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Abstract

An effective non-revisiting artificial bee colony (NrABC) algorithm based on the paradigm of artificial bee colony (ABC)
is developed in this paper. NrABC is applied to tackle the synthesis of phased linear arrays. Pros and cons of NrABC is
provided along with a comparison to standard ABC. Binary space partitioning tree structure is used to record history
evolutionary information. Non-revisiting scheme assures NrABC keeping good diversity of population. Moreover, scout
bee stage is discarded in NrABC which also removes an algorithmic parameter of standard ABC. Three phased array
synthesis examples are employed to study the performance of NrABC. It turns out that under the same experimental
configuration, NrABC outperforms standard ABC in terms of both solution quality and reliability in repeated runs.
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1 Introduction
In remote sensing systems of radar networks [1, 2], phased
arrays play an important role to ensure the quality of ser-
vices (QoS) under certain communication requirements
[3–5]. The synthesis of phased arrays is known to be
a nonlinear programming problem [6], which is a mul-
timodal and high dimensional problem. Recently, many
researchers pay attention to create powerful algorithms
for dealing with the synthesis of phased arrays. These
kinds of algorithms are mainly heuristic-based meth-
ods since traditional optimization methods or analytical
methods are not suitable. It turns out that evolutionary
computing methods present good performance in han-
dling phased array design problems [7, 8].
Phased arrays are basic components in communication

networks including radar networks, commercial commu-
nication networks, military networks, and mobile com-
munication networks. They are capable to enlarge the
capacity of network systems. Usually, the synthesis of
phased array means to obtain certain radiation pattern
sufficing to special conditions. Interfering signals are sup-
pressed during synthesis process by setting nulls on array
pattern along interfering signals. At the same time, the
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direction of the main beam is kept facing desired signal.
The degradation of sidelobe level of array pattern becomes
a severe question if sidelobe region was set null. This
problem would be worse if the number of setting nulls
increased and close to the main beam [9, 10]. Thus, the
synthesis of phased arrays is highly difficult, and effec-
tive and reliable algorithms which can find promising
solutions are urgently needed.
Evolutionary computing methods are comprised of evo-

lutionary algorithms (EAs) and swarm intelligence (SI)
algorithms. Generally speaking, evolutionary algorithms
include genetic algorithm [11], evolutionary strategies
[12], evolutionary programming, and differential evolu-
tion [13]. EAs are featured by simulating the evolution of
genetic process of livings. Mutation and crossover oper-
ations are necessary operators in these algorithms. The
typical paradigms of swarm intelligence algorithms are
particle swarm optimization [14], artificial bee colony
[15], neighborhood search optimization [16], and brain
storm optimization [17]. SI algorithms are featured by
emulating the social or foraging behaviors of swarms such
as flocks, ants, fish schools, etc. They usually do not
involve crossover operation. Although EAs and SI are
inspired from different nature background, their positive
combinations are able to result effective algorithms, which
are recently classified to memetic computing [18].
Amongst these methods, genetic algorithm and parti-

cle swarm optimization have been widely used in antenna
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designs [6, 19, 20]. Recently, covariance matrix adaptation
evolutionary strategy [21] and differential evolution [22]
are applied to synthesize antenna array patterns. Although
good performance is attained by these algorithms, synthe-
sis of antenna arrays is still a challenge due to the rapid
development of communication networks. Moreover, it
is also meaningful to create more powerful optimization
algorithms so that problems could be solved in shorter
time than existing methods.
Artificial bee colony (ABC) is a SI paradigm emulat-

ing foraging behavior of honey bees [15]. This algorithm
is comprised of employed bees, onlooker bees, and scout
bees, i.e., three bee groups. There exist other bees in
nature, though only these three are simulated in this algo-
rithm. Many studies show that this algorithm is a pow-
erful and efficient one for handling multimodal problems
[23, 24]. Although its variants have been applied to deal
with antenna designs [25, 26], they often cost a large num-
ber of function evaluations to attain desirable solutions.
Thus, it is necessary to further enhance the powerfulness
of this algorithm.
It is observed that a great number of function eval-

