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Abstract

For rapidly time-varying channels, the performance of (orthogonal frequency division multiplexing) OFDM systems
with the conventional one tap equalizer will be significantly degraded. Because the orthogonality between subcarriers
is destroyed, the conventional way to combat the inter-carrier interference (ICI) is employing the banded minimum
mean square error (MMSE) equalizer, which can save computational efforts introduced by a large number of subcarriers.
However, the width of the banded channel matrix is mainly determined by the normalized Doppler frequency in the
sense that with the high Doppler frequency the complexity of equalization for one OFDM block will significantly
increase with the band width D. In order to reduce the equalization complexity, the authors proposedmulti-segmental
OFDM signal equalization method with piecewise linear model (PLM) to approximate the time variations and mitigate
the corresponding ICI. Its complexity is significantly reduced with the small segments. Furthermore, an alternative
MMSE method with the iterative rank-1 matrix updates is proposed to further reduce the complexity. We also derive
the theoretical pre-equalized and equalized signal to interference ratio (SIR) for different normalized Doppler
frequencies and segment numbers, which implies that the larger segment number can achieve the better performance.
Simulation results demonstrate that the proposed method outperforms the conventional banded MMSE equalizer
and the partial fast Fourier transform (FFT) method in terms of bit error rate (BER) with almost the same complexity.
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1 Introduction
Orthogonal frequency division multiplexing (OFDM) is
a very promising modulation technique to achieve high
spectral efficiency. However, the inter-carrier interference
(ICI) will be introduced by the non-orthogonality between
subcarriers that interfere with each other. A large num-
ber of different algorithms have been studied in the last
decade for ICI cancellation, e.g., [1–3], which take advan-
tage of the banded channel matrix to remove the ICI from
neighbouring subcarriers sequentially. Additionally, some
techniques in [4, 5] exploit the sparsity of the banded
matrix to design the OFDM block equalizers. Also, sev-
eral pre-equalized methods have been proposed in [6–10]
to reduce the time variations and obtain a quasi-diagonal
channel matrix as convectional OFDM systems over the
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slowly time-varying channels. Some decision feedback
equalization techniques are also compatible with OFDM
systems [11–16]. According to the previous literature, we
can observe that the equalizers with the banded chan-
nel matrix can be efficiently performed in sequential or
block manners. Additionally, the overall complexity will
approximately scale with O(D2) [2–4]. Note that the algo-
rithm proposed in [9, 17] can reach a very low complexity,
which linearly increases with the number of subcarriers.
But the performance loss is too significant at high normal-
izedDoppler frequency regime. After the equalization, the
power of the desired subcarrier that spreads across the
neighbouring subcarrier are aggregated, and the ICI is also
mitigated.
In this paper, we proposed a multi-segmental OFDM

signal equalization method in rapidly time-varying chan-
nels. Unlike the methods in [3, 4, 15, 16, 18], the con-
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ventional banded channel matrix is not adopted for
equalization. Motivated by [8, 19–21], a new form of
multi-segmental OFDM signals equalizer with the PLM
is derived for ICI suppression. Unlike the previous liter-
ature, we do not assume that the channels remain con-
stant during each sample duration and neither exploit
real oversampling benefits as in [19], in which more sam-
ples are obtained around each subcarrier. Additionally,
we approximate the time variations by the PLM between
two segments rather than that between two OFDM blocks
in [20]. Although the multi-segmental operations can
effectively reduce the time variations, the additional irre-
ducible interference will be introduced with the large
segments numberM. In other words, the SIR performance
will be gradually saturated with the increasing number
of segments M. In [21], the authors proposed a similar
method to approximate the time variations by the differ-
ences between real channel coefficients in each symbol
duration and the midpoint channel coefficients in each
segment. However, it is very difficult to obtain the accu-
rate channel coefficients in each symbol duration for the
rapidly time-varying channels. Furthermore, the authors
in [22] approximate the time variations of OFDM systems
by a Taylor expansion. In [23], a simple and efficient poly-
nomial surface channel estimation technique is exploited
to reduce ICI in a low complexity. The algorithm proposed
in [24] decomposes the ICI caused by the time varia-
tions into a simple inter-symbol interference and a low
ICI. Although these methods can substantially improve
the performance of OFDM systems in high Doppler sce-
narios with lower complexity, the requirement of the
relatively large matrix inversion operations and addition
memory is still unavoidable. In contract, the proposed
algorithm is more flexible in terms of complexity with dif-
ferent segment numbers and can save a large amount of
memory compared to the methods that use the matrix
inversion.
The contribution of this paper is summarized as (1)

a new system model of multi-segmental OFDM sig-
nals with PLM is formulated, (2) a MMSE equalizer
for the system model is presented, (3) an alternative
MMSEmethod with the iterative rank-1 matrix updates is
proposed, (4) efficient computation of the channel coef-
ficients for the equalizers is presented, and (5) the theo-
retical performance on pre-equalized and equalized SIR
is derived.
The paper is organized as follows. Section 2 states

the new system model for multi-segmental OFDM sig-
nals with PLM. Section 3 presents the proposed equal-
ization methods for multi-segmental OFDM signals and
their complexity is also discussed. In Section 4, the
SIR performance is analyzed. The simulation results
are given in Section 5, and Section 6 draws the
conclusions.

