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Abstract

In this paper, we propose a novel local and nonlocal total variation combination method for image restoration in
wireless sensor networks (WSN), which plays an important role in improving the quality of the transmitted image.
First, the degrade image is preprocessed by an image smoothing scheme to divide the image into two regions.
One contains edges and flat regions by the local TV term. The other is rich in image details and regularized by the
nonlocal TV term. Then, the alternating direction method of multipliers (ADMM) algorithm is adopted to optimize

group sparsity

the complex object function, and two key parameters are discussed for better performance. Finally, we compare
our method with several recent state-of-the-art methods and illustrate the efficiency and performance of the
proposed model by experimental results in peak signal to noise ratio (PSNR) and computing time.
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1 Introduction

With the rapid development of wireless sensor networks,
there are higher requirements for signal transmission
and processing [1-4]. However, for such a two-
dimensional image signal, it is inevitably degraded in the
process of image acquisition, transmission and process-
ing, and image restoration techniques are needed to im-
prove the quality of the obtained image. Image
restoration is one of the most fundamental issues in im-
aging science and other important applications. It plays
an important role in many mid-level and high-level
image processing tasks. In this paper, we focus on
spatially invariant system and formulate a common deg-
radation model as

g=hx*f+n, (1)

where g is the blurred and noisy image, f is the desired
true image, * represents the convolution, and # denotes
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the additive Gaussian white noise with zero mean. / is
the linear spatially invariant blur kernel, which is usually
modeled as a blurring matrix constructed from the
discrete point spread function (PSF). If the PSF is
known, the problem is non-blind deconvolution. If the
PSF is unknown, then the given problem becomes blind
deconvolution. In this paper, we only focus on the non-
blind image restoration.

1.1 Problem setup

For the image restoration problem, we seek to esti-
mate the original image f by the following variational
formulation:

arg min{ g <713+ 1901} @)

where |l denotes the Euclidean norm, ¢(f) is usually
called the regularization term, and A>0 is a
regularization parameter that controls the balance be-
tween the above fidelity term and regularization term.
Even if the blur kernel is known, the problem is still
highly ill-posed and there is difficulty in recovering the
original sharp image. This is because that the blur kernel
is a kind of a low-pass filter, which tends to reduce the
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high-frequency information such as textures and edges.
Hence, it needs to be regularized by a proper constraint
model. The classical regularization model is the TV
model, which is referred to the local TV [5] with the
form

. 1
arg n}m{g lg=h+f2 +A|V||TV}, 3)

where |-l denotes the L, norm, ||-||> denotes the square
of the [I-ll,, and I|fll 7 stands for the total variation of the
image and is often defined as

W llzv = 115 (4)

Here, V is the local gradient operator, and ||Vf]|;

= Z\/(V(l)u)z + (V@)u)z. The Vyu and V)u repre-
sent the local first-order differences of fin the horizon-
tal and vertical directions respectively. The local TV
model has been proven to have good performance in
preserving edges due to its linear penalty on differences
between adjacent pixels. However, it yields to staircase
artifacts that smooth image details. Therefore, it is of
great importance to model the appropriate prior know-
ledge from nature images or impose more appropriate
prior assumption to constrain the solution. Actually,
the underlying motivation in this paper is to establish
appropriate regularization terms and improve the effi-
ciency of the numerical algorithm for the complex ob-
ject function.