uations is needed for artificial bee colony algorithm to
obtain a satisfactory solution. Accordingly, a great num-
ber of cycles or generations is evolved during optimization
process. It is well known that population diversity in EAs
and SI algorithms heavily reduces once algorithms are
evolved in a large number of generations. This means
solutions tend to be homogeneous or most genetic infor-
mation becomes identical. Thus, such algorithms could
not produce diverse variations and then lose the capabil-
ity of refining fitness of solutions. In ABC, scout bees is
responsible to diversify solutions for having a wider search
area. However, recent study shows that this method is
not effective to speed up convergence rate of ABC [27].
In this paper, a non-revisiting scheme is used to keep
population diversity substituting for scout bee stage in
ABC. The idea of non-revisiting scheme is to restrict
an algorithm from revisiting an already searched place.
For one thing, it avoids revisiting and repeated solution
evaluation. For another thing, it memorizes all visited
places by algorithm so as to let the search of algorithm
focus on unknown places with high uncertainty. Besides
non-revisiting scheme, three bee groups in ABC are also
changed. As non-revisiting scheme is apt to guide the
search directions of an algorithm, employed and scout
bees are eliminated from standard ABC algorithm. Hence,
only onlooker bee stage is kept in the resulting algo-
rithm. The new algorithm is named as non-revisiting
artificial bee colony (NrABC). NrABC is then applied to
tackle phased array design problems. Numerical experi-
ment is conducted studying NrABC and standard ABC.
The results are discussed and analyzed at the end of the
paper.

The paper is organized as follows. Section 2 reviews
the synthesis of phased array problem and related works.
Section 3 gives standard ABC and the proposed NrABC
algorithm. Section 4 reports numerical simulation results
and discussions. Section 5 concludes the paper.

2 Problem overview and related works
As above mentioned, phased array synthesis is the appli-
cation to be faced in this paper. The target of phased
array is to find the best weights satisfying predefined
far-field sidelobe requirement. One side of far-field side-
lobe includes a 60-dB notch [19]. In case the approximate
direction to an interference source is determined, it is
desired that a notched far-field pattern would be attained.
A linear phased antenna array is considered which con-
sists of one hundred half-wavelength spaced radiators.
Denote far-field radiation pattern as FF(θ) at radial
angle θ . FF(θ) is expressed by the following equation:

FF(θ) = EP(θ) · AF(θ) , (1)

where EP(θ) is the voltage element pattern and AF(θ) is
the array factor. Their equation is given as follows:

EP(θ) =
√
cos1.2(θ) , (2)

AF(θ) =
N∑

n=1
Anej2πn(d/λ) sin(θ) , (3)

where AF(θ) stands for array factor and EP(θ) is volt-
age element pattern. The number of radiators is denoted
as N and is set to 100. Decision variables are complex
element weights An (n = 1, 2, . . . ,N). Hence, problem
dimension is D = N . The space between elements nor-
malized by wavelength is d/λ = 1/2. Clearly, decision
variables are continuous parameters to be determined by
an optimization algorithm.
Objective function of this problem can be defined to

minimize the sum of squares of the difference between
excess far-field magnitude and specified sidelobe enve-
lope. This objective function penalizes sidelobes above
envelope, and noting is performed if sidelobes is below the
given specification [19]. The following equation shows the
objective function:

f (An) =
∑

|magnitude − threshold|2 . (4)

From this equation, a pattern point provides a penalty
value to f (An) if it locates above predefined threshold.
Similarly, objective function value can be computed given
both an upper threshold and a lower threshold. It is
observed that the objective function is a nonlinear one and
could not be tackled by analytical algorithms. This model
is interesting and useful in practice. This is because users
do not concern how to arrange sidelobes. Instead, it is
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required by users that the amount of sidelobes should be
below some level.
To solve the problem, an algorithm can directly optimize

weights of radiating elements. To evaluate a candidate
solution, a far-field pattern of 512 points is computed
which are evenly spaced in sine space. Sine space means
the sine of far-field angle. Because such equally spaced
pattern points usually produces more uniform spread-
ing points than using angle directly. In this problem
model, the lower the cost, the fitter the antenna array is
distributed.
Boeringer and Werner were two of the pioneers apply-

