi, x(�)

i )

(which is smaller than b(�)
i yi) in the denominator of (14) by

b(�)
i yi to obtain a tight lower bound for throughput. Then,

we apply property (P2) to get the following lower bound
at
(
x(1,κ), x(1,κ), y(κ)

)
for the objective in (14)3:

ln

⎛
⎝1 +

aiγi
(
x(3−�)
i , yi

)
b(�)
i ξ

(�)
i

(
yi, x(�)

i

)
1 + aiγ (x(1)

i + x(2)
i , yi) + b(�)

i yi

⎞
⎠

≥ α
(�)
i (κ) ln

⎛
⎝aiγi

(
x(3−�)
i , yi

)
b(�)
i ξ

(�)
i

(
yi, x(�)

i

)
1 + aiγi

(
x(1)
i + x(2)

i , yi
)

+ b(�)
i yi

⎞
⎠+ β

(�)
i (κ),

(32)

where

α
(�)
i (κ) � 1 − 1

1 + f (�)
i (κ)

, (33a)

β
(�)
i (κ) � ln

(
1 + f (�)

i (κ)
)

−
(
1 − 1

1 + f (�)
i (κ)

)
ln
(
f (�)
i (κ)

)
,

(33b)

f (�)
i (κ) �

aiγi
(
x(3−�,κ)
i , y(κ)

i

)
b(�)
i ξ

(�)
i

(
y(κ)
i , x(�,κ)

i

)
1 + aiγ

(
x(1,κ)
i + x(2,κ)

i , y(κ)
i

)
+ b(�)

i y(κ)
i

. (33c)

The κ-iteration of the generic Algorithm 1 is thus to
solve the following problem in x � (x(1), x(2)) and y:

max
(x,y)

F(κ)(x, y) s.t. (15)/(16) (34)

with

F(x, y) ≥
M∑
i=1

2∑
�=1

⎡
⎣α(�)

i (κ) ln

⎛
⎝aiγi

(
x(3−�)
i , yi

)
b(�)
i ξ

(�)
i

(
yi, x(�)

i

)
1 + aiγ

(
x(1)
i + x(2)

i , yi
)

+ b(�)
i yi

⎞
⎠

+β
(�)
i (κ)

] (35)

=
M∑
i=1

2∑
�=1

[
α

(�)
i (κ)

(
ln x(3−�)

i + ln yi − ln
(
γ

(�)
LI,i x

(�)
i + 1

)

− ln
(
1+ai

(
x(1)
i + x(2)

i

)
+
(
b(�)
i + γLI,i

)
yi + γLI,ib(�)

i y2i
)

+ ln
(
aib(�)

i

))
+ β

(�)
i (κ)

]

≥
M∑
i=1

2∑
�=1

[
α

(�)
i (κ)

(
ln x(3−�)

i + ln yi − d(�,κ)
i

(
x(�)
i − x(�,κ)

i

)

−c(�,κ)
i

(
ai
(
x(1)
i − x(1,κ)

i

)
+ ai

(
x(2)
i − x(2,κ)

i

)
+
(
b(�)
i +γLI,i

) (
yi − y(κ)

i

)
+ γLI,ib(�)

i

(
y2i −

(
y(κ)
i

)2))
+ ln

(
aib(�)

i

))
−ln

(
γ

(�)
LI,i x

(�,κ)
i +1

)
+ln c(�,κ)

i +β
(�)
i (κ)

]
� F(κ)(x, y)

(36)

and

d(�,κ)
i �

γ
(�)
LI,i

γ
(�)
LI,i x

(�,κ)
i + 1

, (37)

c(�,κ)
i � 1

1 + ai
(
x(1,κ)
i +x(2,κ)

i

)
+
(
b(�)
i + γLI,i

)
y(κ)
i + γLI,ib(�)

i

(
y(κ)
i

)2 .
(38)

The inequality (35) follows from property (P2) whereas
(36) from property (P1).
It is worth mentioning that the function F(κ)(x, y) satis-

fies the two crucial properties (27) and (28) for an effective
implementation of the generic Algorithm 1. In the case
of constraint (15), the KKT conditions for necessary and
sufficient optimality of the convex program (34) s.t. (15)
are

α
(3−�)
i (κ)

x(�)
i

− α
(�)
i (κ)d(�,κ)

i −
2∑

t=1
α

(t)
i (κ)aic(t,κ)

i

− λq(�)
i = 0, � ∈ {1, 2}, (39)∑2

t=1 α
(t)
i (κ)

yi
−

2∑
t=1

α
(t)
i (κ)c(t,κ)

i

(
b(t)
i + γLI,i + 2γLI,ib(t)

i yi
)

− λ = 0. (40)

Therefore, the solution for problem (34) s.t. (15) is
derived as:

x(�,κ+1)
i = α

(3−�)
i (κ)