1.2 Related works

In recent years, the nonlocal TV has been successfully
used in image processing tasks [6, 7]. It uses the whole
image pixel information not the adjacent pixel informa-
tion and combines the variational framework and the
nonlocal self-similarity constraint to restore the image
details. This is the main difference with the local TV
model. However, if the nonlocal self-similarity constraint
is considered as the only constraint, similar image struc-
tures still cannot be estimated accurately. When the TV
model and the nonlocal self-similarity constraint are
both used on the entire image, the performance of their
method will be compromised under the limitation of the
TV model [8]. Besides, since the nonlocal total variation
requires weighted difference between pixels in the whole
image, it is more time consuming and needs more effi-
cient algorithms. The Spliting-Bregman method has
been proposed to solve the nonlocal TV image restor-
ation problem, but the efficiency is unsatisfactory [9, 10].
It not only needs the outer iteration in the subproblem
but also the inner iterations for the nonlocal Laplacian
operator. Zhu et al. propose an efficient primal-dual hy-
brid gradient algorithm, which alternates between the
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primal and dual formulations for total variation [11]. A
unified primal-dual algorithm framework is proposed to
resolve the local total variation problem with L; basis
pursuit and TV-L, minimization [12]. Bonettini et al. es-
tablish the convergence of a general primal-dual method
for nonsmooth convex optimization problems, whose
structure is typical in the imaging framework [13]. In
these approaches, many parameters have to be chosen
and causes time consuming. To overcome this draw-
back, an alternating direction minimization method of
multipliers (ADMM) has been widely used in recent
image-processing tasks [14, 15]. Its outstanding per-
formance is that there is no need to resolve the sub-
problems and no inner iterations. Hence, the problem
needs to be solved from two aspects: one is how to
choose a good regularization functional ¢(f), which is
an active research area in image science, and the
other is how to shorten the computation time without
yielding staircase artifacts, which is also a challenging
problem.

The rest of the paper is organized as follows. In
Section 2, we introduce the definition of the nonlocal
total variation and the principle of the overlapping
group sparsity and the ADMM algorithm. They are
the essential tools in our method. Section 3 intro-
duces the object function of the proposed model and
discusses the parameter selection criteria. In Section
4, we carry out experiments and compare ours with
other state-of-the-art methods. Finally, we make a
conclusion in Section 5.

2 Preliminaries

2.1 Nonlocal total variation

Firstly, we give the following notations that will be used
in this paper. Assuming the size of images in this paper
is m x n, and the image matrix rows from stacking up
are denoted as mn vectors. Denote the Euclidean space
R™ as Vand define Q = V x V. The ith components of

x€V and yeQ are denoted as x;€R and y, =

(y,,y,) eR?, respectively. Inner products and Euclidean
norms are defined as

mn
(r,2)y =Y i, Ilxlly = 4/ (x2)y
i

0= 323 s Il = [ 0)g (5)

Dy, Doy e R™ ™" are mn x mn gradient matrices in
the vertical and horizontal directions, and we have
Df; = [(Dayf), (D(Z)ﬂ)]T for each feV. By staking the
ith rows of D) and D(y) together, we get a tow-row
matrix Df;e R**”". Define the global first-order
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finite difference operator as D =[(DY), (DPY"T e
R e consider Dfe Q and assume images in
this paper under the periodic boundary condition.
The discrete gradient operators are defined by

fi+1,j_fi,j if i<m

P and
SiijSmj it i=m

(D(Uf)i.j =

(D (2lf) i

Sijm~fiy it j<n
Sfirfin
Then, we use the definitions and notations of the local
total variation introduced in [16]. Let Q c R? and x € Q,
u(x) is a real function Q2 — R and w is a non-negative
symmetric weight function, ie., w(x,y) =w(y,x). The
local gradient V,u(x) is defined as the vector of all par-
tial differences V,u(x, -) at x:

Vou(x,y) = (u(y)-u(x)) v (), (6)

where w(x,y) is the weight function between x and y de-
fined based on the image u. The graph divergence div,,
of a vector p:Q x Q — R can be defined as

if j=n

divop(x) = /Q (b9 -po)Wamnd, ()

The weight function is defined as the nonlocal means
weight function:

olx.y) = exp{—Gﬂ W+ o+l } o

212

where G, is the Gaussian kernel with standard deviation
a, h is the filtering parameter related to the standard vari-
ance of the noise, and the - in flx+-) denotes a square
patch centered by point x. When the reference image f is
known, the nonlocal means filter is a linear operator.
Now, we can define the nonlocal TV norm with the iso-
tropic L; norm of the weight graph gradient V ,u(x):

TV ,(u) :/Q|un(x)|dx:/Q\//Q(u(y)—u(x))zw(x,y)dydx,
9)