ing evolutionary computing approaches to design phased
arrays [19]. Bataineh and Ababneh used particle swarm
optimization (PSO) to synthesize aperiodic linear antenna
array with good results obtained as in the literature [28].
Li et al. proposed an improved PSO for electromagnetic
applications with better results obtained compared with
PSO and genetic algorithm (GA) [6]. Abu-Al-Nadi et al.
used array polynomial method and PSO to design lin-
ear phased arrays [9]. Simulation results show that this
method could reduce more than half parameters of syn-
thesis problems compared with conventional methods.
Mahmoud et al. combined a modified PSO and method
of moment to realize beamforming of designing a smart
antenna array [29]. Simulated on a planar uniform circular
array with 30 elements of half wave dipoles, the algorithm
outperformed standard PSO and several improved PSO
algorithms [29].
Li et al. propose a modified DE which consists of a best

randommutation and a randomized local search [22]. The
proposed algorithm is then applied to deal with a linear
array and a cylindrical conformal array designs. Results
show that it is better than other benchmarked algorithms
in pattern synthesis. Rocca et al. use GA to design wide-
band phased arrays [20]. The synthesis of phased arrays
is achieved by using polyomino-shaped subarrays and
by optimizing tile orientations and positions. Their pro-
posed GA method presents good performance in dealing
with such problems. Dhaliwal and Pattnaik compare GA,
PSO, and bacterial foraging optimization algorithms for
Sierpinski gasket fractal antenna design [30]. Simulation
results show that all three algorithms outperform con-
ventional nonlinear programming methods. None of the
three algorithms could completely beat the others based
on the results. From the viewpoint of bothminimum error
and computational time, PSO is recognized as the best
model for this kind of problems [30].
On the other hand, researchers continue working on

nonlinear programming algorithms for tackling phased
array designs. Yang et al. propose a fast space-time
adaptive processing (STAP) method based on projec-
tion approximation subspace tracking with sparse con-
straint [31]. This method is able to exploit the low rank

character of clutter covariance matrix. Experiment is con-
ducted on two real airborne phased array radar data
sets. Results show that the proposed method outperforms
existing STAP methods without sparse constraint. Khan
et al. propose a compressed sensing technique for antenna
array diagnosis [32]. They propose to hybridize iterative
reweighted least squares and separable surrogate func-
tional algorithms. Simulation results show that the hybrid
algorithm is more accurate to diagnose defective sensors
compared with separate algorithms. Alotaibi et al. pro-
pose a switch phased array method to improve security
of antennas at physical layer [33]. This may guide a new
direction for phased array designs.

3 Optimization algorithms
This section introduces standard ABC and the proposed
NrABC algorithm.

3.1 Standard artificial bee colony algorithm
The paradigm of standard ABC can be expressed in Fig. 1,
whereNp denotes population size. That is also the number
of food sources (solutions). As in step 1, ABC starts by a
set of randomly generated solutions in given search space.

Fig. 1 Flow chart of standard artificial bee colony algorithm
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Then the main cycle of standard ABC is executed. That is,
step 2, step 3, and step 4. They correspond to employed
bee stage, onlooker bee stage, and scout bee stage.
Standard ABC starts by a set of randomly generated

solutions in given search space. Then the main cycle of
standard ABC is executed. That is employed bee stage,
onlooker bee stage, and scout bee stage. Variation oper-
ator is responsible for modifying current solutions which
are usually called parent solutions in EAs. The variation in
ABC is a one dimension perturbation as follows:

xt+1,j=
{
xt,j+φt,j1(xt,j−xr1,j) if j= j1
xt,j otherwise , j=1, 2, · · · ,D ,

(5)

where φt,j1 is a real number randomly generated between
−1 and 1, and j1 is a random integer between 1 and D. xr1
is restricted to be a different solution from xt . In standard
ABC, employed bee stage and onlooker bee stage use the
same variation operator as in (5).
At each stage of a cycle, the number of variation trials

is recorded. If a found solution is fitter than its parent, its
associated trial count is reset to 0; otherwise, its associated
trial count is add by 1. In this way, trial count for each solu-
tion is a non-negative integer. Such integer values indicate
the evolutionary stage of each solution, and the algorithm.
If trial count is above certain threshold, it is reasonable to
assume that ABC stagnates or traps into local optimum
if global optima have not been found. In this case, scout
bees are sent out for exploring new food sources in replace
of the one having trial count above threshold. In standard
ABC, the search equation of scout bee is as follows:

xt+1,j = xmin
j + φt,j(xmax

j − xmin
j ), j = 1, 2, · · · ,D , (6)

where xmin
j and xmax

j (j = 1, 2, · · · ,D) are the lower and
upper boundary of decision variables, respectively.