α
(�)
i (κ)d(�,κ)

i +∑2
t=1 α

(t)
i (κ)aic(t,κ)

i + λq(�)
i

, � ∈ {1, 2},

(41)
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y(κ+1)
i = 2pi(κ)

ri(κ) + λ +√(ri(κ) + λ)2 + 4pi(κ)qi(κ)
, (42)

where

pi(κ) �
∑2

t=1 α
(t)
i (κ),

qi(κ) � 2γLI,i
∑2

t=1 α
(t)
i (κ)c(t,κ)

i b(t)
i ,

ri(κ) �
∑2

t=1 α
(t)
i (κ)c(t,κ)

i

(
b(t)
i + γLI,i

)
,

(43)

and λ > 0 is chosen such that
(
x(1,κ+1), x(2,κ+1), y(κ+1))

meets the power constraint (15) with equality. Since the
total power consumption is monotonic in λ, the bisection
search described in the Appendix can be used to find λ.
Here, the initial values are chosen as λlo = 0 and

λhi = max
i=1,...,M,
�∈{1,2}

{
1
q(�)
i

[
3Mα

(3−�)
i (κ)/P

−
(

α
(�)
i (κ)d(�,κ)

i +
2∑

t=1
α

(t)
i (κ)aic(t,κ)

i

)]
,

6Mpi(κ)/P − ri(κ)

}
.

In the case of the three separate power constraints (16),
the solution of problem (34) s.t. (16) is derived as:

x(�,κ+1)
i = α

(3−�)
i (κ)

α
(�)
i (κ)d(�,κ)

i +∑2
t=1 α

(t)
i (κ)aic(t,κ)

i + λ(�)q(�)
i

, � ∈ {1, 2},

(44)

y(κ+1)
i = 2pi(κ)

ri(κ) + λ2 +
√

(ri(κ) + λ2)
2 + 4pi(κ)qi(κ)

,

(45)

where λ(�) > 0 is chosen such that x(�,κ+1) meets the
power constraint (16) with equality; λ2 = 0 if y(κ+1) at
λ2 = 0 satisfies the power constraint (16), otherwise λ2 >

0 is chosen such that y(κ+1) meets the power constraint
(16) with equality. A bisection search similar to that in the
Appendix can be used to find λ(�), � ∈ {1, 2} and λ2, where
the initial values are chosen as λ

(�)
lo = λ2,lo = 0 and

λ
(�)
hi = max

i=1,...,M

{
1
q(�)
i

[
Mα

(3−�)
i (κ)

P(�)
1

−
(

α
(�)
i (κ)d(�,κ)

i

+
2∑

t=1
α

(t)
i (κ)aic(t,κ)

i

)]}
, � ∈ {1, 2},

λ2,hi = max
i=1,...,M

[
2Mpi(κ)/P2 − ri(κ)

]
.

The iterative waterfilling algorithm that solves problems
(14) s.t. (15)/(16) is described as follows.
ALGORITHM 2. Initialized by a feasible solution(
x(1,0), x(2,0), y(0)) to problems (14) s.t. (15)/(16), generate

a feasible solution
(
x(1,κ+1), x(2,κ+1), y(κ+1)) at κ-iteration

for κ = 0, 1, . . . , according to formulae (41)-(42)/(44)-(45).

Proposition 2 Initialized from a feasible solution(
x(1,0), x(2,0), y(0)) to problems (14) s.t. (15)/(16), the
sequence

{(
x(1,κ), x(2,κ), y(κ)

)}
generated by Algorithm 2

converges to at least a locally optimal solution of problems
(14) s.t. (15)/(16).

The HD two-way relaying problems (17) s.t. (15)/(16)
are particular cases of the FD two-way relaying problems
(14) s.t. (15)/(16) with γ (x(�)

i , yi) = x(�)
i , � ∈ {1, 2}. There-

fore, Algorithm 2 can be employed to solve the former by
setting γLI,i = 0 and using (17) to compute the achieved
throughput.

Remark 1 The work of [27] addresses the HD two-
way relaying problem (17) s.t. (15) by the following upper
bound maximization:

max
(x,y)

1
2

M∑
i=1

2∑
�=1

ln

⎛
⎝1 +

ai
(
x(1)
i + x(2)

i

)
b(�)
i yi

ai
(
x(1)
i + x(2)

i

)
+ b(�)

i yi

⎞
⎠ s.t. (15),

(46)

which is a convex but not necessarily computationally
tractable problem. While the bound in (46) is not tight,
applying the interior method to solve (46) as suggested in
[27] is not computationally efficient.

4 Tailored Solutions for One-Way Relaying
Problems (18)/(22) s.t. (19)/(20) are also particular cases
of the problem (14) s.t. (15)/(16). However, their sim-
pler structures entail more computationally efficient algo-
rithms as will be developed in this section.