The main purpose of the nonlocal regularization is to
generalize the local gradient and divergence concepts into
the local form. Generally, a reference image is expected as
close as possible to the original image to obtain the
weights more exactly. However, it is hard to get the price
weights between the pixels because the original image is
degraded in the image formation process. Thus, the
weights have to be calculated according to a preprocessed
image. In this paper, the degraded image is preprocessed
by an image smoothing scheme, which is mentioned to
optimize the Ly norm of the image gradient.
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2.2 Overlapping sparsity prior
The sparsity-based regularization has obtained promi-
sing results for various ill-posed image restoration
problems. Group sparsity concept was first used in
the one-dimension denoising problem [17, 18]. Con-
sidering that groups of large values may arise any-
where in the signal domain, a group of large values
may straddle two of the predefined groups, especially
in general signal denoising and restoration problem.
Hence, if the group structure is treated as a prior, it
is suitable to formulate the problem into overlapping
groups. And it is natural to extend the overlapping
group sparsity prior to solve the two-dimension prob-
lem such as image restoration. It has been used as a
penalty term for TV models and proven to be effect-
ive for alleviating staircase effect [15].

In [15], the vector s € R” with a k-point group has been
defined as

six = [s(), -+, s(i + k=1)]eRF (10)

Here, s ; x denotes a block of k contiguous samples of s
starting from the ith index. A group sparsity regularizer
is defined as

€)= 2_llsiell

For the two-dimensional case, a kx k point group of
the image f€ R"*" is defined as

fi—ml J—n

fi—m1+1,j—m1 fi—m1+1‘j—m1+1

(11)

fi—ml J-m+1 fi—ml Jtms

Syt e ¢ lock

f ijk =

fi+mz,j—m1 fi+m2,1'—ml+1 fi+mz«j+mz

(12)

By stacking the k columns of the matrix f ko e,

Sijx =fi;x(:), a vector is obtained and the overlap-

ping group sparsity (OGS) functional of a two-
dimensional array can be defined as

Poas(f) = Xn;‘vz’,j,kHz-

ij=

(13)

The regularization term ¢(f) based on the image
gradient in the vertical and horizontal direction is de-
noted as

o(f) = ¢(Dyf) + (D).

It is a special case that is commonly mentioned as ani-
sotroapic TV functional if k=1, and the usual TV
regularization term is defined as

(14)
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n

Drv(f) =

ij=1

V),

where the discrete gradient operator V : Rmn _, p2xmn o
deﬁned by (V-f)lvl = ((D(l)f)i,]'! (D(Z)f)i,j)'

2.3 ADMM
ADMM is a special splitting case of the augmented
Lagrangian method by splitting the complex problem
into simpler subproblems, which can be easily solved
by efficient operators, such as DFT and shrinkage op-
erator. It also can take advantage of separable struc-
tures of the split object functions, which allow a
straightforward treatment of various regularize terms,
such as total variation regularization [19]. The
ADMM algorithm resolves a linear system like a
matrix transformation that makes the problem two-
sided. On the one hand, the transformed matrix is re-
lated to the Hessian transform of the objective func-
tion carrying the second-order information. This fact
meets the excellent performance of computational ef-
ficiency, which has been proven to be faster than the
classical iterative shrinkage thresholding (IST) algo-
rithms [20], even than their improved versions [21].
On the other hand, due to the typical huge size of
the inversion, it is limited to resolve the problem
that can be handled efficiently using some particular
structure. In this paper, we use the fast Fourier
transform (FFT) to improve the efficiency of
ADMM. The convergence is guaranteed by the clas-
sical ADMM theory in literatures [22, 23]. In this
subsection, we briefly review its basic theory for an
intuitive understanding.

The ADMM theory was proposed to solve the
optimization problem with the following constrained
separable subproblem

min y; (%1) + ¥, (%2); s.t.Ax +Axxs =a (16)

where x;€X;, i=1,2, y;:X;—> R are closed convex
function, X;eR™ are nonempty closed convex sets, A;
€R™™i are linear transforms, and a € R’ is a given vec-
tor. With g R’ as a Lagrange multiplier to the linear
constraint, the augmented Lagrangian function for the
problem (16) is

L(x1,%2,q) = y;(%1) 4 ¥,(%2) + g (A1x1 + Asxp—a )

6
+ 5 HA1x1 +A2x2—a ||§
(17)
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Here, § is the penalty parameter that controls the lin-
ear constraint. According to the theory of the ADMM,
optimal solutions is equivalent to finding a saddle point
L(x’{,x’z‘, q*) by the alternative minimizing scheme, such
as keeping x, and g fixed when minimizing L with re-
spect to x1. Then, we obtain the following ADMM itera-
tive minimizing algorithm:

Algorithm 1: ADMM for the minimization problem (16)

Initialization: Starting point (x;,xJ,¢°), &>0.