Survivor selection step of standard ABC algorithm is a
greedy selection technique. Candidate solution xt+1 com-
petes with its parent xt . The winner after comparison
survives and the other is discarded. For ABC, global best
solution is also recorded at the end of each cycle so that
it can be returned once the algorithm terminates. To
avoid best so far solution is discarded in scout bee stage.
Elitism can be implemented with size 1. That is best so
far solution would not be replaced by randomly created
solutions.

3.2 Non-revisiting artificial bee colony algorithm
Many researchers have aware that an evolutionary
algorithm (EA) may revisit an already searched place,
especially when the population of EA converges or most
solutions in population becomes homogenous [34]. Yuen
and Chow proposed to use binary space partitioning (BSP)
tree to integrate with GA [35]. BSP tree stores all evaluated
solutions by GA. They also modified mutation opera-
tor of GA and make it adaptively performed with BSP
tree. As said in [34], non-revisiting scheme is superior to
an algorithm without this scheme. Moreover, the mod-
ified algorithm makes sure good diversity of population
through duplicate removal. Furthermore, non-revisiting
scheme naturally results in adaptive mutation method
without additional algorithmic parameter.
Note that non-revisiting scheme has such good char-

acters; here, it is integrated with standard ABC, called
NrABC. First, let depict BSP tree structure. There are
many ways to store history search information of ABC.
BSP tree is taken as it has been demonstrated to be pow-
erful in several paradigms of EAs and SI approaches. The
structure is illustrated in Fig. 2. BSP tree structure splits
search space into many small regions based on evaluated
solutions. As shown in Fig. 2, each region corresponds
to an existing solution. Each tree node contains various
search information of its associated solution such as time,
fitness, function value, region size, and so on.

Fig. 2 An example of binary space partitioning tree
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Clearly, an overhead of non-revisiting scheme is the
cost of memory. On the one hand, it cost a lot of com-
puter memory than an algorithm without such scheme,
whereas computational complexity does not increase. On
the other hand, due to the archive of whole search his-
tory, many search methods could be produced based on
history information. For engineering design applications,
memory cost of non-revisiting scheme is not a serious
problem.
In NrABC, to alleviate the above overhead, employed

bee and scout bee stages are removed from standard ABC,
and only onlooker bee stage is kept. The procedures of
the NrABC algorithm are presented in Algorithm 1. It can
bee seen that NrABC is more concise than standard ABC.
Because non-revisiting scheme checks if a revisit hap-
pens before each evaluation, revisiting an existing solution
is avoided. In case a revisit is detected, the associated
solution is replaced by a randomly created one. The prob-
ability of producing the same solution is very low due
to uniform random distribution. Thus, based on non-
revisiting scheme, premature convergence and trapping
in local optima is naturally detected and resolved. Note
that in the cycle of NrABC, the best so far solution has
chances to be discarded if a revisit comes across the same
as the best so far solution. This is allowed as all solutions
are memorized in BSP tree. BSP tree is able to provide
necessary information for post-processing.