2 Systemmodel
2.1 Conventional model
We consider a OFDM system with Ns subcarriers over
rapidly time-varying channels modelled by the the Jakes’
model [25] , the normalized Doppler frequency of which
is defined as FdTs. Where the quantity Fd denotes the
maximum Doppler frequency, and the symbol duration
is Ts. The subcarrier spacing between two consecutive
subcarriers is defined as �f = 1

NsTs
= 1

T
, so the fre-

quency of the kth subcarrier denotes fk = fc + (k − 1)�f ,
and the bandwidth of the OFDM system is Bw = Ns�f
The information bit sequence are mapped into the finite
constellation points, the vector of which is expressed as
s = [

s1, s2, . . . , sNs

]T . For brevity, the notation of the sym-
bol duration Ts = 1 is omitted in the following otherwise
specified. The modulated baseband OFDM signals trans-
mitted is given as:

u(n) =
√

1
Ns

Ns−1∑

k=0
skej2π fkn, n ∈ [−L,Ns − 1] , (1)

where the quantity L denotes the length of multipath
channels. The guard interval is assumed to be equal to
the maximum delay spread in the sense that the multipath
effects is perfectly removed for the conventional OFDM
systems.
The receive signals of the passband can be expressed as

r(n) =
√

1
Ns

L−1∑

l=0

Ns−1∑

k=0
hl(n)skej2π fk(n−l) + z(n), n ∈ [−L,Ns − 1] ,

(2)

where the channel impulse response (CIR) for the lth
channel path and the nth symbol duration is defined as
hl(n). The quantity z(n) is the additive white Gaussian
noise (AWGN) with the variance σ 2

z . After the removal of
the guard interval, the truncated receive signal in (2) with
the fast Fourier transform (FFT) becomes:

yd =
√

1
Ns

Ns−1∑

n=0
r(n)e−j2π fdn

= 1
Ns

Ns−1∑

k=0
sk

Ns−1∑

n=0

(L−1∑

l=0
hl(n)e−j2π fk l

)

︸ ︷︷ ︸
Hk(n)

e−j2π fd−kn + vd,

(3)

where the channel frequency response (CFR) for the kth
subcarrier at the nth symbol duration is denoted asHk(n).
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Motivated by [8], we rewrite (3) in a multi-segmental form
as follows:

yd(m) = 1
Ns

Ns−1∑

k=0
sk

m2∑

n=m1

(L−1∑

l=0
hl(n)e−j2π fk l

)

︸ ︷︷ ︸
Hk(n)

e−j2π fd−kn + vd(m),

(4)

where the quantities m1 and m2 denote the start and the
end symbol duration at the mth segment, respectively. If
the CFR Hk(n) in (3) is constant over time, the equation
can be reduced to the conventional receive OFDM sig-
nal model over the very slowly time-varying channel, i.e.,
yd = sdHd + vd. Otherwise, the desired subcarrier sd will
be interfered by the other subcarriers sk,k �=d due to the
time variation of the channels. Thus, we employ the piece-
wise linear model (PLM) that approximates time variation
by the channel slopes in each segment.

2.2 Piecewise linear model
To design a simple equalizer, the Eq. (4) can be approxi-
mated by the partial FFT model with the midpoint CIR.
However, the additional approximation error will be intro-
duced if the channel time variations is severe. For a more
accurate model, the received signals can be given by

yd(m) ≈ 1
Ns

Ns−1∑

k=0
sk

m2∑

n=m1

(

Hk(n) + αk(n)

×
(
n −

(
m1 + m2 − m1

2

)))
ej2π fk−dn + vd(m),

(5)

where the quantity αk(n) denotes the slope of the CFR of
the kth subcarrier, and the midpoint CFR Hk(n) = Hk(m)

in the mth segment. Defining m2 = mNs
M and m1 =

(m−1)Ns
M , the expanded form of (5) can be equivalently

given by

yd(m) ≈ 1
Ns

Ns−1∑

k=0
sk ·

⎛

⎜
⎝Hk(m)

mNs
M∑

n= (m−1)Ns
M

ej2π fk−dn

+ αk(m0)

(m−1)Ns
M + Ns

2M∑

n= (m−1)Ns
M

(
n − (2m − 1)Ns

2M

)
ej2π fk−dn

+αk(m1)

mNs
M∑

n= (m−1)Ns
M + Ns

2M

(
n − (2m − 1)Ns

2M

)
ej2π fk−dn

⎞

⎟
⎠

+ vd(m),

(6)

Note that we further split the mth segment into two
regions 0 and 1 in the time domain, i.e.,

[
(m−1)Ns

M ,
(m−1)Ns

M + Ns
2M

)
and

[
(m−1)Ns

M + Ns
2M , mNs

M

]
, the constant

slopes of which are defined as αk(m0) and αk(m1), respec-
tively. The diagram of the PLM is shown in Fig. 1, in
which the time variations of the channels between the
(m − 1)th segment and the mth segment are modeled by
the slopes as in (5). Additionally, the slopes αk(mi) for the
kth subcarrier are computed by the FFT as

αk(mi) =
L−1∑

l=0
αl(mi)e−j2π fk l, i = 0, 1 (7)

Note that the channel slopes are computed with the per-
fect CSI. Although the perfect CSI is used, the channel
coefficients mismatch between the PLM and the perfect
channel coefficients still exists andwill bemore significant
with the increasing normalized Doppler frequency. How-
ever, the proposed model will be more accurate than the
ones used in [8, 20], which approximate the channels by
the midpoint CIR with the slopes between two consecu-
tive OFDM symbols rather than the two segments or only
the midpoint CIR in one particular segment.
With the exact derivation in Appendix A, the approxi-

mation of multi-segmental signals with the PLM can be
given as

Fig. 1 The diagram of the piecewise linear model for the time-varying channels
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yd(m) ≈
Ns−1∑

k=0
sk · (Hk(m)Ik−d(m) + αk(m0)νk−d(m)

+αk(m1)ν
′
k−d(m)

) + vd(m)

(8)

where

νi(m) = −jNs
8M2 e

j2π i 4m−3
4M J ′1

(
iπ
2M

)
(9)

ν′
i(m) = −jNs

8M2 e
j2π i 4m−1

4M J ′1
(

iπ
2M

)
(10)

and i = −(Ns − 1), . . . , (Ns − 1). Note that the autocor-
relation of the noise is defined as the same as [8]. The
matrix form of the PLM with multi-segmental signals is
expressed as

yd ≈
Ns−1∑

k=0
sk
(
Hkεk−d + �k(0)νk−d + �k(1)ν′

k−d
)+vd

(11)

where the diagonal matrix of the CFR is defined as Hk =
D
(
[Hk(1),Hk(2), . . . ,Hk(M)]T

)
, εk = [Ik(1), Ik(2), . . . ,

Ik(M)]T , νk = [νk(1), νk(2), . . . , νk(M)]T ,�k(0) =
D
(
[αk(10),αk(20), . . . ,αk(M0)]T

)
for the first region, and

the vector ν′
k the second slope matrix �k(1) are defined

accordingly.