Iteration

¢

k+1 k+1
Ax;" + Ax, —a+ 5

. o
X, =argmin y,(x,) + 5

*

q"'=q" + S(Ax" + A2x§+l —a),

’

k:k+1;

Stop: Until a stopping criterion is satisfied.

Iterative strategy of two subproblems is in the Gauss-
Seidel fashion and thus the variables x; and x, can be
solved separately in the alternating order. In [24],
Eckstein and Bertsekas demonstrated that ADMM could
be interpreted as an application of the proximal point al-
gorithm. Meanwhile, a convergence result was proved
for ADMM that allowed approximate computation of
#5*1 and #5*1. Here, we restate their result as it applies
to (14) under slightly weaker assumptions and in the
case without over or under relaxation factors.

Theorem 2.1 (Eckstein, Bertsekas [24]) Conusider the
problem (13) where y,and y,are closed proper convex
functions, Aihas full column rank and y,(x,) + Ao, 1%is
strictly convex. Let q,x, € R be arbitrary and &> 0. Sup-
pose we are given sequences {} and {vi} such that p >
0, V20, > i oty < oo, and Y i _ovi < oo. Suppose that

§
x - arggcnin () + (g5, -An ) + 3 [| A1 +A2x§—aH2 <ty
1

§
a1 arg}r;nin ¥5(2) + (g*, ~Aam2) +3 [[AfTt +A2xz—ﬂ||2 <V
2

g = gF + 8 (At + Ayt -a)

If there exists a saddle point of L(x1,x,,q) in Eq. (14),
then x\—x;, x5—ux}, and g — q', where (x},x5,q") is
such a saddle point. On the other hand, if no such saddle
point exists, then at least one of the sequences {y} or {vi}

must be unbounded.
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3 Proposed model and numerical algorithm

3.1 Image region division

The image is preprocessed by an image smoothing
scheme same as [25], take experiments on “Babara”
as an example. As shown in Fig. 1, Fig. la is the ori-
ginal image, Fig. 1b is the salient edges and constant
regions of (a), and Fig. 1c is the details of (a) and ob-
tained by (a) minus (b). Fig. 1d is the blurred image
and the blur kernel is shown in the lower left, with
the size 19 x 19. Figure le and (f) are edges and
constant regions, and details of (d), respectively.
Comparing the extracted edges and constant regions
in Fig. 1b, e, we cannot see much obvious difference,
although the blurred image (d) is seriously damaged.
Meanwhile, the details of the blurred image shown in
(f) are more clear than those of the original image
(a), from the point of view.

3.2 Novel nonlocal total variation

To overcome the drawback of the local TV model,
researchers have proposed to combine the nonlocal
TV and the TV model to resolve some image pro-
cessing tasks. Tang et al. [26] combined a local TV
filter and the nonlocal means algorithm for image
denoising. In his work, a local TV filter was used
only for the rare patches, such as special edges and
rare detail patches, and the nonlocal means algorithm
was used for the rest. However, the model is limited
to image deblurring because the image structures
have been severely damaged and the similar structures
cannot be found accurately. Inspired, we apply the
nonlocal TV regularization only for the image details
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to protect the detail information and the overlapping
group sparsity prior for the sparser image representa-
tion constraint. Especially in our previous work [27],
it has been proven the performance of using the over-
lapping group sparsity prior in suppressing the stair-
case effect.