Algorithm 1 Procedures of the non-revisiting artificial
bee colony algorithm
Require: f (·), D, xmin, xmax, Np, feval = 0
Ensure: Optimal solution found by the algorithm
1: Randomly createNp solutions between xmin and xmax,

feval = feval + Np;
2: Evaluate function values and fitness values of initial

solutions;
3: repeat
4: repeat
5: Choose a food source as base solution depend-

ing on its fitness;
6: Produce xt+1 based on (5);
7: if xt+1 is a revisit then
8: Produce xt+1 based on (6);
9: end if

10: Evaluate function value and fitness value of
xt+1, feval = feval + 1;

11: Greedy selection between xt+1 and xt ;
12: Record xt+1 and related information in BSP

tree;
13: until Np onlooker bees are sent out
14: Memorize the best so far solution;
15: until Termination criteria are met

Table 1 Configuration of standard ABC and PADE algorithms

Algorithm Parameters

ABC Np = 30, limit = 100

NrABC Np = 30

From the viewpoint of algorithmic parameters, standard
ABC contains population size Np and consecutive non-
improved evaluation trials limit. While NrABC removes
scout bee stage, the parameter limit is also removed. Only
parameter Np has to be set by users before executing
NrABC. Thus, the NrABC algorithm reduces the burden
of algorithmic parameter setting.

4 Numerical experiment
In this section, the proposed NrABC algorithm is applied
to deal with phased array design problem.

4.1 Experimental setting
Simulation configuration is described in the following.
Three examples of phased array design are used to study
how NrABC performs in handling different types of prob-
lems. Example 1 is amplitude-only synthesis of phased
arrays. The sidelobes of example 1 is −30 dB with a
−60 dB notch. Problem dimensionD is 100 as 100 element
factors is specified in this example. The range of amplitude
values is between 0 and 1 for example 1; constant phase is
used for building an amplitude-only case. Example 2 is a
simple modification of example 1. Amplitude weights are
restricted to be Taylor weights. The range of phase values
is between 0 and π/2. Example 3 is a complex case with
both amplitude and phase weights as parameters. Problem
dimension D = 200 in example 3. The range of amplitude
values is [0,1], and the range of phase values is [0,π ].
Standard ABC and the proposed NrABC are applied to

tackle the above three examples. The configurations of the
test algorithms are shown in Table 1. Clearly, the NrABC
algorithm contains less algorithmic parameters than stan-
dard ABC algorithm. In standard ABC, limit is often set

Table 2 Optimal function values found by the test algorithms for
the three examples

Problem Algorithm Min Med Max Mean std

Example 1 ABC −15.2937 −12.1810 −5.9880 −11.1377 2.9022

Example 1 NrABC −16.9162 −15.8933 −10.0833 −15.4967 1.7260

Example 2 ABC −19.2429 −18.0636 −16.8978 −18.0208 0.5926

Example 2 NrABC −19.3504 −18.5705 −17.9930 −18.5763 0.4130

Example 3 ABC 8.8439 9.5340 9.7779 9.4790 0.2254

Example 3 NrABC 8.8165 9.2605 9.5634 9.2580 0.2043

Over 25 independent runs, min denotes the minimum objective function values
overall 25 runs. Similarly, med, max, and mean are, respectively, the median,
maximum, and mean values; std denotes standard deviation of function values over
25 runs
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Fig. 3 The best result for the synthesis of amplitude-only phased array using NrABC

to 0.5NpD. As D is very large in our examples, this setting
needs too many cycles to covering the usefulness of scout
bees. Hence, it is set to a fixed number in our experiment.
Moreover,Np = 30 is proper for large problem dimension.
Termination condition is a fixed cost one. The maxi-

mum number of function evaluations (MFE) is set to 1e5
for all three examples, i.e.,MFE = 100,000. Each algorithm
is independently run 25 times for each example to gain an
average performance. The synthesis of phased arrays and

algorithms are implemented in MATLAB, and executed
on a personal computer with a 4-core 2.50 GHz CPU and
4 GB of memory. This could provide a fair comparison
environment for the test algorithms.

4.2 Simulation results
The optimal objective function values attained by each
algorithm is shown in Table 2. This table contains the
statistics of results for all three examples.