3 Equalization of multi-segmental OFDM signals
with piecewise linear model

Firstly, we will present two equalization methods includ-
ing the conventional minimum mean square error
(MMSE) equalizer and the modified one with iterative
rank-1 matrix updates (IRU). Secondly, an appropriate
rank value selection will be discussed to further reduced
the complexity of the MMSE equalizers.

3.1 Convectional MMSE equalizer
Let us define the coefficients of the MMSE equalizer as
wd = [wd(1),wd(2), . . . ,wd(M)]T and assume that the
perfect CIRs and the channel slopes of the PLM are known
to the receivers. The following optimization problem
needs to be solved:

w�
d = argmin

wd
E
{‖sd − wH

d yd‖2
}

(12)

The optimum linear solution to the above problem is
expressed as

Rydsd = = E{yds∗d} = ud = Hdε0 + �k(0)ν0 + �k(1)ν′
0

(13)

C = E

{Ns−1∑

k=0
ukuHk

}

(14)

Ryd = C + σ 2
v
M

IM (15)

w�
d = R−1

yd Rydsd (16)

where

Hkεk−d + �k(0)νk−d + �k(1)ν′
k−d (17)

3.2 Modified MMSE equalizer with iterative rank-1 matrix
updates

Intuitively, the rank of the matrix ukuHk is one. This is
because the all the rows and columns are linear com-
binations of uk . In order to avoid the matrix inversion
introduced in (16), the matrix inversion can be replaced
by the iterative matrix updates as follows:

R−1
yd =

(
σ 2

M
IM + C

)−1
(18)

As described above, the matrix C can be decomposed
into the summation of multiple rank-1 matrices, and the
matrices

(
σ 2

M IM + C
)
and C are invertible. Thus, we can

obtain
(

σ 2

M
IM + C

)−1
= B−1

Ns
− gNsB

−1
Ns

uNsuHNsB
−1
Ns

(19)

and the matrix Bk+1 can be iteratively updated as

B−1
k+1 = B−1

k − gkB−1
k ukuHk B

−1
k (20)

where gk = 1
1+tr

(
B−1
k ukuHk

) , and the symbol tr(·) denotes

the trace of the matrix. Additionally, B−1
0 =

(
σ 2

M IM
)−1

. It
can be observed that the only direct computation of
the matrix inversion is B−1

0 for the initialization of (20).
However, the complexity of the larger number of itera-
tive updates will be higher than the conventional matrix
inversion using Cholesky factorization [26]. Note that the
performancemodifiedMMSE equalizer is not comparable
to the convectional one, but its performance will be signif-
icantly improved with ICI cancellation and the complexity
is still very low. More details about the exact complexity
can be found in subsection 3.5.

3.3 Efficient computation of uk
Because the FFT can be performed more efficiently
with a large number of subcarriers, the vector uk
for k = 0, 1, . . . ,Ns − 1 required for the matrix
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inversion can be obtained via the FFT. Defining
hL(m) = [h0(m), h1(m), . . . , hL−1(m), 0, . . . , 0]T ∈ CNs×1,
φL(m0) = [α0(m0),α1(m0), . . . ,αL−1(m0), 0, . . . , 0]T ∈
CNs×1 and φL(m1) accordingly, the matrix form of uk for
k = 0, 1, . . . ,Ns − 1 can be represented as

U = FHL � ϒ + F�L(0) � � + F�L(1) � � ′ (21)

where the matrix F and FH are defined as FFT and inverse
FFT (IFFT), respectively. U =

[
uT0 ,u

T
1 , . . . ,u

T
Ns−1

]T
,

HL = [hL(1),hL(2), . . . ,hL(M)], ϒ =
[
εT0−d, ε

T
1−d, . . . ,

εTNs−1−d

]T
, �L(0) = [

φL(10),φL(20), . . . ,φL(M0)
]
, � =

[
νT0−d, ν

T
1−d, . . . , ν

T
Ns−1−d

]T
. The matrices �L(1) and � ′

are similarly defined as �L(0) and � . After some linear
algebra manipulations, the Eq. (21) can be written as

U = F
(
HL � FHϒ + �L(0) � FH� + �L(1) � FH� ′)

(22)

The notation � denotes the element-wise multiplica-
tion. Note that the IFFT of ϒ , � , and � ′ can be pre-
computed before the transmission, and C = UHU.

3.4 Low-rank approximation of the matrix inversion
An appropriate subcarrier selection scheme can reduce
the number of matrices summation and the updates. We
have shown the interference power of interfering subcar-
riers (k �= d) and the desired subcarrier in Fig. 2, each
of which contributes to the matrices summation in the
above equation. The dth subcarrier (k = d) is the desired
one. It can be observed that the main power comes from
the desired and the corresponding neighbour subcarriers.
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Fig. 2 The power comparison of the desired subcarrier and other
interfering subcarriers with the midpoint model with d = 511,
Ns = 1024, and FdTs = 0.005

Furthermore, the subcarriers which experience the deep-
est fading are located in these indices F0 = {. . . , d −
2M, d − M, d + M, d + 2M, . . .}, and the counterparts
which have the peak power are located in F1 = {. . . , d −
5M
2 , d− 3M

2 , d+ 3M
2 , d+ 5M

2 , . . .}. The power of undesired
subcarriers with largeM becomes significant, because the
more segments M implies the less orthogonality between
subcarriers.
Hence, the subcarrier selection scheme can be per-

formed as follows:

1. Select the subcarriers with the peak power P(fk) and
k ∈ F1.

2. Extract the main lobes and side lobes according to
F1, so the extracted indices for one particular lobe
are L0 = {d− (i+1)M, d− (i+1)M+1, . . . , d− iM}
for k < d and
L1 = {d+iM, d+iM+1, . . . , d+(i+1)M} for k > d.