Now, a novel nonlocal TV based image restoration
model is defined as follows:

A
mind S s ol (00) 9P
+||VQfD||}:

(18)

where A and a are regularization parameters. The ori-
ginal image f is divided as fs and fp by the above men-
tioned gradient extraction scheme. fs denotes the salient
edges and constant regions, and fp denotes the image
details. In order to apply the ADMM idea, we introduce
auxiliary variables vy =Dg)f, vo=D(f; and z=f Com-
pared with the standard ADMM algorithm in Eq. (16),
the problem (18) satisfies the proposed framework with
the following specification:

(1) xl::f7x2::[vla V2, Z]:

() y1(®1) =1k * fs+ ko fpgll3 72(%2)

constant regions of (d). f Details of (d)

Fig. 1 Image regions division. a Original image. b Edges and constant regions of (a). ¢ Details of (a). d Blurred image(PSNR = 19.24). e Edges and
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Then, the Augmented Lagrangian function of the
minimization problem (18) is defined as follows:

Lafvzen) = 5 { Sl S+ e fpmglielef)
20 ef2yntv-7)
22y
+al[¢(Dyfs) + p(Defs) |
+||VJD||}.

(19)

where 31,3, >0 are linear constraints corresponding to
the auxiliary variables z and v, and ¢ and 5 are the
Lagrange multipliers. Starting at f=f*, e = €, and # = £,
applying ADMM yields the iterative scheme

P+
«— arg minLA(fk,V, z; Skaﬂk)a (20)
Zk+1 zeQ,v
f*l— argmin Ly (F, V2 b, (21)
f
<€k+l ) <£k_y/32 (o) > (22)
- .
”k+1 ’7](_)//31 (Zk+l_fk+1)

As the theoretical analysis in [22], positive values of
the parameters f3;, -, and y can ensure the convergence
of ADMM, and we will be set them to specified values
in the later experiments.

3.3 Numerical algorithm
According to the ADMM in Algorithm 1, we employ the

alternative optimization to estimate the divided image
regions fs and fp.

e fpbeing fixed, we search for f]§+1 as a solution of

A
Sl s+ e fomgl + 2

{

+

(f]§+1,vk+1) = arg min{

2
k

k Ui
Dayfs-viy + 71

2
2

,1/(
Dyfs—vik +72 +

)

(23)

k
k &£
-z 4+ —
2

+alp(Dyfs) + d(Dyfs) ”}

The minimization of Eq.(23) with respect to fs is a
least square problem and can be resolved by the fast
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Fourier transform (FFT), which only requires O(n log(n))
arithmetic operations, here n represents the size of the
given image. The corresponding normal equation of
Eq.(23) is

HTH +X (D Dy + DlyDay +1) |57 = HTg
k k k

Y | pT M T | .k M2 k€
Ziph [ /-1 4 b - =

RO R RS IO Rl Bk
(24)

where H denotes the blurring matrix formed by #&.
Considering v; and v, with the same expression, the
subproblem corresponds to the following optimization
problem

k

Y k+1 , Mi

vi—| Dy + =+
Vi 2" ( W )’>

which can be attacked with the extremely fast shrinkage
formula and obtain

k+1 _ D(i ]§+1+’7{'(
l IDfs™ -+t

2
V1 = argmin {— +a¢(v,-)}7i— 1,2.
2

(25)

A
‘max(|D(i K +17§‘|—;70),i =1,2.

(26)

. f];H being fixed, we obtain fIISH:

(A 2

b = segmin e 0 e gl IVl
S

@)

It is a classical nonlocal TV image deblurring problem.
Here, we refer to a fast nonlocal TV deconvolution algo-
rithm in [28]. The image smoothing scheme should be per-
formed at each iteration and fX! is used as a reference
image in Eq.(27), which is helpful to improve the accuracy
of the algorithm. Thus, our proposed method is summa-

rized as follows:

Algorithm 2: The proposed combined image restoration method

Initialization: f°=g,&" =n° =0, 0l =0.001.

1. f"and f;) are extracted from /" by the image smoothing scheme.
2. f,, being fixed , update f;*' according to Eq.(24).

3. f& being fixed , update f;;*" according to Eq.(27).