4.1 FD One-Way Relaying
As mentioned previously, the FD one-way relaying prob-
lems (18) s.t. (19)/(20) can be decomposed into two inde-
pendent problems (21). Therefore, we solve problems (21)
for each � ∈ {1, 2} here. The cross term γ (x(�)

i , y(�)
i )y(�)

i
in the objective function in (21) contributes greatly to
the computational difficulty of these problems. Fortu-
nately, we can separate these variables without any loss of
accuracy. First, let us define:

fi
(
x(�)
i , y(�)

i

)
� ln

(
1 + a(�)

i x(�)
i + γLI,iy(�)

i

)
+ ln

(
1 + b(�)

i y(�)
i

)
,

gi
(
x(�)
i , y(�)

i

)
� ln

(
1 + a(�)

i x(�)
i +

(
b(�)
i + γLI,i

)
y(�)
i

+γLI,ib(�)
i

(
y(�)
i

)2)



Tuan et al. EURASIP Journal onWireless Communications and Networking  (2017) 2017:19 Page 9 of 17

for i = 1, . . . ,M. We then rewrite the objective function
in (21) as:

F
(
x(�), y(�)

)
=

M∑
i=1

[
ln
(
1 + a(�)

i γ
(
x(�)
i , y(�)

i

))
+ ln

(
1 + b(�)

i y(�)
i

)

− ln
(
1 + a(�)

i γ
(
x(�)
i , y(�)

i

)
+ b(�)

i y(�)
i

)]

=
M∑
i=1

[
ln
(
1 + a(�)

i x(�)
i + γLI,iy(�)

i

)
+ ln

(
1 + b(�)

i y(�)
i

)

− ln
(
1 + a(�)

i x(�)
i +

(
b(�)
i + γLI,i

)
y(�)
i

+γLI,ib(�)
i

(
y(�)
i

)2)]
� f

(
x(�), y(�)

)
− g

(
x(�), y(�)

)
,

(47)

where the factor of 1/2 is ignored without loss of optimal-
ity. Here,

f
(
x(�), y(�)

)
�

M∑
i=1

fi
(
x(�)
i , y(�)

i

)
(48)

is concave, and

g
(
x(�), y(�)

)
�

M∑
i=1

gi
(
x(�)
i , y(�)

i

)
(49)

is neither concave nor convex. By property (P1), we have
that

gi
(
x(�)
i , y(�)

i

)
≤ gi

(
x(�,κ)
i , y(�,κ)

i

)
+ c(�,κ)

i

[(
a(�)
i x(�)

i +
(
b(�)
i + γLI,i

)
y(�)
i

+γLI,ib(�)
i

(
y(�)
i

)2)−
(
a(�)
i x(�,κ)

i +
(
b(�)
i + γLI,i

)
y(�,κ)
i

+γLI,ib(�)
i

(
y(�,κ)
i

)2)]
,

for all x(�)
i ≥ 0, y(�)

i ≥ 0, x(�,κ)
i ≥ 0, y(�,κ)

i ≥ 0, where

c(�,κ)
i = 1

1 + a(�)
i x(�,κ)

i +
(
b(�)
i + γLI,i

)
y(�,κ)
i + γLI,ib(�)

i

(
y(�,κ)
i

)2 .
(50)

Then, the convex quadratic function g(κ)
(
x(�), y(�)

)
defined by:

g(κ)
(
x(�), y(�)

)

� g
(
x(�,κ), y(�,κ)

)
+

M∑
i=1

c(�,κ)
i

(
a(�)
i x(�)

i +
(
b(�)
i +γLI,i

)
y(�)
i +γLI,ib(�)

i

(
y(�)
i

)2)

−
M∑
i=1

c(�,κ)
i

(
a(�)
i x(�,κ)

i +
(
b(�)
i + γLI,i

)
y(�,κ)
i + γLI,ib(�)

i

(
y(�,κ)
i

)2)

(51)

provides the global upper bound g(x(�), y(�)) that matches
g(·) at (x(�,κ), y(�,κ)

)
, i.e.,

g
(
x(�,κ), y(�,κ)

)
= g(κ)

(
x(�,κ), y(�,κ)

)
, (52)

g
(
x(�), y(�)

)
≤ g(κ)

(
x(�), y(�)

)
, ∀
(
x(�), y(�)

)
. (53)

On the other hand, by property (P2), we have that

ln
(
1 + a(�)

i x(�)
i + γLI,iy(�)

i

)
≥ ln

(
1 + a(�)

i x(�,κ)
i + γLI,iy(�,κ)

i

)
+ p(�,κ)

i

(
ln
(
1 + a(�)

i x(�)
i

)
− ln

(
1 + a(�)

i x(�,κ)
i

))
+ q(�,κ)

i

(
ln y(�)

i − ln y(�,κ)
i

)
,

ln
(
1 + b(�)

i y(�)
i

)
≥ ln

(
1 + b(�)

i y(�,κ)
i

)
+ r(�,κ)

i

(
ln y(�)

i − ln y(�,κ)
i

)
,

where

p(�,κ)
i � 1 + a(�)

i x(�,κ)
i

1 + a(�)
i x(�,κ)

i + γLI,iy(�,κ)
i

,

q(�,κ)
i � γLI,iy(�,κ)

i

1 + a(�)
i x(�,κ)

i + γLI,iy(�,κ)
i

,

r(�,κ)
i � b(�)

i y(�,κ)
i

1 + b(�)
i y(�,κ)

i
.