3. Set the minimum target power P∗
f .

4. Search the subcarrier, the power Pfk of which is
larger than the minimum target power P∗

f in the
zig-zag manner within L0 or L1. Put the desired
subcarrier index inR.

5. Repeat step (4) for other lobes.

Hence, the autocorrelation matrix C in (14) can be
approximately evaluated by

C = E

{
∑

k∈R
ukuHk

}

(23)

In other words, the number of matrices summation
and the number of updates required in (14) and (19) are
reduced.

3.5 Complexity analysis
In this part, we have discussed the complexity of the algo-
rithms required in each step, which is evaluated by the
complex multiplications (CMs).

3.5.1 MMSE equalizer with efficient computation of uk and
low-rank approximation

The computational complexity of MMSE equalizer for
the dth subcarrier is primarily determined by the com-
putation of autocorrelation matrix Ryd and its inversion,
whose complexity scale withO(M3)+O(logNs + 3ML)+
O
( |R|

2 (M2 − M)
)
. For each subcarrier equalization, the

matrix inversion using Cholesky factorization requires
O(M3) CMs. The computation of uk needs one FFT and
three matrix vector multiplications, whose complexity is
upper bounded by O(logNs + 3ML) CMs. To obtain the
autocorrelation matrix Ryd , the complexity is determined
by the size of chosen subcarriers |R| and the autocorrela-
tion matrix ukuHk , which is around O

( |R|
2

)
.
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3.5.2 ModifiedMMSE equalizer with iterative rank-1matrix
updates

As discussed in [26], the computational complexity of the
modified matrix inversion will be significantly increas-
ing with the number of dimensions, i.e., |R|. Hence, the
size of R is limited to 3. In other words, the autocorre-
lation matrices ukuHk , k = d, d − 1, d + 1 are used to
yield the approximate matrix inversion, whose complexity
scales withO

(|R|3M2). For further complexity reduction,
k = d. Its complexity reduces to O

(
M2).

3.5.3 Complexity comparison between different
equalization algorithms

The overall complexity required by the equalizers for
each subcarrier is summarized as follows. Note that the
complexity of FFT is not considered (Table 1).

4 Performance analysis in signal to interference
ratio

In this section, we will present signal to interference ratio
(SIR) analysis for the pre-equalized and equalized cases,
which indicate the different behaviours of the different
segment numbers on the SIR. The first case is the upper
bound, which is based on the pre-equalized SIR at low
normalized Doppler frequencies. The other case is for
the equalized SIR with different M at a wide range of
normalized Doppler frequencies.

4.1 Case I: pre-equalized signal to interference ratio
analysis for multi-segmental OFDM signals

In this part, the theoretical pre-equalized SIR is derived
for the slowly time-varying channels.

4.1.1 Derivation of the power of subcarriers
Given (8) and (23), the signal to interference ratio (SIR) of
the dth subcarrier can be evaluated by

γd(M) = E
{
uHd ud

}

∑Ns−1
k=0,k �=d E

{
uHk uk

} (24)

Table 1 Complexity comparison between different equalization
algorithms

Algorithm Complex multiplications

Full-MMSE [29] O
(
N3
s + N2

s

)

Conventional banded MMSE [3] O
(
8D3 + 12D2 + 6D + 1

)

Partial FFT+MMSE [8] O
(
M3 + 3|R|M2

)

Partial FFT+RLS [8] O
(
6M2 + 2M + 2

)

MMSE+PLM O
(
M3 + 3|R|M2

)

Modified MMSE equalizer with ICI
cancellation |R| = 1

O
(
2M2 + 2M

)

Modified MMSE equalizer with ICI
cancellation |R| = 3

O
(
2|R|3M2 + 2M

)

D denotes the size of the band for the banded equalizer

Hence, the autocorrelation function of uk(m) needs
to be obtained for theoretical evaluation and can be
expressed as

uk(m) =
L−1∑

l=0
hl(m)e−j2π fk lIk−d(m)

+
L−1∑

l=0
αl(m0)e−j2π fk lνk−d(m)

+
L−1∑

l=0
αl(m1)e−j2π fk lν′

k−d(m)

(25)

where

αl(m0) = hl(m) − hl(m − 1)
Ns/M

(26)

αl(m1) = hl(m + 1) − hl(m)

Ns/M
(27)

For the theoretical analysis of the SIR, the following
autocorrelation function is evaluated by

E
{
uku∗

k
} = E

{L−1∑

l=0
hlh∗

l Ik−dI∗k−d +
L−1∑

l=0
αl(0)h∗

l νk−dI∗k−d

+
L−1∑

l=0
αl(1)h∗

l ν
′
k−dI

∗
k−d

+
L−1∑

l=0
αl(0)α∗

l (0)νk−dν
∗
k−d +

L−1∑

l=0
hlα∗

l (0)Ik−dν
∗
k−d

+
L−1∑

l=0
αl(1)α∗

l (0)ν
′
k−dν

∗
k−d

+
L−1∑

l=0
αl(1)α∗

l (1)ν
′
k−dν

′∗
k−d +

L−1∑

l=0
hlα∗

l (1)Ik−dν
′∗
k−d

+
L−1∑

l=0
αl(0)α∗

l (1)νk−dν
′∗
k−d

}

(28)

The notation m is omitted for simplicity, owing to the
computation of the power of signals in (24). Using the
symmetric properties of the autocorrelation function, we
can obtain these as follows:

E
{
hlh∗

l
} = E

{
h∗
l hl

} = σ 2
l (29)

E
{
αl(0)h∗

l
} = E

{
hlα∗

l (0)
} = σ 2

l
Ns/M

(1 − rl (Ns/M)) (30)

E
{
αl(1)h∗

l
} = E

{
hlα∗

l (1)
} = σ 2

l
Ns/M

(rl (Ns/M) − 1) (31)
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E
{
αl(0)αl(0)∗