T Y R/

Stop: Until a stopping criterion Hfm” -f" Hz/

o

, < tol is satisfied.
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4 Results and discussion

4.1 Experimental settings

In order to demonstrate the viability and efficiency of
the proposed method, experiments are carried out on
various image and kernels and compared with other
state-of-the-art methods. Test images are some clas-
sical images, such as “Boat” with the size 128 x 128,
“Cameraman” with the size 256 x 256, “Lena” with
the size 512 x 512, “Babara” with the size 512 x 512,
and “Man” with the size 1024 x 1024. And five different
motion blur kernels are used in the experiments. They are
freely available from http://www.wisdom.weizmann.
ac.il/"levina/ and frequently used in present researches for
image restoration, as shown in Fig. 2a. The size of each
kernel is 13 x 13, 17 x 17, 19 x 19, 21 x 21, and 23 x 23, as
shown in Fig. 2b. We also try the average blur kernel and
add the Gaussian noise to degrade the image. The stop cri-
terion is [ " - f”lly/llf"ll; < 0.001. The PSNR is used to
evaluate the quality of recovery results. All experiments are
conducted by Matlab programming on a desktop PC with
2.3GHz Inter]l Core computer and 4.0 GB memory.

4.2 Parameters setting
The PSNR is defined as

2552 M
PSNR = 101g—— 55"MN

L]

where f(i,j) denotes the recovered image and f(i, j) de-
notes the true image. As mentioned, the fast Fourier
transforms in the algorithm, boundary problems needs
to be processed; otherwise, it will affect the PSNR ser-
iously. The “edgetaper” function in Matlab is chosen as
the periodic boundary condition. There are many auxil-
iary variables and coefficients in the object formulation
that the form seems very complicated, as shown in
Eq.(19) and (23), especially in the algorithm description
and theoretical analysis. In actual fact, auxiliary variables
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are helpful in programming and reducing computational
redundancy.

Considering the penalty parameters 1,5,, and y, theor-
etically, any positive values ensure the convergence of
ADMM. In practice, there are usual two ways to deter-
mine them. One tries some values and picks a certain
value with satisfactory performance; the other applies
self-adaptive adjustment rules with an arbitrary initial
guess but requires expensive computation. In our experi-
ence, a well-tuned constant value has the same perform-
ance to the value obtained by the self-adaptive strategy.
For our proposed model, we tune and set 8; = 0.025
and B, = 0.05. Parameters A = 0.04, a = 0.05, and
y = A/3 = 0.012 are chosen based on the experience
of our previous work; for more details, refer to. In
this subsection, we mainly focus on the iterative par-
ameter k and the window of nonlocal TV operator. As
shown in Fig. 1, two curves are the numerical analysis of
the recovery for “blurred Babara” image (512 x 512) in
Fig. 1d by our proposed method. Figure 3a shows that
with the iterations increasing, the objective function value
is getting smaller and the algorithm tends to be stable.
Figure 3b shows that PSNR has not been significantly im-
proved as the number of iterations increasing to 50.
Hence, in the following experiments, we set the number
of iterations k = 50.

Then, the blurred image in Fig. 1d is still used to dis-
cuss the weight update for nonlocal operator. An appro-
priate size of the search window can guarantee the
better PSNR and less CPU time. The window size is ini-
tially set to 5 x 5 and increases by two steps. We also
add the date with the window size 3 x 3. Computation
time and PSNR are recorded at the same time, and the
results are shown in Fig. 4. Figure 4a shows that as the
size becomes larger, the computing time will be longer.
However, PSNR has not been greatly improved in Fig. 4b.
This conclusion is similar to ref. [8], which also dis-
cusses the size of the search window. Particularly, al-
though there are obvious difference in PSNR values
when the size of search window is set to 9 x 9 and

Fig. 2 Dataset for the numerical experiments. a Test images (from 128 x 128 to 1024 x 1024). b Blur Kernels (from 13 x 13 to 23 x 23)
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25 T
- 20f
8
(5]
=]
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E
k31
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8
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Iterations

(a)

Fig. 3 Numerical analysis for iterations k. a Curve of object function cost to iterations. b Curve of PSNR to iterations

40

20 30
Iterations

(b)

0 10 50

11 x 11, the CPU time becomes longer. In order to
shorten the CPU times and obtain a reasonable PSNR,
we use 7 x 7 search window for the following numerical
experiments.