As such, f
(
x(�), y(�)

) ≥ f (κ)
(
x(�), y(�)

)
and f

(
x(�,κ),

y(�,κ)
) = f (κ)

(
x(�,κ), y(�,κ)

)
for

f (κ)
(
x(�), y(�)

)
� f

(
x(�,κ), y(�,κ)

)
+

M∑
i=1

[
p(�,κ)
i

(
ln
(
1 + a(�)

i x(�)
i

)
− ln

(
1 + a(�)

i x(�,κ)
i

))
+ q(�,κ)

i

(
ln y(�)

i − ln y(�,κ)
i

)
+r(�,κ)

i

(
ln y(�)

i − ln y(�,κ)
i

)]
.

(54)

Therefore, the function F(κ) � f (κ)(x(�), y(�)) −
g(κ)(x(�), y(�)) satisfies the two crucial properties (27) and
(28) for the applicability of Algorithm 1. The correspond-
ing problem (29) boils down to the following convex
program:

max
(x(�) ,y(�))

M∑
i=1

[
p(�,κ)
i ln

(
1 + a(�)

i x(�)
i

)
+
(
q(�,κ)
i + r(�,κ)

i

)
ln y(�)

i

− c(�,κ)
i

(
a(�)
i x(�)

i +
(
b(�)
i +γLI,i

)
y(�)
i +γLI,ib(�)

i

(
y(�)
i

)2)]
s.t. (19)/(20).

(55)
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In the case of constraint (19), the KKT conditions for
necessary and sufficient optimality are

a(�)
i p(�,κ)

i

1 + a(�)
i x(�)

i
− c(�,κ)

i a(�)
i + λ1i = λ,

(56)

λ

( M∑
i=1

(
x(�)
i + y(�)

i

)
− P/2

)
= 0,

(57)
q(�,κ)
i + r(�,κ)

i

y(�)
i

− c(�,κ)
i

[(
b(�)
i + γLI,i

)
+ 2γLI,ib(�)

i y(�)
i

]
+ λ2i = λ,

(58)
λ1ix(�)

i = 0, λ2iy(�)
i = 0, λ1i ≥ 0, λ2i ≥ 0, λ ≥ 0

(59)

for i = 1, . . . ,M. The optimal solution
(
x(�,κ+1), y(�,κ+1))

of problem (29) s.t. (19) is then derived as:

x(�,κ+1)
i = max

{
p(�,κ)
i

c(�,κ)
i a(�)

i + λ
− 1

a(�)
i

, 0
}
, (60)

y(�,κ+1)
i = 2

(
q(�,κ)
i + r(�,κ)

i

) [
c(�,κ)
i

(
b(�)
i + γLI,i

)
+ λ

+
√(

c(�,κ)
i

(
b(�)
i +γLI,i

)
+λ
)2+8

(
q(�,κ)
i +r(�,κ)

i

)
c(�,κ)
i γLI,ib(�)

i

]−1

,

(61)

where λ > 0 is chosen such that
(
x(�,κ+1), y(�,κ+1)) meets

the power constraint (19) with equality. A bisection search
similar to that in the Appendix can be used, where the
initial values are set as λlo = 0 and

λhi = max
i=1,...,M

{
p(�,κ)
i

P/(6M) + 1/a(�)
i

− c(�,κ)
i a(�)

i ,

12M
P

(
q(�,κ)
i + r(�,κ)

i

)
− c(�,κ)

i

(
b(�)
i + γLI,i

)}
.

Analogously, in the case of constraints (20), the optimal
solution of problem (29) s.t. (20) is derived as:

x(�,κ+1)
i = max

{
p(�,κ)
i

c(�,κ)
i a(�)

i + λ
(�)
1

− 1
a(�)
i

, 0
}
, (62)

y(�,κ+1)
i = 2

(
q(�,κ)
i + r(�,κ)

i

) [
c(�,κ)
i

(
b(�)
i + γLI,i

)
+ λ

(�)
2

+
√(

c(�,κ)
i

(
b(�)
i + γLI,i

)
+λ

(�)
2

)2+8
(
q(�,κ)
i + r(�,κ)

i

)
c(�,κ)
i γLI,ib(�)

i

]−1

(63)

where λ
(�)
1 > 0 is chosen such that

∑M
i=1 x

(�,κ+1)
i = P(�)

1 ;
λ

(�)
2 = 0 if

∑M
i=1 y

(�,κ+1)
i ≤ P2/2 at λ

(�)
2 = 0, otherwise

λ
(�)
2 > 0 is chosen such that

∑M
i=1 y

(�,κ+1)
i = P2/2. A

bisection search similar to that in the Appendix can be

used, where the initial values are set as λ
(�)
1,lo = λ

(�)
2,lo = 0

and

λ
(�)
1,hi = max

i=1,...,M

{
p(�,κ)
i

P(�)
1 /M + 1/a(�)

i
− c(�,κ)

i a(�)
i

}
,

λ
(�)
2,hi = max

i=1,...,M

{
4M
P2

(
q(�,κ)
i + r(�,κ)

i

)
−c(�,κ)

i

(
b(�)
i + γLI,i

)}
.

The iterative waterfilling algorithm that solves problems
(18) s.t. (19)/(20) is described as follows.
ALGORITHM 3. Initialized by a feasible solution(
x(�,0), y(�,0)) , � ∈ {1, 2} to problems (18) s.t. (19)/(20), gen-
erate a feasible solution

(
x(�,κ+1), y(�,κ+1)) at κ-iteration

for κ = 0, 1, . . . , according to formulae (60)-(61)/(62)-(63).