Fig. 4 Convergence graph of NrABC and ABC for example 1



Zhang and Zhang EURASIP Journal onWireless Communications and Networking  (2017) 2017:7 Page 7 of 9

Example 1: this case is constrained under the condition
that output distribution is symmetrical. The best result
over 25 runs is plotted in Fig. 3. The upper left graph
shows the convergence curve of the NrABC algorithm,
where “best” curve means the minimum function value
in population and “average” curve is the average function
value of solutions in population. The gap between “best”
curve and “average” curve gradually increases along with
the number of function evaluations. This indicates that
NrABC is able to keep a large population diversity while it
can also find good solutions. The upper right graph shows
the ultimate aperture weights obtained from NrABC. For
example 1, horizontal dotted line is phase weights as it
is kept constant in this example. In Fig. 3, the bottom
graph shows the far-field pattern. The dotted line and
dash-dot line are, respectively, the upper and lower tar-
gets of sidelobe. Clearly, the curve obtained by NrABC
well lies between the constraints, even for the deep notch.
In short, NrABC presents good performance in solving
example 1.
Figure 4 presents the convergence graph of the NrABC

and ABC algorithms. It shows the best trial of each algo-
rithm over 25 runs. Initially, the curves of both algorithms
are intertwined. After 4000 function evaluations (FEs),
their gap becomes larger, which means that old solution
revisiting happens and non-revisiting scheme starts work-
ing and forces the algorithm search more diverse than
ABC. Hence, the convergence graphs of both algorithms
become close at 80,000 FEs. Hence, our NrABC algorithm
explores more than standard ABC, and finally locates
better solution than standard ABC.

Example 2: this case does not have the symmetry
constraint of output distribution. The best result over 25
runs is plotted in Fig. 5. Amplitude weights are kept con-
stant but are produced by Taylor weights. Similar to the
results in example 1, NrABC also presents good perfor-
mance in this case. Observed from the upper left con-
vergence graph, “best” convergence curve sharply drops
down in initial stage; it becomes gentle from 800 func-
tion evaluations (FEs) to 1800 FEs. The curve continues
to drop down since 1800 FEs. This stage indicates that the
algorithm traps in local optima, though it walks out the
neighborhood of local optima after a search period.
Example 3: this case is constrained under the condition

that output distribution is a symmetrical flat-top beam.
The best result over 25 runs is plotted in Fig. 6. Seen from
the bottom graph, a flat-top beam is desired under the
constraint, whereas the curve obtained by NrABC is not
as desirable as in examples 1 and 2. Note that example 3 is
a much harder case than examples 1 and 2, as the number
of decision variables of example 3 is twice of that of exam-
ples 1 and 2. The results obtained by NrABC is also good
in this sense.

5 Conclusions
The main advantage of phased arrays is its capability to
construct nearly arbitrary far-field pattern. This charac-
ter is attained by well tuning of the amplitude and phase
features of aperture. It is realized by phase shifters and
attenuators of all radiators. Although phased arrays has
such kind characteristics, it is difficult to attain a satis-
fying far-field pattern; it is also hard if such pattern is

Fig. 5 The best result for the synthesis of phase-only phased array using NrABC
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Fig. 6 The best result for the synthesis of complex phased array using NrABC

reachable with a given aperture [19]. Thus, metaheuristic
approaches are suitable to deal with this kind of prob-
lems. Although convergence to global optimum could not
be guaranteed by metaheuristic approaches, they can find
promising solutions given a fixed-cost condition. This
paper attempts to tackle synthesis of phased arrays based
on a recently proposed paradigm—artificial bee colony
(ABC).
The main contribution of this paper is to propose a

non-revisiting artificial bee colony (NrABC) algorithm for
tackling the synthesis of phased array problem. NrABC
uses a non-revisiting scheme to record history evolu-
tion information of the algorithm. The information then
assists the search of the algorithm. Exploitation is con-
ducted by NrABC if a revisit is not detected; otherwise,
exploration search is performed. With this scheme, the
algorithm is able to keep population diversity along with
evolutionary process. Moreover, employed bee stage and
scout bee stage are removed from standard ABC, which
makes NrABC more concise while it still keep the essence
of ABC. Furthermore, parameter limit in standard ABC
is not used any more in NrABC. Thus, NrABC contains
less algorithmic parameter than standard ABC, which
saves the efforts of users and makes the algorithm easier
to use. Simulated on three examples, the NrABC algo-
rithm presents good performance in both convergence
process and solution quality. However, the performance of
the proposed algorithm degrades when problem dimen-
sion D = 200. This issue would be investigated in the
future.
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