4.3 Comparison with other state-of-art methods
In this subsection, we use above images and blur kernels
in Fig. 3 to verify the efficiency of the proposed model
and compare with four state-of-the-art methods. They
are the nonlocal TV method [5], the overlapping group
sparsity TV method [15], the combination of local and
nonlocal method using a Bregmanized operator splitting
iterative scheme [26], and the nonlocal TV-based method
using a linearized proximal alternating minimization algo-
rithm [8]. Numerical results of the PSNR and CPU times
are reported in the Table 1. It can be noted that our
method obtains higher PSNR and shorter CPU times than
other methods.

Because our method has the image division step in
each iteration, therefore, it does not significantly shorten
the computing time. As a compromise, we achieve a

better recovery effect that suppresses staircase effects
and protects image details and edges. Experiments on
the blurred “Babara” image in Fig. 1d are shown in Fig. 5,
the avatar area in the Babara image is cropped and the
details are more clear. Figure 5a is the blurred image by
a 19 x 19 blur kernel. Figure 5b is the recovered image
by the local TV method, which cause obvious staircase ef-
fects. In Fig. 5¢, the staircase effect is alleviated but unsatis-
factory. In Fig. 5d, more details are restored but consumes
too long time. In Fig. 5e, the method effectively saves the
computing time and get a relatively satisfactory recovery
effect. Our result is shown in Fig. 5f, by comparing the pat-
tern on the scarf, it can be drawn that our method can sup-
press staircase effects and preserve more details.

We also test on the blurred and noisy image, as shown
in Figs. 6 and 7. The image “Cameraman” with the size
256 x 256 is degraded by a 9 x 9 average kernel and
Gaussian white noise with ¢ = 3, as shown in Fig. 6a. In
Fig. 6b, there are serious staircase effects by the local
TV method, which shows the drawbacks of the total
variation-based framework. In Fig. 6c, the noise is

300
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Fig. 4 Analysis for search window Q,(x) of the nonlocal TV operator. a Curve of CPU time to window size. b Curve of PSNR to window size
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Table 1 PSNR (dB) and CPU times for the deblurring experiments in Fig. 4 (PSNR/times)
Kernel Image Method [5] Method [15] Method [26] Method [8] Our method
13 x13 Boat 24.16/1.03 2523/2.21 2641/10.52 2732/3.14 28.94/2.27
Cameraman 2327/3.12 2442/4.53 25.23/19.95 25.94/6.25 26.74/5.23
Lena 22.16/645 23.25/8.96 2447/25.82 25.81/14.25 26.64/13.17
Barbara 23.04/6.34 2341/8.89 24.22/27.91 25.66/14.36 26.64/13.09
Man 2441/15.26 25.39/22.47 26.73/40.67 26.94/34.82 27.98/33.26
17 x 17 Boat 23.86/1.10 24.73/2.22 25.61/9.49 26.45/3.32 27.87/2.25
Cameraman 2221/2.96 23.54/4.32 24.47/20.78 24.86/6.33 25.61/543
Lena 21.23/6.31 22.32/8.87 23.73/26.78 2431/14.32 25.34/13.21
Barbara 20.79/6.47 22.14/9.01 23.56/27.67 24.73/14.29 2547/13.18
Man 20.14/15.34 21.89/21.96 2322/42.12 24.67/3567 25.78/34.64
19 %19 Boat 22.67/1.07 23.46/2.16 2433/10.38 25.29/341 26.76/2.29
Cameraman 22.34/3.06 23.54/4.37 2447/24.64 25.26/6.45 25.27/5.21
Lena 20.24/6.42 21.26/891 2243/25.83 23.42/14.27 25.05/13.09
Barbara 20.12/6.36 21.38/8.85 22.89/26.77 23.34/14.32 24.93/13.03
Man 20.14/15.29 21.89/22.12 23.22/47.01 24.67/36.13 25.78/34.42
21 x 21 Boat 21.34/1.12 22.29/2.21 2347/1042 24.37/3.56 2548/2.31
Cameraman 20.12/3.23 21.24/4.26 2232/24.53 22.76/6.45 2443/5.35
Lena 19.31/6.37 20.02/8.66 21.13/2867 21.37/13.98 23.25/13.11
Barbara 19.42/641 20.14/8.72 21.13/28.73 2147/13.78 23.65/13.02
Man 19.84/15.42 20.96/22.37 22.04/47.12 23.16/36.16 24.87/34.23
23 x 23 Boat 19.27/1.09 21.32/2.19 22.34/9.36 23.65/3.42 24.83/2.24
Cameraman 19.02/3.23 2031/4.26 21.26/23.53 22.24/6.45 24.36/5.17
Lena 18.94/6.21 19.21/8.93 20.45/31.78 21.34/14.34 23.17/12.98
Barbara 18.26/6.35 19.19/8.89 20.63/31.68 21.27/14.45 23.66/13.11
Man 18.17/16.03 19.23/22.56 20.01/54.11 21.32/37.02 23.37/34.35
<