} = E
{
αl(1)α∗

l (1)
}

= σ 2
l

(Ns/M)2
(2 − 2rl (Ns/M)) (32)

E
{
αl(0)αl(1)∗

} = E
{
αl(1)α∗

l (0)
}

= σ 2
l

(Ns/M)2
(2rl (Ns/M) − rl (2Ns/M)−1)

(33)

where rl(·) denotes the autocorrelation function of the
lth channel path. We assume that

∑L−1
l=0 σ 2

l = 1 and the
probability density function (PDF) and the autocorrela-
tion function of each path is identical. Substituting (29),
(30), (31), (32), and (33) into (28), the autocorrelation
function can be given as

E
{
uku∗

k
} = Ik−dI∗k−d + (1 − rl (Ns/M))

Ns/M
νk−dI∗k−d

+ (rl (Ns/M) − 1)
Ns/M

ν′
k−dI

∗
k−d

+ 2 (1 − rl (Ns/M))

(Ns/M)2
νk−dν

∗
k−d

+ (1 − rl (Ns/M))

Ns/M
Ik−dν

∗
k−d

+ 1
(Ns/M)2

(2rl (Ns/M)

−rl (2Ns/M) − 1) ν′
k−dν

∗
k−d

+ 2 (1 − rl (Ns/M))

(Ns/M)2
ν′
k−dν

′∗
k−d

+ (rl (Ns/M) − 1)
Ns/M

Ik−dν
′∗
k−d

+ 1
(Ns/M)2

(2rl (Ns/M)

−rl (2Ns/M) − 1) νk−dν
′∗
k−d

(34)

Equation (34) can be written in a compact form as

E
{
uku∗

k
} ≈ 1

M2 J
′2
0

(
iπ
M

)
+ 1 − rl(Ns/M)

2M2

(
J
′2
1

(
iπ
2M

))

(35)

where i = k − d. Hence, Eq. (35) yields the power of
the desired subcarrier and the interference caused by the
other subcarriers with k = d, k �= d, respectively.
For a simple analysis, we firstly assume that the number

of subcarriers Ns and the number of segmentsM are very
large, and the noise term is omitted. Based on the assump-
tions above, Eq. (35) can be further simplified as follows:

E
{
uku∗

k
} ≈ 1

M2 J
′2
0

(
iπ
M

)
= 1

M2
sin2

( iπ
M
)

( iπ
M
)2 (36)

The power of the desired subcarrier k = d is evaluated
by

E
{
uHd ud

} ≈ 1
M

J
′2
0 (0) = 1

M
(37)

The power of the interfering subcarriers k �= d is
evaluated by

Ns−1∑

k=0,k �=d
E
{
uHk uk

} = M
Ns−1∑

k=0
E
{
uku∗

k
} − E

{
uHd ud

}

=
Ns/2∑

i=−Ns/2+1

1
M

sin2
( iπ
M
)

( iπ
M
)2 − 1

M
,Ns 	 ∞

	
∫ ∞

−∞
1
M

sin2
( iπ
M
)

( iπ
M
)2 di − 1

M

= 1 − 1
M

(38)

where the integration of the sinc squared function is
computed by

∫ ∞

−∞
1
M

sin2
( iπ
M
)

( iπ
M
)2 di = M

π

∫ ∞

−∞
1
M

sin2
( iπ
M
)

( iπ
M
)2 d

iπ
M

= 1

(39)

Hence, with very large number of subcarriers and seg-
ments, the interference is approximately bounded by the
number of segments M. This is because the time varia-
tions can be omitted by the largeM.

4.1.2 The upper bound of the SIR for slowly time-varying
channels

According to (37) and (38), the SIR can be evaluated by

γd(M) ≈ 1
M

(
1 − 1

M
) = 1

M − 1
(40)

4.2 Case II: equalized signal to interference ratio analysis
for multi-segmental OFDM signals

In the previous subsection, we have discussed the pre-
equalized SIR without the equalization. For the equalized
SIR, we can use a simple form to compute it. According
to (11) [27, 28], the SIR of the equalized signals is upper
bounded by

γ ′
d(M) ≈ E

2 {w�H
d (fd + gd)

}

∑Ns−1
k=0,k �=d var

{
w�H
d (fk + gk)

} + σ 2
v
M

(41)

Because it is not trivial to evaluate var
{∑Ns−1

k=0,k �=d w
�H
d

(fk + gk)
}
, in which the terms are correlated. Let us define

fk = Hkεk−d and gk = �k(0)νk−d + �k(1)ν′
k−d. It can be

seen that the entry of gk = [
gk(1), . . . , gk(M)

]T is obtained
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by gk(m) = 1
Ns

∫ mNs
M

(m−1)Ns
M

(Hk(n) − Hk(m))ej2π i�fndn, i =
k−d, and we assume a scaledmatched filterw∗H

d = MfHd is
employed for simplicity. The power of the desired subcar-
rier approximately equals 1, because the power of signals
is normalized, i.e., PS = E

2 {w�H
d (fd + gd)

} ≈ 1. We
split the interference term into two parts: var

{
w�H
d fk

} +
var

{
w�H
d gk

}
. Note that these two terms are uncorrelated,

the proof of which is given in Appendix B. Additionally,
E
{
w�H
d fk

} = E
{
w�H
d gk

} = 0, the proofs of which are
similar to the previous one. Hence, the first term of the
interference is given as

var
{
w�H
d fk

} = var
{ M∑

m=1
w∗
d(m)fk(m)

}

=
M∑

m1=1
var

{
w∗
d(m1)fk(m1)

}

+
∑

m1 �=m2

cov
{
w∗
d(m1)fk(m1),w∗

d(m2)fk(m2)
}

(42)

We have proved that the vectors w�H
d , fk , and gk are

uncorrelated. Hence, we can conjecture the entries in
these two vector are independent in the sense that a
simpler form of (42) can be obtained as

var
{
w�H
d fk

} =
M∑

m1=1
var

{
w∗
d(m1)

}
var

{
fk(m1)

}

+
∑

m1 �=m2

cov
{
w∗
d(m1),wd(m2)

}

cov
{
f ∗
k (m1), fk(m2)

}

(43)

where var
{
w∗
d(m1)

} = 1, var
{
fk(m1)

} = 1
M2 sinc2

( iπ
M
)
,

cov
{
w∗
d(m1),wd(m2)

} = J0
(
2π fd(m1 − m2)

Ns
M

)
, and cov

{
f ∗
k (m1), fk(m2)

} = 1
M2 sinc2

( iπ
M
)
J0
(
2π fd(m1 − m2)

Ns
M

)
.