Proposition 3 Initialized from a feasible solution(
x(�,0), y(�,0)) , � ∈ {1, 2} to problems (18) s.t. (19)/(20),
the sequence

{(
x(�,κ), y(�,κ)

)}
of improved solutions gener-

ated by Algorithm 3 converges to at least a locally optimal
solution of problems (18) s.t. (19)/(20).

4.2 HD One-Way Relaying
The HD one-way relaying problems (22) s.t. (19)/(20) cor-
respond to the FD one-way relaying problems (18) s.t.
(19)/(20) with γLI,i = 0. Therefore, Algorithm 3 can be
employed to solve the former by simply setting γLI,i = 0
and using (22) to compute the achieved throughput. In
this special case, we can also derive even simpler water-
filling solutions for these problems as follows. First note
that f (κ)(x(�), y(�)) ≡ f (x(�), y(�)), so we do not need to
approximate f (x(�), y(�)) and problem (29) then admits a
closed-form optimal solution.
For the joint sum-power constraint (19), the optimal

solution for problem (22) s.t. (19) is derived as:

x(�,κ+1)
i = max

{
1

c(�,κ)
i a(�)

i +λ
− 1

a(�)
i
, 0
}
,

y(�,κ+1)
i = max

{
1

c(�,κ)
i b(�)

i +λ
− 1

b(�)
i
, 0
}
,

(64)

where λ > 0 is chosen such that the constraint (19) is
met with equality for

(
x(�,κ+1), y(�,κ+1)). A bisection search

similar to that in the Appendix can be used, where the
initial values are set as λlo = 0 and

λhi = max
i=1,...,M

{
1

P/(6M) + 1/a(�)
i

− c(�,κ)
i a(�)

i ,

1
P/(6M) + 1/b(�)

i
− c(�,κ)

i b(�)
i

}
.
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Analogously, for the separate sum-power constraints
(20), the optimal solution for problem (22) s.t. (20) is
derived as:

x(�,κ+1)
i = max

{
1

c(�,κ)
i a(�)

i +λ
(�)
1

− 1
a(�)
i
, 0
}
,

y(�,κ+1)
i = max

{
1

c(�,κ)
i b(�)

i +λ
(�)
2

− 1
b(�)
i
, 0
}
,

(65)

where λ
(�)
1 > 0 and λ

(�)
2 > 0 are chosen such

that the constraints (20) are met with equality for(
x(�,κ+1), y(�,κ+1)). A bisection search similar to that
in the Appendix can be used, where the initial val-
ues are set as λ

(�)
1,lo = λ

(�)
2,lo = 0 and λ

(�)
1,hi =

maxi=1,...,M
[
1
/(

P(�)
1 /M + 1/a(�)

i

)
− c(�,κ)

i a(�)
i

]
, λ

(�)
2,hi =

maxi=1,...,M
[
1
/(

P2/(2M) + b(�)
i

)
− c(�,κ)

i b(�)
i

]
.

The iterative waterfilling algorithm that solves problems
(22) s.t. (19)/(20) is described as follows.
ALGORITHM 4. Initialized by a feasible solution(
x(�,0), y(�,0)) , � ∈ {1, 2} to problems (22) s.t. (19)/(20), gen-
erate a feasible solution

(
x(�,κ+1), y(�,κ+1)) at κ-iteration

for κ = 0, 1, . . . , according to formulae (64)/(62)-(65).

Remark 2 The work of [16] addresses problem (22) s.t.
(19) by using the following approximation:

a(�)
i x(�)

i b(�)
i y(�)

i

1 + a(�)
i x(�)

i + b(�)
i y(�)

i
≈ a(�)

i x(�)
i b(�)

i y(�)
i

a(�)
i x(�)

i + b(�)
i y(�)

i
, � ∈ {1, 2}

(66)

which is only valid for high SNR values in subcarrier i. As
mentioned before, this SNR assumption does not always
hold for OFDM systems. With (66), [16] considers the
following problem instead of problem (22) s.t. (19):

max
(x(�),y(�))

M∑
i=1

ln
(
1 + a(�)

i x(�)
i b(�)

i y(�)
i

a(�)
i x(�)

i + b(�)
i y(�)

i

)
s.t. (19).