Fig. 5 Experiments on the blurred image “Babara” (degrade by a 19 x 19 kernel). a Blurred image(PSNR = 18.17). b The local TV [5] (PSNR = 20.12,
t=16.365). ¢ GOS_TV [15] (PSNR = 21.38, t = 8.85 s). d The local/nonlocal TV [26] (PSNR = 22.89, t = 26.77 s). @ The nonlocal TV [8] (PSNR = 23.34,

t = 1432 5s). f The proposed model (PSNR = 24.93, t = 13.03 5)
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Fig. 6 Experiments on the blurry and noisy image of “Cameraman” (256 x 256). a Blurry and noisy (PSNR = 21.22). b The local TV [5]
(PSNR = 2245, t = 3.7 s5). ¢ GOS_TV [15] (PSNR = 23.09, t = 5.7 5). d The local/nonlocal TV [26] (PSNR = 24.57, t = 10.5 s). e The nonlocal
TV [8] (PSNR = 2569, t = 6.3 s). f The proposed model (PSNR = 27.69, t = 5.2 s)

removed but the staircase effect is still very obvious. In
Fig. 6d, the staircase effect is mitigated but consumes
too long time, which is attributed to the numerical pro-
cessing of the algorithm. By comparing Fig. 6e, f, we can
note that our method obtain better result and save more
computing time.

Figure 7 shows the recovery results of the compared
methods on classical tested image “Lena”. The feathers

on her hat are of interest to our observation and com-
parison. As shown in Fig. 7a, the blurry and noisy image
of “Lena” with the size 512 x 512 is degraded by a
13 x 13 average kernel and Gaussian white noise with
o = 3. There are obvious staircase effects in Fig. 7b, c.
In Fig. 7d, the method also divide the image region
by a gradient extraction scheme, which can preserve more
details but costs much more time. In Fig. 7e, the method is

t = 1434 5s). f The proposed model(PSNR = 27.53, t = 13.02 5)

Fig. 7 Experiments on the blurry and noisy image of “Lena” (512 x 512). a Blurry and noisy (PSNR = 19.31). b The local TV [5] (PSNR = 21.22,
t=4325). ¢ GOS_TV [15] (PSNR = 23.09, t = 10.93 s). d The local/nonlocal TV [26] (PSNR = 24.57, t = 20.21 s). @ The nonlocal TV [8] (PSNR = 25.69,




Shi and Feng EURASIP Journal on Wireless Communications and Networking (2017) 2017:167

proposed based on the nonlocal TV and uses a linearized
proximal alternating minimization algorithm to improve
the efficiency. Our result in Fig. 7f shows higher PSNR and
shorter CPU time.

5 Conclusions

In this paper, a novel local and nonlocal total variation
combination method has been proposed for image res-
toration in WSN. To apply the information properly, the
image is divided into two regions by an image smoothing
scheme. The local TV term is applied on the salient
edges and constant regions, and the nonlocal term is ap-
plied on the details. The overlapping group sparsity is
adopted as a priori constraint term in the proposed
model to alleviate the staircase effect as much as pos-
sible. To improve the efficiency, we optimize the energy
function by the ADMM algorithm, which has complex
formulas but is easy to be programmed. Parameter selec-
tion criterion for two key parameters is discussed by nu-
merical experiments, and it is the other main contribution.
By comparing with other state-of-the-art methods, it can
be concluded that our method achieves higher efficiency
and makes a good balance between alleviating staircase
effects and preserving image details.
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