If the midpoint CFRs between two different segments are
uncorrelated and the segment numberM is very small, the
final expression of the first term of the interference will be
given by

The above equation is simple and can be numerically
computed. The second interference term can be evaluated
by

var
{
w�H
d gk

} =
M∑

m1=1
var

{
w∗
d(m1)

}
var

{
gk(m1)

}

+
∑

m1 �=m2

cov
{
w∗
d(m1),wd(m2)

}

cov
{
g∗
k (m1), gk(m2)

}

(45)

where var
{
w∗
d(m1)

} = 1 and cov
{
w∗
d(m1),wd(m2)

} =
J0
(
2πFd Ns

M (m2 − m1)
)
. But the second interference term

caused by the time variations will involve a generalized
hypergeometric function, and the variance and covariance
of gk(m) is unlikely to be expressed in explicit forms, e.g.,

var
{
gk(m1)

} = E

{
1
N2
s

∫ Ns
2M

−Ns
2M

∫ Ns
2M

−Ns
2M

(Hk(n1) − Hk(m1))(Hk(n2)

−Hk(m1))
∗ej2π i

(
(n1−n2)

M

)

dn1dn2

}

(46)

and

cov
{
gk(m1)gk(m2)

} = E

{
1
N2
s
ej2π

(m1−m2)

M

∫ Ns
2M

−Ns
2M

∫ Ns
2M

−Ns
2M

(Hk(n1)

−Hk(m1))(Hk(n2)

−Hk(m2))
∗ej2π i

(
(n1−n2)

M

)

dn1dn2

}

(47)

With the uncorrelated assumption made above, Eq. (47)
approaches 0. Additionally, the midpoint CFRs Hk(m11)

and Hk(m12) within
[
0, Ns

2M

]
and

[
− Ns

2M , 0
]

are used
to approximate the above integrals. Defining A1 =
∫ Ns

2M
0 ej2π i�fn, A2 = ∫ 0

− Ns
2M

ej2π i�fnej2π i�fn, Eq. (46) is sim-
plified as

Ns−1∑

k=0,k �=d
var

{
w�H
d fk

} =
Ns−1∑

k=0,k �=d

⎛

⎝ 1
M

sinc2
(
iπ
M

) ∑

m1 �=m2

(
1 + J0

(
2πFd

Ns
M

(m1 − m2)

))
⎞

⎠

≥
Ns−1∑

k=0,k �=d

M − 1
M

sinc2
(
iπ
M

)
	 sinc2(iπ) forM 	 1

(44)
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var
{
gk(m1)

} = ((Hk(m11) − Hk(m1))A1 + (Hk(m12) − Hk(m1))A2)

· ((Hk(m11) − Hk(m1))A1 + (Hk(m12) − Hk(m1))A2)
∗

≈ 1
M2 sinc

2
(
iπ
M

)(
1 − J20

(
2πFd

Ns
4M

))

(48)

The second interference term can be approximated as
follows

Ns−1∑

k=0,k �=d
var

{
w�H
d gk

} ≈ 1 − J20
(
2πFd

Ns
4M

)
(49)

Thus, the equalized SIR can be represented in an explicit
form as

γ ′
d(M) ≈ 1

∑Ns−1
k=0,k �=d sinc

2(iπ) +
(
1 − J20

(
2πFd Ns

4M

))
+ σ 2

v
M

(50)

4.3 Discussion on the pre-equalized and equalized SIR
4.3.1 Case I
From (35), it is found that the power of subcarriers mainly
comes from the first term J ′2

0
( iπ
M
)
, which is obtained by

the multi-segment operations and decays in the square of
the sinc function manner across subcarriers. Additionally,
the remaining terms except the first one corresponding to
the time variations will become small with the large M,
but these terms are not considered in [8]. In other words,
the equalizer with a small M will be interfered with by
the remaining terms. For a small M, it would be better
to employ ICI cancellation schemes for high normalized
Doppler frequency scenarios. The simulated and theoreti-
cal pre-equalized SIR curves with the increasingM in (24)
and (40) have been shown in Fig. 3, the curves of which
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Fig. 3 The pre-equalized SIR of multi-segment OFDM signals with
exponential power delay profile and different normalized Doppler
frequencies, Ns = 512, L = 3

roughly agree with each other as expected in the low nor-
malized Doppler frequency regime. Hence, the theoretical
curve can be considered as an upper bound of the pre-
equalized SIR. However, when the segment number M
grows, the pre-equalized SIR will drop with increasingM.
This is because the power of interfering subcarriers will
decay slowly, and the interference term is non-zero across
the subcarriers with a largeM as shown in Fig. 2. But these
terms that are relatively fixed can be effectively mitigated
by the equalizer as in Fig. 4.

4.3.2 Case II
The theoretical equalized SIR performance in (50) is a
function of the segment number M and the normal-
ized Doppler frequency FdNs. It is improved with the
increasingM andwill converge at low normalizedDoppler
frequency regime. In Fig. 5, the theoretical curves approx-
imately agree with the simulated ones at high SNR val-
ues, i.e., 25 dB. Although the second interference term
is replaced by the midpoint model to avoid the compli-
cated integration of multiple Bessel functions, the derived
curves still seem valid for a wide range of normalized
Doppler frequencies, which are of interest. Additionally,
the theoretical results in [21] can be considered as an
upper bound of the equalized SIR at low normalized
Doppler frequencies and a lower bound at high normal-
ized Doppler frequencies.