(67)

It is seen that maxx(�)
i +y(�)

i �z(�)
i

a(�)
i x(�)

i b(�)
i y(�)

i
a(�)
i x(�)

i +b(�)
i y(�)

i
= a(�)

i b(�)
i

η
(�)
i

(
1−η

(�)
i

)
a(�)
i η

(�)
i +

(
1−η

(�)
i

)
b(�)
i
z(�)
i for η

(�)
i = b(�)

i −
√
a(�)
i b(�)

i

b(�)
i −a(�)

i
; 1 − η

(�)
i =

a(�)
i −

√
a(�)
i b(�)

i

a(�)
i −b(�)

i
which is attained at

x(�)
i = η

(�)
i z(�)

i , y(�)
i =

(
1 − η

(�)
i

)
z(�)
i . (68)

Thus, (67) is equivalent to the following convex problem:

max
z(�)�(

z(�)
1 ,...,z(�)

M

)T
M∑
i=1

ln

⎛
⎝1 + a(�)

i b(�)
i

η
(�)
i

(
1 − η

(�)
i

)
a(�)
i η

(�)
i +

(
1 − η

(�)
i

)
b(�)
i

z(�)
i

⎞
⎠

s.t.
M∑
i=1

z(�)
i ≤ P/2,

(69)

which has a closed-form optimal solution [16, (12)-(13)].
As

a(�)
i x(�)

i b(�)
i y(�)

i

1 + a(�)
i x(�)

i + b(�)
i y(�)

i
<

a(�)
i x(�)

i b(�)
i y(�)

i

a(�)
i x(�)

i + b(�)
i y(�)

i
,

problem (67) is in fact an upper bound maximization of
problem (22) s.t. (19). However, it should be noted that
a natural approximated optimization of the maximiza-
tion problem (22) s.t. (19) should always be a lower bound
maximization.
Also, the work of [17] addresses the joint sum-power

constrained problem (18) s.t. (19) by assuming high SNR
scenarios. Using the approximations similar to [16], i.e.,

γi
(
x(�)
i , y(�)

i

)
= x(�)

i

γLI,iy(�)
i + 1

≈ x(�)
i

γLI,iy(�)
i

, (70)

a(�)
i γ

(
x(�)
i , y(�)

i

)
b(�)
i y(�)

i

1+a(�)
i γ

(
x(�)
i , y(�)

i

)
+b(�)

i y(�)
i

≈
a(�)
i γ

(
x(�)
i , y(�)

i

)
b(�)
i y(�)

i

a(�)
i γ

(
x(�)
i , y(�)

i

)
+b(�)

i y(�)
i

≈
a(�)
i

x(�)
i

γLI,iy(�)
i
b(�)
i y(�)

i

a(�)
i

x(�)
i

γLI,iy(�)
i

+ b(�)
i y(�)

i

≈
(
x(�)
i + y(�)

i

)2
a(�)
i b(�)

i

a(�)
i

(
x(�)
i + y(�)

i

)
+ 2
√

γLI,ia(�)
i b(�)

i

(
x(�)
i + y(�)

i

)3
≈
√
a(�)
i b(�)

i

(
x(�)
i + y(�)

i

)/(
2√γLI,i

)
, (71)

the following convex relaxation is considered in [17]
instead of problem (18) s.t. (19):

max
z(�)�

(
z(�)
1 ,...,z(�)

M

)T
M∑
i=1

ln

⎛
⎜⎝1 +

√
a(�)
i b(�)

i

2√γLI,i

√
z(�)
i

⎞
⎟⎠ (72)

s.t.
M∑
i=1

z(�)
i ≤ P/2,

for which a closed-form expression of the optimal solution
can be obtained. One could see that the approximation
(70) is poor for small values of γLI,i (e.g., in FD relays with
effective self-interference cancelation). Likewise, because
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Fig. 2 The relaying network model used in the simulations

(71) ignores the essential term a(�)
i (x(�)

i + y(�)
i ) in the

denominator, this approximation is hardly valid for large
values of a(�)

i (x(�)
i +y(�)

i ). As more power is allocated to the
good OFDM subcarriers to maximize the throughput, it is
reasonable to expect a large value of a(�)

i (x(�)
i + y(�)

i ) for
some subcarrier i. Again (72) is upper bound maximiza-
tion for the maximization problem (18) s.t. (19) while its
lower bound maximization is always desirable. This kind
of convex relaxation for the joint sum-power constraint
is not applicable to the case of separate sum-power con-
straints in x(�)

i and y(�)
i because the power distribution (68)

does not hold in the latter case.

5 Numerical Results
We consider a two-hop relaying network depicted in
Fig. 2. Since the two user nodes and the relay are collo-
cated on a line, d1,2 = d1,R + dR,2. In all simulations, we
set the number of antennas as N = 4. For each spatial
channel, we use the following pathloss model [31]:

PLdB = 38 + 30 log10(d) + ψ , (73)

where d (in meters) is the transmitter-receiver distance
and ψ (in dB) is a correction factor (e.g., to model the
outdoor wall penetration loss). We model the effect of
shadowing by a log-normal random variable with mean of
zero and standard deviation of 6dB. To simulate the effect
of frequency selectivity in each spatial channel, we assume
an exponential power delay profile (PDP) with a root-
mean-square (RMS) delay spread of σRMS = 3Ts where
Ts is a constant. We model the magnitude of the time-
domain channel corresponding to each tap of the PDP by
either Rayleigh or Rician distribution. We further model
the spatial correlation among theMIMO channels accord-
ing to Case B of the 3GPP I-METRA MIMO channel
model ([32], p.94).
The time-domain channels are converted to the fre-

quency domain by the Fast Fourier transform (FFT)
for the computation of the OFDM throughput. We use
K = 1, 024 OFDM subcarriers, each of which occu-
pies a bandwidth of �f = 15kHz. Since we take Ts =
1/(K�f ), �f is much smaller than the channel coher-
ence bandwidth of 0.02/σRMS ([33], p.85). The OFDM
subchannels are frequency-flat while there is correlation