5 Simulation results
In this section, we have presented the simulation results
of the proposed equalization method with the piecewise
linear model. We assume practical simulation parameters
as follows: the carrier frequency fc = 1800 MHz, the sub-
carrier spacing �f = 976.5 Hz with 512 subcarriers, and
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Fig. 4 The power comparison of subcarriers between the midpoint
model and piecewise linear model withM = 16, d = 511, Ns = 1024,
and FdTs = 0.005
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Fig. 5 The simulated equalized SIR and theoretical equalized SIR with
M = 2, 4, 8, 16, 32, Ns = 512, and SNR= 25 dB. The dashed line
denotes the simulated results, and the solid line denotes the
theoretical results

the OFDM symbol duration T is about 1 ms. The binary
phase shift keying (BPSK) is employed to investigate the
bit error rate (BER) performance. The channel coeffi-
cients are generated by Jakes’ model, and the exponential
power delay profile (0,−4.3429,−8.6859 dB) is employed.
Additionally, the channel coefficients between different
paths are independent identically distributed (i.i.d) with
the same maximum normalized Doppler frequency FdTs.
The power of the multipath channels is normalized
to unit.

5.1 BER performance against normalized doppler
frequencies of MMSE with PLM and conventional
partial FFT

In Fig. 6, the BER performance of the proposed method
against normalized Doppler frequencies at 30 dB SNR is
shown. Its performance is improved with the increasing
M compared to the conventional partial FFT. In the low
regime, the proposed method performs almost the same
as the conventional partial FFT, and the performance gain
gradually reduces due to too fast time variations of the
channels. Additionally, the proposed method can obtain
larger gain with a relatively smallM, because the time vari-
ations of channels in each segment become more signifi-
cant. In other words, the proposed method approximates
the time variations with the piecewise linear model better
than assuming the channels remain constant. Thus, the
equalizer can further suppress the interference. However,
with the increasing normalized Doppler frequencies, the
channels in each segment are varying too fast in the sense
that the approximations by the PLM and the midpoint
model become invalid, and their performance converge at
high normalized Doppler frequencies.
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Fig. 6 BER performance against normalized Doppler frequencies,
Ns = 512, SNR= 30 dB

5.2 BER performance against SNR of MMSE with PLM,
conventional partial FFT, and bandedMMSE equalizer

The BER performance against signal to noise ratio (SNR)
is plotted in Fig. 7. The normalized Doppler frequency is
set to FdTs = 0.005. The main objective of OFDM sys-
tems over rapidly time-varying channels is to combat the
interference induced by the time variations, which has a
very negative impact on the overall performance of the
systems. The BER performance of the banded equalizer in
[4] and the proposed method is shown. Note that there is
an error floor at high SNR regime. This is because some
residual interference cannot be removed by the equaliz-
ers. Furthermore, the CIR channel matrix of the banded
equalizer is truncated to a squared matrix, the size of
which must equal to the size of FFT. In this case, some
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Fig. 7 BER performance against SNR, Ns = 512, FdTs = 0.005
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channel coefficients except these of the first several paths
will be omitted to keep the same size as that of FFT. It will
introduce some additional errors. Technically, this issue
can be partially addressed by inserting zeros between two
consecutive OFDM symbols at the expense of spectral
efficiency.

5.3 BER performance against normalized Doppler
frequencies of MMSE with PLM, conventional partial
FFT, and bandedMMSE equalizer

In Fig. 8, we also present the BER performance against
normalized Doppler frequencies of the banded MMSE
equalizer. It has poorer performance at low normalized
Doppler frequencies. As discussed above, the truncation
of the channel matrix omitted some channel coefficients.
At the low regime, the power of the desired subcarrier
does not spread across the subcarrier. Thus, the perfor-
mance is even poorer than that at a little higher normal-
ized Doppler frequencies. When the normalized Doppler
frequency is getting larger, its performance degrades
accordingly.

5.4 BER performance against normalized Doppler
frequencies of MMSE with PLM andmodified MMSE
equalizer with ICI cancellation

The BER performance of the modified MMSE equalizer
with ICI cancellation (|R| = 1, 3) has almost the same
behaviours as in Fig. 9. Hence, we choose |R| = 1 to
demonstrate the performance in Fig. 9. Its performance is
almost identical to the conventional partial FFT with dif-
ferent M at high normalized Doppler frequencies. In the
low regime, it even has better performance with almost
the same complexity as MMSE-based equalizers given
above.
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Fig. 8 BER performance against normalized Doppler frequencies,
Ns = 512, SNR= 30 dB
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6 Conclusions
In this paper, we have investigated the multi-segmental
OFDM signal equalizer with PLM, which can improve
the BER performance with negligible complexity increases
compared to the partial FFT method. We have also pro-
posed themodified version of the equalizer, which can sig-
nificantly save the computational efforts. Additionally, the
theoretical pre-equalized and equalized SIR performance
have been given in closed-form mathematical expressions
with the aid of the simple numerical evaluation. In the
future, the proposed method could be extended to the
MIMO applications to suppress the ICI and inter-antenna
interference simultaneously.

Appendix A: derivation of the piecewise linear
model
From (8), the PLM for the multi-segmental signals has
been obtained, and the expanded form can be divided into
the following three equations:

1
Ns

mNs
M∑

n= (m−1)Ns
M

ej2π fk−dn

= 1
Ns

∫ mNs
M

(m−1)Ns
M

ej2π i�fndn

(51)

αk(m0)

Ns

(m−1)Ns
M + Ns

2M∑

n= (m−1)Ns
M

(
n − (2m − 1)Ns

2M

)
ej2π fk−dn

= αk(m0)

Ns

∫ (m−1)Ns
M + Ns

2M

(m−1)Ns
M

(
n − (2m − 1)Ns

2M

)
ej2π i�fndn

(52)
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αk(m1)

Ns

mNs
M∑

n= (m−1)Ns
M + Ns

2M

(
n − (2m − 1)Ns

2M

)
ej2π fk−dn

= αk(m0)

Ns

∫ mNs
M

(m−1)Ns
M + Ns

2M

(
n − (2m − 1)Ns

2M

)
ej2π i�fndn

(53)

The derivation of the first equation has been given in
[8], and the second and third equations have the similar
format except the upper and lower limit of the integration.
For the simplicity, we only give the exact derivation of the
second one and the third one can be obtained accordingly.
Hence, the integration of Eq. (52) can be computed as

αk(m0)

Ns

∫ mNs
M

(m−1)Ns
M + Ns

2M

(
n − (2m − 1)Ns

2M

)
ej2π i�fn

dn = αk(m0)

Ns
ej2π i

4m−3
4M

∫ Ns
4M

− Ns
4M

nej2π i�fndn

(54)

The first term of the right hand side of (54) can be
rewritten as

αk(m0)

Ns
ej2π i

4m−3
4M

∫ Ns
4M

− Ns
4M

nej2π i�fndn = αk(m0)ej2iπ
4m−3
4M

· −jNs
(
iπ cos

( iπ
2M

) − 2M sin
( iπ
2M

))

4i2π2M
(55)

Defining x = iπ
2M , the terms in (55) can be simplified as

(
iπ cos

( iπ
2M

) − 2M sin
( iπ
2M

))

4i2π2M
= 1

8M2

(
1
x
cos(x) − 1

x2
sin(x)

)

= − 1
8M2 J

′
1(x), i > 0

= 1
8M2 J

′
1(x), i < 0

(56)

and

sinc
(

iπ
2M

)
= J ′0

(
iπ
2M

)
(57)

where the quantities J ′n(x) =
√

π
2x Jn+ 1

2
(x) and Jn(x) denote

the spherical Bessel function of the first kind and Bessel
function of the first kind, respectively. For i = 0, i.e., x = 0,
J ′0(x) = 1, J ′1(x) = 0. The second term of the right hand
side of (54) can be derived as (51).

Appendix B: proof of uncorrelated terms betweenw�H
d fk

andw�H
d gk

The expected value E
{
w�H
d fkw�H

d gk
}
in a canonical form

is given as

E
{
w�H
d fkw�H

d gk
} =

M∑

m1=1

M∑

m2=1
E

{
1
M2 fk(m1)H∗

d (m1)H∗
d (m2)gk(m2)

}

(58)

If the moderate segment number is chosen, the above
equation can be represented as

M∑

m1=1

M∑

m2=1
E

{
1
M2 fk(m1)H∗

d(m1)H∗
d(m2)gk(m2)

}

≈ 1
M2

M∑

m1=1

M∑

m2=1
E
{
fk(m1)H∗

d(m1)
}
E
{
H∗
d(m2)gk(m2)

}

(59)

where

E{fk(m1)H∗
d(m1)} = sinc

(
iπ
M

)
e
j2π i(2m1−1)

2M (60)

Substituting (60) into (58), the equation becomes

1
M2

M∑

m1=1

M∑

m2=1
E
{
fk(m1)H∗

d(m1)
}
E
{
H∗
d(m2)gk(m2)

}

= sinc
(
iπ
M

) M∑

m2=1
E
{
H∗
d(m2)gk(m2)

} M∑

m1=1
e
j2π i(2m1−1)

2M = 0

(61)

where
M∑

m1=1
e
j2π i(2m1−1)

2M = 0 (62)
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5. G Tauböck, M Hampejs, P Švač, G Matz, F Hlawatsch, K Gröchenig,
Low-complexity ICI/ISI equalization in doubly dispersive multicarrier
systems using a decision-feedback LSQR algorithm. IEEE Trans. Signal
Process. 59, 2432–2436 (2011)

6. S Tomasin, A Gorokhov, H Yang, JP Linnartz, Iterative interference
cancellation and channel estimation for mobile OFDM. IEEE Trans. Wirel.
Commun. 4, 238–245 (2005)

7. SU Hwang, JH Lee, J Seo, Low-complexity iterative ICI cancellation and
equalization for OFDM systems over doubly selective channels. IEEE
Trans. Broadcast. 55, 132–139 (2009)

8. S Yerramalli, M Stojanovic, U Mitra, Partial FFT demodulation: a detection
method for highly Doppler distorted OFDM systems. IEEE Trans. Signal
Process. 60, 5906–5918 (2012)

9. P Baracca, S Tomasin, L Vangelist, N Benvenuto, A Morello, Per sub-block
equalization of very long OFDM blocks in mobile communications. IEEE
Trans. Commun. 59, 363–368 (2011)

10. HWWang, DW Lin, TH Sang, OFDM signal detection in doubly selective
channels with blockwise whitening of residual intercarrier interference
and noise. IEEE J. Sel. Areas Commun. 30, 684–694 (2012)

11. RC De Lamare, R Sampaio-Neto, Minimummean square error iterative
successive parallel arbitrated decision feedback detectors for DS-CDMA
systems. IEEE Trans. Commun. 56, 778–789 (2008)

12. JW Choi, AC Singer, J Lee, NI Cho, Improved linear soft-input soft-output
detection via soft feedback successive interference cancellation. IEEE
Trans. Commun. 58, 986–996 (2010)

13. J Choi, Approximate MAP detection with ordering and successive
processing for iterative detection and decoding in MIMO systems. IEEE J.
Sel. Top. Signal Process. 5, 1415–1424 (2011)

14. P Li, RC de Lamare, Multiple feedback successive interference cancellation
detection for multiuser MIMO systems. IEEE Trans. Wirel. Commun. 10,
2434–2439 (2011)

15. E Panayırcı, H Dogan, HV Poor, Low-complexity MAP-based successive
data detection for coded OFDM systems over highly mobile wireless
channels. IEEE Trans. Veh. Technol. 60, 2849–2857 (2011)

16. V Namboodiri, H Liu, P Spasojević, Low-complexity iterative receiver
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