Fig. 3 Average spectral efficiency in the D2D communication with UE relaying scenario. a Joint sum-power constraint with P2 = 20dBm. b Separate
sum-power constraints with P2 = 20dBm
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among the adjacent subchannels. In each subchannel, the
power spectral density of additive white Gaussian back-
ground noise at each antenna is −174dBm/Hz, and the
correlation between noise samples from different anten-
nas is 0.2. The effect of all other impairments (including
inter-carrier power leakage) is modelled as additive Gaus-
sian noise whose power is twice that of the background
noise. We set the error tolerance for all algorithms as ε =
10−4. We repeat the simulation for 100 independent runs
and average the results to get the final figures for spectral
efficiency.
We evaluate the performance of FD/HD two-way relay-

ing (by Algorithm 2) and FD one-way relaying (by
Algorithm 3). We use the HD one-way relaying result (by

Algorithms 3 and 4) as the baseline performance. For a
fair comparison with two-way relaying, we average the
throughput of the one-way relaying scheme in two dif-
ferent directions, i.e., one from user 1 to relay to user 2,
and another from user 2 to relay to user 1. We set the
maximum transmit power at the relay as P2 in the two-
way relaying and as P2/2 in each direction of the one-way
relaying.We assume that P(1)

1 +P2/2 = P(1)
2 +P2/2 = P/2.

For simplicity, we set the instantaneous self-loop gain as
hLI,k,n = hSLI,k,n ≡ hLI. Note that the presented value of
hLI is not normalized with respect to noise power, and
that hLI = 0 in the HD two-way/one-way relaying. After
normalization, the values of hLI would be consistent with
those used in the literature, e.g., [17]. In all the results,

Fig. 4 Average spectral efficiency in the UE-UE communication with BS relaying scenario. a Joint sum-power constraint with P2 = 40dBm. b Separate
sum-power constraints with P2 = 40dBm. c Joint sum-power constraint with P2 = 46dBm. d Separate sum-power constraints with P2 = 46dBm
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we initialize Algorithm 2 by the feasible points x(�)
i =

P(�)
1
/(

Mmaxi q(�)
i

)
, � ∈ {1, 2} and yi = P2/M for all

i = 1, . . . ,M (whereM = NK = 4, 096). And we initialize
Algorithms 3 and 4 by x(�)

i = P(�)
1 /M and yi = P2/M for

� ∈ {1, 2} and i = 1, . . . ,M.
In the first example, we set d1,R = dR,2 = 50m, ψ =

0dB, P(1)
1 = P(2)

1 = P2 = 20dBm. Assume there is a
line of sight between a user and the relay. Each tap of
the PDP from a user to the relay follows the Rician dis-
tribution with parameter Kr = 1. This setup resembles
the scenario of device-to-device (D2D) communication
with UE relaying. From Fig. 3, the achieved throughput
by FD almost doubles that by HD at the low values of
hLI in both one-way and two-way relaying cases. How-
ever, the throughput declines as hLI increases, confirming
the intuition that the self-loop interference (either at the
user terminals or the relay) is the limiting parameter
for FD transmissions to be beneficial. Particularly, the
gain provided by FD vanishes beyond hLI = −100dB,
i.e., it benefits more to stay with the HD transmission
beyond this point. Since the throughput by Algorithm 4 is
almost identical to that by Algorithm 3, we only present
one curve for the HD one-way relaying result to keep
Fig. 3 clear.
Both HD two-way relaying and HD one-way relaying

are not subjected to any SI. However, Fig. 3 shows that
HD two-way relaying does not double the throughput
of HD one-way relaying. This is because in the two-way
relaying, (i) our precoding design may have amplified
noise, (ii) the available power is further constrained by
(15) and (16), and (iii) the denominator of the SINR

expression is ai
(
x(1)
i + x(2)

i

)
which is greater than or

equal to a(�)
i x(�)

i , � ∈ {1, 2} of the one-way relaying.
The gain from using half the number of time slots by
two-way relaying may not be sufficient to offset the loss
in the achieved throughput in each way. Similar rea-
sons apply to FD two-way relaying where this strategy
is further subjected to the SI at the users. Therefore,
although FD two-relaying uses only one time slot for
transmissions in both link directions, it does not dou-
ble the throughput of FD one-way relaying. When SI is
large (i.e., hLI ≥ −100dB), Fig. 3 reveals that FD two-
way relaying is even slightly outperformed by FD one-way
relaying.
In the second example, we set d1,R = dR,2 = 500m, ψ =

0dB, P(1)
1 = P(2)

1 = 20dBm, and P2 to be either 40dBm
or 46dBm. We assume there is no line of sight between
each user and the relay, so each tap of the corresponding
channel PDP follows the Rayleigh distribution. This setup
simulates the scenario of UE-UE communication with BS
relaying. As the power budget respectively increases by
20dB and 26dB compared to that shown in Fig. 3, the FD
system is more susceptible to SI. In particular, the point
where FD transmission is still more beneficial than HD
transmission is now around hLI = −120dB and hLI =
−126dB instead of hLI = −100dB. Figures 4a and c show
that the spectral efficiency of the joint sum-power con-
straint case almost doubles as we move from P2 = 40dBm
to P2 = 46dBm. However, Figs. 4b and d demonstrate
that the throughput improvement is marginal for sepa-
rate sum-power constraints. Here, since the increase in
power budget only occurs to the relay, the UEs are less

Fig. 5 Convergence for the UE-UE communication with BS relaying scenario with P2 = 40dBm and hLI = −140dB. a Joint sum-power constraint.
b Separate sum-power constraint
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Table 1 Average number of iterations for hLI = −140dB

UE relaying (P2 = 20dBm) BS relaying (P2 = 40dBm) BS relaying (P2 = 46dBm)

Joint power Sep. power Joint power Sep. power Joint power Sep. power

Alg. 2 14.26 14.78 17.56 16.45 11.81 20.76

Alg. 3 17.75 17.99 23.90 14.90 19.80 29.38

Alg. 4 14.49 15.86 20.57 21.14 17.56 23.75

likely to exploit such an increase to enhance their power
allocation.
Figure 5 illustrates the convergence of our proposed

algorithms for a random channel realization in the sce-
nario of UE-UE communication with BS relaying. Here
we assume P2 = 40dBm and hLI = −140dB. While
convergence happens in at most 26 iterations, it can be
as few as 8 iterations for a rather strict error tolerance
ε = 10−4. Table 1 details the number of iterations, aver-
aged over 100 channel realizations, for the algorithms
to converge in this case. Note that each iteration corre-
sponds to evaluating a simple closed-form expression for
the solution of a convex program, thus requiring a very
little computational effort. Together with the small num-
ber of iterations, the total computational complexity is low
even for our large-scale numerical examples with 4,096
channels.
In Figs. 3, 4 and 5, it is observed that the performance

of the concerned algorithms in the joint sum-power con-
straint case is better than that in the separate sum-power
constraint case. The reason is that the feasible set of the
former problem contains that of the latter problem.

Finally, we compare our proposed algorithms with the
two approaches of [16], namely, joint optimization with
the high SNR assumption (for the joint sum-power con-
straint) and alternating optimization (for the separate
sum-power constraints). Because the latter solutions only
apply to the HD one-way relaying case, we compare their
throughput performance with Algorithms 3 and 4. Here,
we set d1,R = dR,2 = 1, 000m, ψ = 20dB and assume
that each tap of the PDP follows the Rayleigh distribu-
tion. Figure 6a verifies that the high SNR approximation is
not effective in the low-to-medium SNR scenario that we
have simulated. This is demonstrated by the performance
gap between the solution of [16] and our proposed solu-
tions. Figure 6b shows that Algorithms 3 and 4 perform
as well as the alternating optimization of [16] for separate
sum-power constraints. However, it should be recalled
that the alternating optimization approach cannot be used
for the joint sum-power constraint case. Also, the tai-
lored solution in Algorithm 4 only applies to HD one-
way relaying where SI does not exist, unlike the more
general Algorithm 3 which applies even to FD one-way
relaying.

Fig. 6 Performance comparison for the HD one-way relaying case. a Joint sum-power constraint. b Separate sum-power constraints
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6 Conclusions
This paper addresses the problem of joint power alloca-
tion for a MIMO-OFDM network consisting of two FD
users and one FD amplify-and-forward relay. The aim is
to maximize the instantaneous total network through-
put, subject to (i) the separate sum-power constraints at
individual nodes or (ii) the joint sum-power constraint.
To solve the highly nonconvex problem formulations,
we have employed the successive convex approxima-
tion approach to develop novel iterative algorithms of
extremely low complexity. A simple closed-form solu-
tion is available for the approximated convex program
at each iteration. The proposed algorithms are shown to
always converge to at least a local optimum. Our approach
applies to the general case where any combination of
one-way/two-way and HD/FD relaying is allowed. The
advantages of our novel solutions have been confirmed by
numerical examples.

Endnotes
1Noises are possibly amplified here. Moreover, R(�)

D,k is
no longer diagonal even whenR(�)

D is diagonal.
2As the noises in (7) are correlated, the subchannel-wise

decoding is not optimal. Therefore, the objective function
in (14) provides a lower bound instantaneous capacity of
the network.

3One should use the obtained solution to compute the
objective (14) in order to have the actual throughput
performance.

Appendix: Bisection Search
The initial values λlo and λhi are given. For λ := (λlo +
λhi)/2, use (41)-(42) to find

(
x(1,κ+1), x(2,κ+1), y(κ+1)). If∑M

i=1

(
q(1)
i x(1)

i + q(2)
i x(2)

i + yi
)

> P, set λlo := λ. If
∑M

i=1(
q(1)
i x(1)

i + q(2)
i x(2)

i + yi
)

< P, set λhi := λ. Proceed to the

next bisection until
∑M

i=1

(
q(1)
i x(1)

i + q(2)
i x(2)

i + yi
)

= P.
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